Cryptography Dr. Patrick Mehlitz, M.Sc. Ameen Naif

Homework Sheet 2 Version 07.05.2020

Homework 1.

1. We consider the function $\varphi \in \mathcal{S}_5$ given as follows:

i	1	2	3	4	5
$\varphi(i)$	2	1	4	5	3

Compute $\operatorname{ord}(\varphi)$ in (\mathcal{S}_5, \circ) .

2. We consider the function $\varphi \in S_{10}$ given as follows:

i		1	2	3	4	5	6	7	8	9	10
$\varphi($	<i>i</i>)	2	1	4	5	3	8	10	9	7	6

Compute $\operatorname{ord}(\varphi)$ in $(\mathcal{S}_{10}, \circ)$.

3. For $n \in \mathbb{N}$, we consider the cyclic left shift $\varphi \in \mathcal{S}_n$ given as follows:

i	1	2	 n-1	n
$\varphi(i)$	2	3	 n	1

Compute $\operatorname{ord}(\varphi)$ in (\mathcal{S}_n, \circ) .

Homework 2.

Check whether the following structures $(\mathcal{R}, \oplus, \odot)$ are rings or even fields. In case of a ring, check whether it is zero-divisor free, i.e., whether the following property holds:

 $\forall x, y \in \mathcal{R}: \qquad x \odot y = o \implies x = o \text{ or } y = o.$

Above, o denotes the neutral element w.r.t. \oplus .

a) We consider the set $\mathcal{R} := \mathbb{Z} \times \mathbb{Z}$ of all pairs of integers equipped with the following binary operations:

$$\forall (a,b), (c,d) \in \mathbb{Z} \times \mathbb{Z} : \quad (a,b) \oplus (c,d) := (a+c,b+d) \qquad (a,b) \odot (c,d) := (a \cdot c, b \cdot d) = (a \cdot c, b$$

Above, + and \cdot denote the standard addition and multiplication in \mathbb{Z} .

b) Let \mathcal{R} be the set of all subsets of \mathbb{Z} . We equip \mathcal{R} with the following binary operations:

 $\forall A, B \in \mathcal{R} \colon A \oplus B := A \cup B \qquad A \odot B := A \cap B.$

Above, \cup and \cap denote the standard union and intersection operators for sets.

c) Let $\mathcal{R} \subset \mathcal{T}_{\mathbb{R}}$ be given by

$$\mathcal{R} := \{ f \in \mathcal{T}_{\mathbb{R}} \, | \, \exists a \in \mathbb{R} \, \forall x \in \mathbb{R} \colon f(x) = ax \}.$$

We equip \mathcal{R} with the binary operations defined by

$$\forall f, g \in \mathcal{R} \, \forall x \in \mathbb{R} \colon \quad (f \oplus g)(x) := f(x) + g(x) \qquad (f \odot g)(x) := g(f(x)).$$

Homework 3.

Solve the following systems of linear equations in the field \mathbb{Z}_{23} :

$3x_1$	+	$19x_3 =$	11	$9x_1 +$	$2x_2 +$	$20x_3 =$	9
$2x_1 + $	$14x_2 + $	$12x_3 =$	2	$2x_1 + $	$4x_2 +$	$20x_3 =$	9
$17x_1 + $	$10x_2 +$	$5x_3 =$	17,	$x_1 +$	$5x_2 + $	$3x_3 =$	14.

Homework 4.

Compute the smallest natural number which solves the subsequently stated system of congruences:

 $\begin{array}{ll} x \equiv 1 \mod 11 \\ x \equiv 2 \mod 12 \\ x \equiv 3 \mod 13. \end{array}$