Cryptography Prof. Dr. Klaus Meer, Ameen Naif

Exercise Sheet 1 Version 05.04.2019

General remark: Whenever you don't remember definitions or algorithms like the extended Euclidean Algorithm, group, field etc. do a search in literature or the web.

Exercise 1.

Prove by induction that every integer $n \ge 2$ can be written as a product of prime numbers. This product is called the **prime factorization** of the number n and is up to ordering the factors unique. For example $90 = 2 \cdot 3^2 \cdot 5$.

Exercise 2.

The greatest common divisor (gcd, for short) of $a \in \mathbb{N}$ and $b \in \mathbb{N}$, denoted by gcd(a, b), is the largest positive integer that divides both a and b.

For the pairs of integers a, b given below use the extended Euclidean Algorithm to find the gcd g and integers s and t satisfying g = as + bt:

- i) a = 13, b = 32,
- ii) a = 40, b = 148 and
- iii) a = 55, b = 300.

Exercise 3.

Show that $(\mathbb{Z}_n, +)$, the integers modulo $n \in \mathbb{N}$ with addition, is an abelian group, where \mathbb{Z}_n is the set $\{0, 1, ..., n-1\}$ and the rule for addition + is defined as a + b := $(a + b) \mod n$ for $a, b \in \mathbb{Z}_n$.

Recall: A **group** is a 2-tuple (G, \circ) consisting of a nonempty set G together with a binary operation $\circ : G \times G \to G$ that together satisfy the following conditions: Associativity of the group operation \circ , existence of the neutral element and existence of an inverse for each $a \in G$.

Exercise 4.

(a) Show that (Z^{*}_n, ·), the integers modulo n ∈ N with multiplication, is an abelian group, where a ∈ Z_n is an element of Z^{*}_n if and only if a has a multiplicative inverse modulo n and the rule for multiplication · is defined as a · b := (a · b) mod n for a, b ∈ Z_n.
How can you use the extended Euclidean Algorithm to find the multiplicative

How can you use the extended Euclidean Algorithm to find the multiplicative inverse of an element $a \in \mathbb{Z}_n^*$?

(b) Find the multiplicative inverse of 8 modulo 11 using the extended Euclidean Algorithm.

Exercise 5.

Let $n \in \mathbb{N}$, n > 1 be fixed.

(a) Suppose every nonzero element of \mathbb{Z}_n has a multiplicative inverse modulo n. Show that n is a prime number. (b) Prove that $(\mathbb{Z}_n, +, \cdot)$ is a field if and only if n is a prime number.

Recall: For a set F with two binary operations $+ : F \times F \to F$ and $\cdot : F \times F \to F$ we say that $(F, +, \cdot)$ is a **field** if the following holds:

- i) (F, +) is an abelian group; its neutral element is denoted by 0,
- ii) $(F \setminus \{0\}, .)$ is an abelian group; its neutral element is denoted by 1
- iii) the binary operations + and \cdot satisfy the distributive law: $a \cdot (b + c) = ab + ac$ for all $a, b, c \in F$.

Exercise 6.

Let $n \in \mathbb{N}$ be fixed and let $[n] := \{1, ..., n\}$.

- (a) Prove that (S_n, \circ) is a group, where S_n is the set of all bijections from [n] to [n] and \circ is the usual function composition.
- (b) Is (S_n, \circ) an abelian group?
- (c) Give one nontrivial subgroup of (S_4, \circ) . How many subgroups does (S_4, \circ) have? Hint: Use Lagrange's theorem.

Recall: (U, \circ) is a subgroup of a group (G, \circ) if $U \subseteq G$ and (U, \circ) is a group. **Lagrange's theorem:** If (G, \circ) is a finite group with subgroup (U, \circ) , then |U| divides |G|.