Cryptography
 Dr. Patrick Mehlitz, M.Sc. Ameen Naif

Exercise Sheet 10
Version 02.07.2020

Exercise 1.

Let $p:=3, q:=11$, as well as $n:=p q$ and consider the associated RSA algorithm with encryption coefficient $e:=17$. Noting that $0,1,32 \in \mathbb{Z}_{33}$ are fixed points of the associated RSA algorithm, we investigate the following plain text alphabet $\mathcal{A}:=$ $\left\{z_{i} \mid i \in\{2, \ldots, 31\}\right\}$ for encryption via the RSA:

i	z_{i}	i	z_{i}		i	z_{i}		i	z_{i}	i	z_{i}	i	z_{i}
2	A	7	F		12	K		17	P		22	U	
	27	Z											
3	B	8	G		13	L		18	Q		23	V	28
4	C	9	H		14	M		19	R		24	W	29
5	D	10	I	15	N		20	S		25	X	30	$?$
6	E	11	J		16	O		21	T		26	Y	31

a) Encrypt the plaintext TAU CETI using the RSA algorithm.
b) Decrypt the cipher text YIZXG? which has been created using the above RSA algorithm.

Exercise 2.

For distinct odd primes $p, q \in \mathbb{P}$, let $n:=p q$ be the associated RSA module. Show that one can easily find p and q only from the knowledge of n and $\varphi(n)$ by solving a certain quadratic equation.
Hint: Observe that precisely p and q are the roots of the polynomial: $x \mapsto(x-p)(x-q)$. Rearrange the latter.

Exercise 3.

Let $n=p \cdot q$ be the product of two different unknown prime numbers. Let e, d be two integers such that $e \cdot d=1 \bmod \varphi(n)$.
a) Show that $x^{2} \equiv 1 \bmod n$ has exactly four solutions in \mathbb{Z}_{n}.
b) Why the $\operatorname{gcd}(x-1, n)$ is equal to p or q, where x is nontrivial solution of the equation in a)?
c) Show that $a^{k} \equiv 1 \bmod n$ for every $a \in \mathbb{Z}_{n}$, where $k:=e \cdot d-1$.
d) Why exist $r, t \in \mathbb{N}$ such that $k=2^{t} \cdot r$ with r odd and $t \geq 1$?
e) Show that one element of the sequence $a^{\frac{k}{2^{i}}} \bmod n, i=1, \ldots, t$ is a solution of the equation in a).
f) How can you factor n given encryption and decryption coefficient e and d ?

