Cryptography Prof. Dr. Klaus Meer, Ameen Naif

Exercise Sheet 3 Version 02.05.2018

Exercise 1.

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}_n$ be fixed.

- (a) Show that $ax = b \mod n$ has a unique solution $x \in \mathbb{Z}_n$ for every $b \in \mathbb{Z}_n$ if and only if gcd(a, n) = 1.
- (b) How many possible keys has the Affine Cipher?

Exercise 2.

Let $\mathbf{s} = s_1 s_2 \cdots s_r$ be a random string of $r \in \mathbb{N}$ characters from the alphabet \mathbb{Z}_{26} . Show that $I_c(\mathbf{s}) \simeq \sum_{i=0}^{25} p_i^2$, where I_c is the **Index of Coincidence** and p_i is the probability to have *i* in the string \mathbf{s} .

Exercise 3.

Suppose that π is the following permutation of $\{1, 2, \dots, 8\}$: $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 1 & 6 & 2 & 7 & 3 & 8 & 5 \end{pmatrix}$.

- i) Compute the permutation π^{-1} .
- ii) Decrypt the following ciphertext, which was encrypted using the key π :

TGEEMNELNNTDROEOAAHDOETCSHAEIRLM.

Exercise 4.

Let $\mathcal{P} = \{a, b\}, \mathcal{C} = \{1, 2, 3, 4\}$ and $\mathcal{K} = \{K_1, K_2, K_3\}$ denote **random variables** with $\mathbf{Pr}(a) = 1/4$, $\mathbf{Pr}(b) = 3/4$ and $\mathbf{Pr}(K_1) = 1/2$, $\mathbf{Pr}(K_2) = \mathbf{Pr}(K_3) = 1/4$. Suppose the encryption functions defined to be $e_{K_1}(a) = 1$, $e_{K_1}(b) = 2$; $e_{K_2}(a) = 2$, $e_{K_2}(b) = 3$ and $e_{K_3}(a) = 3$, $e_{K_3}(b) = 4$.

- (a) Compute the probability distribution on \mathcal{C} .
- (b) Compute the conditional probability distributions on the ciphertext, given that a certain ciphertext has been observed.
- (c) has the cryptosytem $(\mathcal{P}, \mathcal{C}, \mathcal{K})$ perfect secrecy?

Exercise 5.

Show that for any plaintext probability distribution the **Shift Cipher** has perfect secrecy, if the 26 keys are used with equal probability 1/26.

Exercise 6.

Prove that the Affine Cipher achieves perfect secrecy if every key is used with equal probability 1/312.

Exercise 7.

Suppose that $y, y' \in \mathcal{C} = \mathbb{Z}_2^n$ for some $n \in \mathbb{N}$ are two ciphertext elements in the **One-time Pad** that were obtained by encrypting plaintext elements $x, x' \in \mathcal{P} = \mathbb{Z}_2^n$, respectively, using the same key $k \in \mathcal{K} = \mathbb{Z}_2^n$. Prove that $x + x' = y + y' \mod n$.

Exercise 8.

Let e(p, k) represent the encryption of plaintext p with key k using the **DES** cryptosystem. Suppose c = e(p, k) and $c' = e(\sim (p), \sim (k))$, where $\sim: \{0, 1\}^{64} \rightarrow \{0, 1\}^{64}$ denotes the **bitwise complement operator** of its argument, i.e. \sim converts every 1 to a 0 and vice versa. Prove that $c' = \sim (c)$.

Note: the actual structure of **S-boxes** and other components of the system are irrelevant for the above property.