Cryptography

Dr. Patrick Mehlitz, M.Sc. Ameen Naif

Exercise Sheet 6

Version 28.05.2020

Exercise 1.

Check whether the following given homomorphic codification over the alphabet $B=$ $\{0,1\}$ are uniquely decodable. If so, then restore the original plain text $c \in A$ of the encoded string $\tilde{c} \in B$. Otherwise, make sure that \tilde{c} cannot be decoded uniquely.
a) $A=\{a, d, k, u\}, \tilde{c}=110011100111010$,

$x \in A$	a	d	k	u
$\gamma(x)$	001	110	11	10

b) $A=\{e, s, u\}, \tilde{c}=10010010$,

$x \in A$	e	s	u
$\gamma(x)$	010	10	100

c) $A=\{n, o, r, t\}, \tilde{c}=1101001110001110100$,

$x \in A$	n	o	r	t
$\gamma(x)$	01	100	11	110

Exercise 2.

Let $n \in \mathbb{N}$. Decide whether the following binary codes are uniquely decodable and give the reason for your decision:
a) $C=\left\{0,101, \ldots, 1^{n} 01^{n}\right\}$,
b) $C=\left\{0,01, \ldots, 01^{n}\right\}$,
c) $C=\left\{0,01,010,0101, \ldots, 0(10)^{n}, 0(10)^{n} 1\right\}$,
d) $C=\left\{01,0011, \ldots, 00^{n} 1^{n} 1\right\}$ and
e) $C=\left\{0,010, \ldots, 0(10)^{n}\right\}$.

Exercise 3.

Let $n, m \in \mathbb{N}$ be fixed, C_{n} be the binary repetition code of length n and $\tilde{C}_{n, m}:=\left(C_{n}\right)^{m}$ the m-times Cartesian product of C_{n}. Find the cardinality, the information transfer rate and the minimum distance of $\tilde{C}_{n, m}$ depending on n and m.

Exercise 4.

a) Find the maximum cardinality of a binary block code C of length 3 with minimum distance equal 2 .
b) Are there binary block codes with specification $(7,8,5)$ or $(6,10,4)$, respectively? If your answer is positive, construct such a code.

