Cryptography Prof. Dr. Klaus Meer, Ameen Naif

Exercise Sheet 3 Version 10.05.2019

Exercise 1.

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}_n$ be fixed.

- (a) Show that $ax = b \mod n$ has a unique solution $x \in \mathbb{Z}_n$ for every $b \in \mathbb{Z}_n$ if and only if gcd(a, n) = 1.
- (b) How many possible keys has the Affine Cipher?

Exercise 2.

Let $\mathbf{s} = s_1 s_2 \cdots s_r$ be a random string of $r \in \mathbb{N}$ characters from the alphabet \mathbb{Z}_{26} . Show that $I_c(\mathbf{s}) \simeq \sum_{i=0}^{25} p_i^2$, where I_c is the **Index of Coincidence** and p_i is the probability to have *i* in the string \mathbf{s} .

Exercise 3.

Suppose that π is the following permutation of $\{1, 2, \dots, 8\}$: $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 1 & 6 & 2 & 7 & 3 & 8 & 5 \end{pmatrix}$.

- i) Compute the permutation π^{-1} .
- ii) Decrypt the following ciphertext, which was encrypted using the key π :

TGEEMNELNNTDROEOAAHDOETCSHAEIRLM.

Exercise 4.

Let $\mathcal{P} = \{a, b\}, \mathcal{C} = \{1, 2, 3, 4\}$ and $\mathcal{K} = \{K_1, K_2, K_3\}$ denote **random variables** with $\mathbf{Pr}(a) = 1/4$, $\mathbf{Pr}(b) = 3/4$ and $\mathbf{Pr}(K_1) = 1/2$, $\mathbf{Pr}(K_2) = \mathbf{Pr}(K_3) = 1/4$. Suppose the encryption functions defined to be $e_{K_1}(a) = 1$, $e_{K_1}(b) = 2$; $e_{K_2}(a) = 2$, $e_{K_2}(b) = 3$ and $e_{K_3}(a) = 3$, $e_{K_3}(b) = 4$.

- (a) Compute the probability distribution on \mathcal{C} .
- (b) Compute the conditional probability distributions on the ciphertext, given that a certain ciphertext has been observed.
- (c) has the cryptosytem $(\mathcal{P}, \mathcal{C}, \mathcal{K})$ perfect secrecy?

Exercise 5.

Show that for any plaintext probability distribution the **Shift Cipher** has perfect secrecy, if the 26 keys are used with equal probability 1/26.

Exercise 6.

Prove that the Affine Cipher achieves perfect secrecy if every key is used with equal probability 1/312.

Exercise 7.

Suppose that $y, y' \in \mathcal{C} = \mathbb{Z}_2^n$ for some $n \in \mathbb{N}$ are two ciphertext elements in the **One-time Pad** that were obtained by encrypting plaintext elements $x, x' \in \mathcal{P} = \mathbb{Z}_2^n$, respectively, using the same key $k \in \mathcal{K} = \mathbb{Z}_2^n$. Prove that $x + x' = y + y' \mod 2$.

Exercise 8.

Let e(p, k) represent the encryption of plaintext p with key k using the **DES** cryptosystem. Suppose c = e(p, k) and $c' = e(\sim (p), \sim (k))$, where $\sim: \{0, 1\}^{64} \rightarrow \{0, 1\}^{64}$ denotes the **bitwise complement operator** of its argument, i.e. \sim converts every 1 to a 0 and vice versa. Prove that $c' = \sim (c)$.

Note: the actual structure of **S-boxes** and other components of the system are irrelevant for the above property.

Exercise 9.

Compute the following using the method of Modular Exponentiation:

a) $2^{71} \mod 143$ b) $16^{47} \mod 143$ c) $21^{19} \mod 143$

Exercise 10.

Bob wants to set up his own public and private keys. He chooses p = 23 and q = 19 with e = 283. Find the private key to decrypt the ciphertext $c = 14^{283} \mod p \cdot q$.

Exercise 11.

Big \mathcal{O} Notation:

- (a) Let $f(n) = 4n^2 + 3n + 5$. Is $f \in \mathcal{O}(n^3)$? Is there a function $h : \mathbb{N} \to \mathbb{N}$ such that $f \in \mathcal{O}(h)$, where $h \in \mathcal{O}(n^3)$?
- (b) Show that f is not an element of $\mathcal{O}(n)$.

Recall: Let $f, g : \mathbb{N} \to \mathbb{N}$ be functions. One writes $f \in \mathcal{O}(g)$ iff there exists an integer $N \ge 1$ and a real number c > 0 such that for all $n \ge N$, we have $f(n) \le c \cdot g(n)$.

Exercise 12.

Division Algorithm for Polynomials: Let $p, q \in \mathbb{R}[x]$ such that $q(x) \neq 0$. Prove by induction over deg(p) that there exist unique polynomials $k, r \in \mathbb{R}[x]$ such that $\forall x \in \mathbb{R} : p(x) = k(x) \cdot q(x) + r(x), deg(r) < deg(q) \text{ or } r(x) = 0.$

Exercise 13.

Polynomial greatest common divisor: Let $p, q \in \mathbb{R}[x]$ such that $q(x) \neq 0$ and let $r \in \mathbb{R}[x]$ be the remainder of the polynomial division p/q.

- (a) Show that gcd(p,q) = gcd(q,r) (Euclidean algorithm).
- (b) Find $gcd(x^4 7x^2 6x, x^3 x^2 5x 3)$.

Recall: The greatest common divisor of polynomials $p \in \mathbb{R}[x]$ and $q \in \mathbb{R}[x]$, denoted by gcd(p,q), is a polynomial $d \in \mathbb{R}[x]$ that divides p and q and such that every common divisor of p and q also divides d.