Cryptography

Dr. Patrick Mehlitz, M.Sc. Ameen Naif

Homework Sheet 2
Version 07.05.2020

Homework 1.

1. We consider the function $\varphi \in \mathcal{S}_{5}$ given as follows:

i	1	2	3	4	5
$\varphi(i)$	2	1	4	5	3

Compute ord (φ) in $\left(\mathcal{S}_{5}, \circ\right)$.
2. We consider the function $\varphi \in \mathcal{S}_{10}$ given as follows:

i	1	2	3	4	5	6	7	8	9	10
$\varphi(i)$	2	1	4	5	3	8	10	9	7	6

Compute ord (φ) in $\left(\mathcal{S}_{10}, \circ\right)$.
3. For $n \in \mathbb{N}$, we consider the cyclic left shift $\varphi \in \mathcal{S}_{n}$ given as follows:

i	1	2	\ldots	$n-1$	n
$\varphi(i)$	2	3	\ldots	n	1

Compute ord (φ) in $\left(\mathcal{S}_{n}, \circ\right)$.

Homework 2.

Check whether the following structures $(\mathcal{R}, \oplus, \odot)$ are rings or even fields. In case of a ring, check whether it is zero-divisor free, i.e., whether the following property holds:

$$
\forall x, y \in \mathcal{R}: \quad x \odot y=o \quad \Longrightarrow \quad x=o \text { or } y=o .
$$

Above, o denotes the neutral element w.r.t. \oplus.
a) We consider the set $\mathcal{R}:=\mathbb{Z} \times \mathbb{Z}$ of all pairs of integers equipped with the following binary operations:

$$
\forall(a, b),(c, d) \in \mathbb{Z} \times \mathbb{Z}: \quad(a, b) \oplus(c, d):=(a+c, b+d) \quad(a, b) \odot(c, d):=(a \cdot c, b \cdot d)
$$

Above, + and \cdot denote the standard addition and multiplication in \mathbb{Z}.
b) Let \mathcal{R} be the set of all subsets of \mathbb{Z}. We equip \mathcal{R} with the following binary operations:

$$
\forall A, B \in \mathcal{R}: \quad A \oplus B:=A \cup B \quad A \odot B:=A \cap B
$$

Above, \cup and \cap denote the standard union and intersection operators for sets.
c) Let $\mathcal{R} \subset \mathcal{T}_{\mathbb{R}}$ be given by

$$
\mathcal{R}:=\left\{f \in \mathcal{T}_{\mathbb{R}} \mid \exists a \in \mathbb{R} \forall x \in \mathbb{R}: f(x)=a x\right\} .
$$

We equip \mathcal{R} with the binary operations defined by

$$
\forall f, g \in \mathcal{R} \forall x \in \mathbb{R}: \quad(f \oplus g)(x):=f(x)+g(x) \quad(f \odot g)(x):=g(f(x)) .
$$

Homework 3.

Solve the following systems of linear equations in the field \mathbb{Z}_{23} :

$$
\begin{array}{rlrl}
3 x_{1}+19 x_{3} & =11 & 9 x_{1}+2 x_{2}+20 x_{3} & =9 \\
2 x_{1}+14 x_{2}+12 x_{3} & =2 & 2 x_{1}+4 x_{2}+20 x_{3} & =9 \\
17 x_{1}+10 x_{2}+5 x_{3} & =17, & x_{1}+5 x_{2}+3 x_{3} & =14 .
\end{array}
$$

Homework 4.

Compute the smallest natural number which solves the subsequently stated system of congruences:

$$
\begin{array}{ll}
x \equiv 1 & \bmod 11 \\
x \equiv 2 & \bmod 12 \\
x \equiv 3 & \bmod 13
\end{array}
$$

