Cryptography
 Prof. Dr. Klaus Meer, Ameen Naif
 Exercise Sheet 3
 Version 02.05.2018

Exercise 1.

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}_{n}$ be fixed.
(a) Show that $a x=b \bmod n$ has a unique solution $x \in \mathbb{Z}_{n}$ for every $b \in \mathbb{Z}_{n}$ if and only if $\operatorname{gcd}(a, n)=1$.
(b) How many possible keys has the Affine Cipher?

Exercise 2.

Let $\mathbf{s}=s_{1} s_{2} \cdots s_{r}$ be a random string of $r \in \mathbb{N}$ characters from the alphabet \mathbb{Z}_{26}. Show that $I_{c}(\mathbf{s}) \simeq \sum_{i=0}^{25} p_{i}^{2}$, where I_{c} is the Index of Coincidence and p_{i} is the probability to have i in the string \mathbf{s}.

Exercise 3.

Suppose that π is the following permutation of $\{1,2, \ldots, 8\}: \pi=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 1 & 6 & 2 & 7 & 7 & 8 \\ \hline\end{array}\right)$.
i) Compute the permutation π^{-1}.
ii) Decrypt the following ciphertext, which was encrypted using the key π :

TGEEMNELNNTDROEOAAHDOETCSHAEIRLM.

Exercise 4.

Let $\mathcal{P}=\{a, b\}, \mathcal{C}=\{1,2,3,4\}$ and $\mathcal{K}=\left\{K_{1}, K_{2}, K_{3}\right\}$ denote random variables with $\operatorname{Pr}(a)=1 / 4, \operatorname{Pr}(b)=3 / 4$ and $\operatorname{Pr}\left(K_{1}\right)=1 / 2, \operatorname{Pr}\left(K_{2}\right)=\operatorname{Pr}\left(K_{3}\right)=1 / 4$. Suppose the encryption functions defined to be $e_{K_{1}}(a)=1, e_{K_{1}}(b)=2$; $e_{K_{2}}(a)=2$, $e_{K_{2}}(b)=3$ and $e_{K_{3}}(a)=3, e_{K_{3}}(b)=4$.
(a) Compute the probability distribution on \mathcal{C}.
(b) Compute the conditional probability distributions on the ciphertext, given that a certain ciphertext has been observed.
(c) has the cryptosytem $(\mathcal{P}, \mathcal{C}, \mathcal{K})$ perfect secrecy?

Exercise 5.

Show that for any plaintext probability distribution the Shift Cipher has perfect secrecy, if the 26 keys are used with equal probability $1 / 26$.

Exercise 6.

Prove that the Affine Cipher achieves perfect secrecy if every key is used with equal probalbility $1 / 312$.

Exercise 7.

Suppose that $y, y^{\prime} \in \mathcal{C}=\mathbb{Z}_{2}^{n}$ for some $n \in \mathbb{N}$ are two ciphertext elements in the One-time Pad that were obtained by encrypting plaintext elements $x, x^{\prime} \in \mathcal{P}=\mathbb{Z}_{2}^{n}$, respectively, using the same key $k \in \mathcal{K}=\mathbb{Z}_{2}^{n}$. Prove that $x+x^{\prime}=y+y^{\prime} \bmod n$.

Exercise 8.

Let $e(p, k)$ represent the encryption of plaintext p with key k using the DES cryptosystem. Suppose $c=e(p, k)$ and $c^{\prime}=e(\sim(p), \sim(k))$, where $\sim:\{0,1\}^{64} \rightarrow\{0,1\}^{64}$ denotes the bitwise complement operator of its argument,i.e. \sim converts every 1 to a 0 and vice versa. Prove that $c^{\prime}=\sim(c)$.
Note: the actual structure of S-boxes and other components of the system are irrelevant for the above property.

