Cryptography Prof. Dr. Klaus Meer, Ameen Naif

Exercise Sheet 5 Version 14.06.2019

Exercise 1.

Let p > 2 be prime and $b \in \mathbb{Z}_p^*$. Show that $x^2 \equiv b \mod p$ either has no or two solutions in \mathbb{Z}_p .

Exercise 2.

Let $l_1, \ldots, l_s \in \mathbb{N}, s > 2$.

- (a) Give a formal definition of $gcd(l_1, ..., l_s)$.
- (b) For $x, y, z \in \mathbb{N}$ show that gcd(x, y, z) = gcd(x, gcd(y, z)).
- (c) Suppose $gcd(l_1, ..., l_s) = 1$, i.e. all $l_1, ..., l_s$ are pairwise relatively prime. Use (b) and an induction proof to show: There exist $x_1, ..., x_s \in \mathbb{Z}$ s.t. $1 = \sum_{i=1}^s x_i \cdot l_i$.

Exercise 3.

Let $p \in \mathbb{N}$ be a prime, $g \in \mathbb{Z}_p^*$ a generator of (\mathbb{Z}_p^*, \cdot) . Prove that the map

$$log_g: \quad \mathbb{Z}_p^* \to \mathbb{Z}_{p-1} \\ h \to log_g(h) \ mod \ p-1$$

is bijective and isomorphic, i.e. the following two conditions hold:

- i) $\forall a, b \in \mathbb{Z}_p^*: \log_q(a \cdot b) = (\log_q(a) + \log_q(b)) \mod p 1$ and
- ii) the map log_g is bijective.

Exercise 4.

Let $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{N}$ such that $a \equiv b \mod n$ and $c \equiv d \mod n$. Show that the following identities holds:

- (a) Addition: $a + c \equiv b + d \mod n$
- (b) Subtraction: $a c \equiv b d \mod n$
- (c) Multiplication: $a \cdot c \equiv b \cdot d \mod n$ and
- (d) Exponentiation: $a^m \equiv b^m \mod n$, where m is a positive integer.