Cryptography

Prof. Dr. Klaus Meer, Ameen Naif

Exercise Sheet 6 Version 11.07.2018

Exercise 1.

Factorize 299 using **Pollard's** (p-1)-algorithm with B=5.

Exercise 2.

Let $p \in \mathbb{N}$ be a prime, $g \in \mathbb{Z}_p^*$ a generator of (\mathbb{Z}_p^*, \cdot) .

- (a) **Base change**: If $h \in \mathbb{Z}_p^*$ is another generator of (\mathbb{Z}_p^*, \cdot) , then it holds: $\forall a \in \mathbb{Z}_p^*$: $log_g(a) = log_h(a) \cdot log_g(h)$.
- (b) Use Shank's algorithm to find $x = log_5(20)$ in \mathbb{Z}_{47}^* .

Exercise 3.

Let Bob's public **ElGamal key** be $(p, g, \beta) = (101, 2, 11)$.

- (a) Find Bob's private ElGamal key b.
- (b) Find the plaintext m of the ciphertext $(a_1, a_2) = (64, 79)$ sent to Bob from Alice.

Exercise 4.

Let $p(x) = x^3 + x + 1$ and $q(x) = x^2 + 1 \in \mathbb{Z}_2[x]$.

- (a) Compute $p(x) \cdot q(x)$ and $q(x) \mod p(x)$.
- (b) Compute $x^5 + x^4 + x^2 + x + 1 \mod p(x)$.
- (c) Find an **irreducible** polynomial in $\mathbb{Z}_2[x]$ of degree 3.
- (d) Find all elements of the ring $(\mathbb{Z}_2[x]/p, +, \cdot)$. Is the ring $(\mathbb{Z}_2[x]/p, +, \cdot)$ a field?

Exercise 5.

Let \mathbb{F} be a field and $f(x) = x^3 + ax + b$ be a fixed polynomial in $\mathbb{F}[x]$.

- (a) Show that $(x x_0)$ is a factor of f if $f(x_0) = 0$, where $x_0 \in \mathbb{F}$ is fixed.
- (b) Show that: $4a^3 + 27b^2 = 0 \iff f$ has a double root.

Exercise 6.

Let $\mathbb{F} := \mathbb{Z}_{11}$ and consider the elliptic curve \widetilde{E} defined by $y^2 = x^3 + x + 6$ over \mathbb{F} .

- (a) Find all points on the elliptic curve \widetilde{E} .
- (b) Let $Q_1 = (8,3)$ and $Q_2 = (3,6)$ be points on the elliptic curve \widetilde{E} , compute $Q_1 \oplus Q_2$ and $5Q_1$.
- (c) Let P = (2, 4) be a generator of the group (\widetilde{E}, \oplus) and suppose that the private key is $n_B = 3$.
 - i) Compute the public key $Q = n_B \cdot P$.
 - ii) Encrypt the plaintext $M := (7,2) \in \widetilde{E}$ using as random value $n_A = 4$ and then decrypt the obtained ciphertext $(A_1, A_2) \in \widetilde{E}^2$.

Exercise 7.

How can you construct a finite field of $n \in \mathbb{N}$ elements, if one exists? Is there are one of 9 elements? Construct it, if one exists.