Cryptography Dr. Patrick Mehlitz, M.Sc. Ameen Naif

Exercise Sheet 3 Version 30.04.2020

Exercise 1.

For a set $S := \{e, u, v, x, y, z\}$, we consider the group (S, *) which is given by the following Cayley-table.

*	e	u	v	x	y	z
e	$egin{array}{c} e \\ u \\ v \\ x \\ y \\ z \end{array}$	u	v	x	y	z
u	u	v	e	y	z	x
v	v	e	u	z	x	y
x	x	z	y	e	v	u
y	y	x	z	u	e	v
z	z	y	x	v	u	e

Determine the order of all its elements and deduce that (S, *) is not cyclic. Verify the relation $\langle \{u, x\} \rangle = S$.

Exercise 2.

We consider the group $(\mathbb{Z} \times \mathbb{Z}, +)$ of all pairs of integers equipped with the componentwise addition, i.e.,

$$\forall (k,\ell), (u,v) \in \mathbb{Z} \times \mathbb{Z}: \quad (k,\ell) + (u,v) := (k+u,\ell+v).$$

Show that $(\mathbb{Z} \times \mathbb{Z}, +)$ is not cyclic. Verify the relation $\langle \{(2, 1), (1, 1)\} \rangle = \mathbb{Z} \times \mathbb{Z}$.

Exercise 3.

Let (G, \cdot) be a cyclic group generated by $a \in G$ and n := ord(a). Prove that $\langle \{a^m\} \rangle = \langle \{a^d\} \rangle$, for any $m \in \mathbb{N}$ and d := gcd(m, n).

Exercise 4.

- a) We set $\mathbb{Z} + \sqrt{3}\mathbb{Z} := \{k + \sqrt{3}\ell \mid k, \ell \in \mathbb{Z}\}$ and equip this set with the standard addition + and multiplication \cdot . Show that $\mathbb{Z} + \sqrt{3}\mathbb{Z}$ is closed under + and \cdot . Observing that $(\mathbb{R}, +, \cdot)$ is a ring, deduce that $(\mathbb{Z} + \sqrt{3}\mathbb{Z}, +, \cdot)$ is a ring, too. Is it a field?
- b) We set $\mathbb{Q} + \sqrt{3}\mathbb{Q} := \{r + \sqrt{3}s \mid r, s \in \mathbb{Q}\}$ and equip this set with the standard addition + and multiplication \cdot . Show that $(\mathbb{Q} + \sqrt{3}\mathbb{Q}, +, \cdot)$ is a field.