Cryptography Dr. Patrick Mehlitz, M.Sc. Ameen Naif

Exercise Sheet 4 Version 07.05.2020

Exercise 1.

Name the elements of \mathbb{Z}_{12} which are invertible w.r.t. multiplication. Determine their inverses with the aid of the Euclidean algorithm.

Exercise 2.

In the residue class ring $(\mathbb{Z}_{16}, +, \cdot)$

(a) find all **zero-divisor** and

(b) solve the following system of equations:

Exercise 3.

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}_n$ be fixed. Show that $ax = b \mod n$ has a unique solution $x \in \mathbb{Z}_n$ for every $b \in \mathbb{Z}_n$ if and only if gcd(a, n) = 1.

Exercise 4.

Let p > 2 be prime and $b \in \mathbb{Z}_p^*$. Show that $x^2 \equiv b \mod p$ either has no or two solutions in \mathbb{Z}_p .

Exercise 5.

Compute the smallest natural number which solves the subsequently stated system of congruences:

 $x \equiv 1 \mod 25$ $x \equiv 2 \mod 7$ $x \equiv 4 \mod 9$ $x \equiv 7 \mod 38.$

Exercise 6.

Prove the Corollary 2.58 in the lecture with the aid of the Chinese Reminder Theorem.