Cryptography

Dr. Patrick Mehlitz, M.Sc. Ameen Naif

Exercise Sheet 3
Version 30.04.2020

Exercise 1.

For a set $S:=\{e, u, v, x, y, z\}$, we consider the group $(S, *)$ which is given by the following Cayley-table.

$*$	e	u	v	x	y	z
e	e	u	v	x	y	z
u	u	v	e	y	z	x
v	v	e	u	z	x	y
x	x	z	y	e	v	u
y	y	x	z	u	e	v
z	z	y	x	v	u	e

Determine the order of all its elements and deduce that $(S, *)$ is not cyclic. Verify the relation $\langle\{u, x\}\rangle=S$.

Exercise 2.

We consider the group ($\mathbb{Z} \times \mathbb{Z},+$) of all pairs of integers equipped with the componentwise addition, i.e.,

$$
\forall(k, \ell),(u, v) \in \mathbb{Z} \times \mathbb{Z}: \quad(k, \ell)+(u, v):=(k+u, \ell+v) .
$$

Show that $(\mathbb{Z} \times \mathbb{Z},+)$ is not cyclic. Verify the relation $\langle\{(2,1),(1,1)\}\rangle=\mathbb{Z} \times \mathbb{Z}$.

Exercise 3.

Let (G, \cdot) be a cyclic group generated by $a \in G$ and $n:=\operatorname{ord}(a)$. Prove that $\left\langle\left\{a^{m}\right\}\right\rangle=$ $\left\langle\left\{a^{d}\right\}\right\rangle$, for any $m \in \mathbb{N}$ and $d:=\operatorname{gcd}(m, n)$.

Exercise 4.

a) We set $\mathbb{Z}+\sqrt{3} \mathbb{Z}:=\{k+\sqrt{3} \ell \mid k, \ell \in \mathbb{Z}\}$ and equip this set with the standard addition + and multiplication \cdot. Show that $\mathbb{Z}+\sqrt{3} \mathbb{Z}$ is closed under + and \cdot. Observing that $(\mathbb{R},+, \cdot)$ is a ring, deduce that $(\mathbb{Z}+\sqrt{3} \mathbb{Z},+, \cdot)$ is a ring, too. Is it a field?
b) We set $\mathbb{Q}+\sqrt{3} \mathbb{Q}:=\{r+\sqrt{3} s \mid r, s \in \mathbb{Q}\}$ and equip this set with the standard addition + and multiplication \cdot Show that $(\mathbb{Q}+\sqrt{3} \mathbb{Q},+, \cdot)$ is a field.

