Cryptography

Dr. Patrick Mehlitz, M.Sc. Ameen Naif

Exercise Sheet 4
Version 07.05.2020

Exercise 1.

Name the elements of \mathbb{Z}_{12} which are invertible w.r.t. multiplication. Determine their inverses with the aid of the Euclidean algorithm.

Exercise 2.

In the residue class ring $\left(\mathbb{Z}_{16},+, \cdot\right)$
(a) find all zero-divisor and
(b) solve the following system of equations:

$$
\begin{aligned}
3 x+5 y+7 z & =3 \\
x+4 y+13 z & =5 \\
2 x+7 y+3 z & =4
\end{aligned}
$$

Exercise 3.

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}_{n}$ be fixed. Show that $a x=b \bmod n$ has a unique solution $x \in \mathbb{Z}_{n}$ for every $b \in \mathbb{Z}_{n}$ if and only if $\operatorname{gcd}(a, n)=1$.

Exercise 4.

Let $p>2$ be prime and $b \in \mathbb{Z}_{p}^{*}$. Show that $x^{2} \equiv b \bmod p$ either has no or two solutions in \mathbb{Z}_{p}.

Exercise 5.

Compute the smallest natural number which solves the subsequently stated system of congruences:

$$
\begin{array}{ll}
x \equiv 1 & \bmod 25 \\
x \equiv 2 & \bmod 7 \\
x \equiv 4 & \bmod 9 \\
x \equiv 7 & \bmod 38 .
\end{array}
$$

Exercise 6.

Prove the Corollary 2.58 in the lecture with the aid of the Chinese Reminder Theorem.

