Cryptography
 Prof. Dr. Klaus Meer, Ameen Naif
 Exercise Sheet 4
 Version 17.05.2018

Exercise 1.

We are given a pair $(p, c) \in\{0,1\}^{64} \times\{0,1\}^{64}$ where c is the encryption of the plaintext p with an unknown key K using 1-Round DES. We want to find the 48 -bit key K.
(a) Why is the output of all S-boxes known?
(b) Given the 4 -bit output of S_{1}-Box how many 6 -bit combinations are possible as input to S_{1}-Box?
(c) How many 6-bit combinations are possible as the 6 bit key which takes part in the creation of the input to S_{1}-Box?
(d) How many 48-bit combinations are possible for K ?

Note: the S-boxes, the permutations $\pi \in S_{64}$ and $\sigma \in S_{32}$ and the expansion function E in the DES-cryptosystem are fixed and known.

Exercise 2.

Let $n=p \cdot q$ be the product of two unknown prime numbers. Let a, b be two integers such that $e \cdot d=1 \bmod \phi(n)$. Find the prime factors q and p of n in the following cases:
(a) If n and $\phi(n)$ are known.
(b) If n, e and d are known.

Exercise 3.

Let ($G, \cdot \cdot$) be a cyclic group generated by $a \in G$.
(a) Suppose that k is the minimal integers such that $a^{l}=a^{k}$ and $l<k$ for some integer l. Then $|G|=n=k-l$ and $G=\left\{a^{0}, a^{1}, \ldots, a^{n-1}\right\}$.
(b) Let $m \in \mathbb{N}$ and $d=g c d(m, n)$. Then a^{m} and a^{d} generate the same subsets of G.

Exercise 4.

Show the following: If there is a polynomial time decision algorithm for Factoring II, then all prime factors of n can be computed in polynomial time. (Hint: Binary search for factors of n).
Factoring II: Input $(n, k) \in \mathbb{N}^{2}, k<n$. Question: Is there a factor of n which is $\leq k$?

Exercise 5.

Suppose that Subset Sum is $\mathcal{N} \mathcal{P}$-complete:
(a) Show that PARTITION is in $\mathcal{N} \mathcal{P}$.
(b) Prove that PARTITION is $\mathcal{N} \mathcal{P}$-complete by giving a reduction from Subset Sum.

Subset Sum: Input $n, s_{1}, \ldots, s_{n}, T$, all are positive integers. Question: Is there a subset $S \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in S} s_{i}=T$
PARTITION: Input n, s_{1}, \ldots, s_{n}, all are positive integers. Question: Is there a subset $S \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in S} s_{i}=\sum_{i \in \bar{S}} s_{i}$? Where $\bar{S}=\{1, \ldots, n\} \backslash S$ is the complement set of S.

Exercise 6.

Let x be a decimal number and suppose that $\log _{2} x$ is a positive integer.
i) How can you compute the value $\log _{2} x$ efficiently for the input x ?
ii) Given a prime p, how can $\log _{2} x \bmod p$ be computed? What is the running time of your algorithm?

