Cryptography

Dr. Patrick Mehlitz, M.Sc. Ameen Naif

Exercise Sheet 12

Version 16.07.2020

Exercise 1.

Let $\mathcal{P}=\{a, b\}, \mathcal{C}=\{1,2,3,4\}$ and $\mathcal{K}=\left\{K_{1}, K_{2}, K_{3}\right\}$ denote random variables with $\operatorname{pr}_{a}^{\mathcal{P}}=1 / 4, \operatorname{pr}_{b}^{\mathcal{P}}=3 / 4$ and $\operatorname{pr}_{K_{1}}^{\mathcal{K}}=1 / 2, \operatorname{pr}_{K_{2}}^{\mathcal{K}}=\operatorname{pr}_{K_{3}}^{\mathcal{K}}=1 / 4$. Suppose that the encryption functions of the underlying cryptosystem are given by $E_{K_{1}}(a)=1$, $E_{K_{1}}(b)=2 ; E_{K_{2}}(a)=2, E_{K_{2}}(b)=3$ and $E_{K_{3}}(a)=3, E_{K_{3}}(b)=4$.
(a) Compute the probability distribution on \mathcal{C}.
(b) Compute the conditional probability distributions on the plaintext \mathcal{P}, given that a certain ciphertext has been observed.
(c) Is the cryptosytem $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ perfectly secure? Why?

Exercise 2.

For $n \in \mathbb{N}$, let $g: \mathbb{Z}_{2}^{+} \rightarrow \mathbb{Z}_{2}^{n}$ be a strongly collision resistant hash function. We define $g_{1}, g_{2}: \mathbb{Z}_{2}^{+} \rightarrow \mathbb{Z}_{2}^{n+1}$ as well as $h: \mathbb{Z}_{2}^{+} \rightarrow \mathbb{Z}_{2}^{2 n+2}$ via

$$
\begin{aligned}
\forall x \in \mathbb{Z}_{2}^{+}: & g_{1}(x) \\
: & =\left\{\begin{array}{ll}
g(x) 1 & x_{1}=0, \\
0^{n+1} & x_{1}=1,
\end{array} \quad g_{2}(x):= \begin{cases}g(x) 1 & x_{1}=1, \\
0^{n+1} & x_{1}=0,\end{cases} \right. \\
h(x) & :=g_{1}(x) g_{2}(x)
\end{aligned}
$$

Show that h is a strongly collision resistant hash function. Is g_{1} weakly collision resistant?

