Cryptography

Prof. Dr. Klaus Meer, Ameen Naif

Exercise Sheet 5
Version 14.06.2018

Exercise 1.

Let $p>2$ be prime and $b \in \mathbb{Z}_{p}^{*}$. Show that $x^{2} \equiv b \bmod p$ either has no or two solustions in \mathbb{Z}_{p}.

Exercise 2.

Let $l_{1}, \ldots, l_{s} \in \mathbb{N}, s>2$.
(a) Give a formal definition of $\operatorname{gcd}\left(l_{1}, \ldots, l_{s}\right)$.
(b) For $x, y, z \in \mathbb{N}$ show that $\operatorname{gcd}(x, y, z)=\operatorname{gcd}(x, \operatorname{gcd}(y, z))$.
(c) Suppose $\operatorname{gcd}\left(l_{1}, \ldots, l_{s}\right)=1$, i.e. all l_{1}, \ldots, l_{s} are pairwise relatively prime. Use (b) and an induction proof to show: There exist $x_{1}, \ldots, x_{s} \in \mathbb{Z}$ s.t. $1=\sum_{i=1}^{s} x_{i} \cdot l_{i}$.

Exercise 3.

Let $p \in \mathbb{N}$ be a prime, $g \in \mathbb{Z}_{p}^{*}$ a generator of $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$. Prove that: The map

$$
\begin{aligned}
\log _{g}: & \mathbb{Z}_{p}^{*} \rightarrow \mathbb{Z}_{p-1} \\
& h \rightarrow \log _{g}(h) \bmod p-1
\end{aligned}
$$

is bijective and isomorphic, i.e. the following two conditions hold:
i) $\forall a, b \in \mathbb{Z}_{p}^{*}: \log _{g}(a \cdot b)=\left(\log _{g}(a)+\log _{g}(b)\right) \bmod p-1$ and
ii) the map $\log _{g}$ is bijective.

Exercise 4.

Let $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{N}$ such that $a \equiv b \bmod n$ and $c \equiv d \bmod n$. Show that the following identities holds:
(a) Addition: $a+c \equiv b+d \bmod n$
(b) Subtraction: $a-c \equiv b-d \bmod n$
(c) Multiplication: $a \cdot c \equiv b \cdot d \bmod n$ and
(d) Exponentiation: $a^{m} \equiv b^{m} \bmod n$, where m is a positive integer.

