Cryptography

Dr. Patrick Mehlitz, M.Sc. Ameen Naif

Exercise Sheet 1
Version 16.04.2020

Exercise 1.

Prove the following using the definition of divisibility:
(a) $\forall a \in \mathbb{N}: 1 \mid a$.
(b) $\forall a, b \in \mathbb{N}_{0}: a|b \wedge b| a \Longrightarrow a=b$.
(c) $\forall a, b, c, d \in \mathbb{N}_{0}: a|b \wedge c| d \Longrightarrow(a c) \mid(b d)$.

Exercise 2.

Prove that for all $a, b, m \in \mathbb{N}$ the following is true:
If $\operatorname{gcd}(a, m)=1$ and $\operatorname{gcd}(b, m)=1$, then $\operatorname{gcd}(a \cdot b, m)=1$.

Exercise 3.

For the pairs of integers a, b given below use the Euclidean Algorithm to find the $\operatorname{gcd}(a, b)$:
i) $a=13, b=32$ and
ii) $a=40, b=148$.

Exercise 4.

Using the Fermat factorization method, factor each of the following positive integers:
a) 73 and b) 46009 .

Exercise 5.

For $n \in \mathbb{N}$, the number of the form $M_{n}=2^{n}-1$ is called the n-th Mersenne number.
(a) Prove that M_{r} is a divisor of $M_{r . s}$, wehre $r, s \in \mathbb{N}$.
(b) Show that: If M_{n} is prime, then n must be prime. (Or if n is composite, then M_{n} is also composite).
(c) Find using a) the prime factorization of M_{6}.

