Cryptography Dr. Patrick Mehlitz, M.Sc. Ameen Naif

Exercise Sheet 10 Version 02.07.2020

Exercise 1.

Let p := 3, q := 11, as well as n := pq and consider the associated RSA algorithm with encryption coefficient e := 17. Noting that $0, 1, 32 \in \mathbb{Z}_{33}$ are fixed points of the associated RSA algorithm, we investigate the following plain text alphabet $\mathcal{A} := \{z_i \mid i \in \{2, \ldots, 31\}\}$ for encryption via the RSA:

i	$ z_i $	i	z_i	i	z_i	i	$ z_i $	i	z_i	i	z_i
2	A	7	F	12	K	17	Р	22	U	27	Z
3	В	8	G	13	L	18	Q	23	V	28	
4	С	9	H	14	М	19	R	24	W	29	!
5	D	10	I	15	N	20	S	25	Х	30	?
6	E	11	J	16	0	21	Т	26	Y	31	

- a) Encrypt the plaintext TAU CETI using the RSA algorithm.
- b) Decrypt the cipher text YIZXG? which has been created using the above RSA algorithm.

Exercise 2.

For distinct odd primes $p, q \in \mathbb{P}$, let n := pq be the associated RSA module. Show that one can easily find p and q only from the knowledge of n and $\varphi(n)$ by solving a certain quadratic equation.

Hint: Observe that precisely p and q are the roots of the polynomial: $x \mapsto (x-p)(x-q)$. Rearrange the latter.

Exercise 3.

Let $n = p \cdot q$ be the product of two different unknown prime numbers. Let e, d be two integers such that $e \cdot d = 1 \mod \varphi(n)$.

- a) Show that $x^2 \equiv 1 \mod n$ has exactly four solutions in \mathbb{Z}_n .
- b) Why the gcd(x-1,n) is equal to p or q, where x is nontrivial solution of the equation in a)?
- c) Show that $a^k \equiv 1 \mod n$ for every $a \in \mathbb{Z}_n$, where $k := e \cdot d 1$.
- d) Why exist $r, t \in \mathbb{N}$ such that $k = 2^t \cdot r$ with r odd and $t \ge 1$?
- e) Show that one element of the sequence $a^{\frac{\kappa}{2^i}} \mod n, i = 1, ..., t$ is a solution of the equation in a).
- f) How can you factor n given encryption and decryption coefficient e and d?