Cryptography Prof. Dr. Klaus Meer, Ameen Naif

Exercise Sheet 2 Version 11.04.2018

Exercise 1.

The recursive version of the **Euclidean Algorithm** is given below: **Data**: $a, b \in \mathbb{N}_0$ and $b \leq a$. **Result**: gcd(a, b) **if** b = 0 **then** \mid **return** a and **stop else** \mid $gcd(b, a \mod b)$ **end**

For this version prove the following:

- (a) Correctness of the algorithm.
- (b) Suppose the algorithm calls itself k times (i.e., it runs k times into the else-part before it stops). Show that then a ≥ F_{k+2} and b ≥ F_{k+1}. Here, F_k denotes the k-th Fibonacci number, defined via:
 F₀ = 0, F₁ = 1 and F_k := F_{k-1} + F_{k-2} for k ≥ 2.
 - $\Gamma_0 = 0, \ \Gamma_1 = 1 \text{ and } \Gamma_k := \Gamma_{k-1} + \Gamma_{k-2} \text{ for } k \ge 2.$
- (c) The time complexity of the algorithm is O(log(b)).

Exercise 2.

Let $\phi : \mathbb{N} \to \mathbb{N}$ denote the Euler function, i.e. $\phi(n) := |\mathbb{Z}_n^*|$. Prove the following:

- (a) If p is a prime and e is a positive integer, then $\phi(p^e) = p^e p^{e-1}$.
- (b) If $m = p \cdot q$ with different primes $p \neq q$, then $\phi(m) = (p-1) \cdot (q-1)$.
- (c) If n and l are relatively prime and $m = n \cdot l$, then $\phi(m) = \phi(n) \cdot \phi(l)$.
- (d) Let *m* have prime factor decomposition $m = \prod_{i=1}^{s} p_i^{e_i}$, where the p_i are distinct primes and $e_i \ge 1$. Then $\phi(m) = \prod_{i=1}^{s} (p_i^{e_i} p_i^{e_i-1})$.

Exercise 3.

Prove that for all $a, b \in \mathbb{Z}$ the following is true:

- (a) If gcd(a, m) = 1 and gcd(b, m) = 1, then $gcd(a \cdot b, m) = 1$.
- (b) Let $d, m \in \mathbb{N}$ where d|m und $a = b \mod m$, then $a = b \mod d$.

Exercise 4.

Solve in \mathbb{Z}_{16} the following system of equations:

$$3x + 5y + 7z = 3$$

 $x + 4y + 13z = 5$
 $2x + 7y + 3z = 4.$

Exercise 5.

Show that for integers a and n the following are equivalent:

- (a) there is a solution x in \mathbb{Z} to $ax = 1 \mod n$,
- (b) there are solutions x and y in \mathbb{Z} to ax + ny = 1 and
- (c) a and n are relatively prime.

Exercise 6.

Find in \mathbb{Z}_{11} the inverse of the matrix

$$M := \left(\begin{array}{rrr} 3 & 5 & 1 \\ 0 & 0 & 2 \\ 0 & 7 & 7 \end{array} \right).$$

Exercise 7.

Calculate the average number of tries needed to get a four when using an ordinary six-sided fair die.

Exercise 8.

How many tries are needed on average to get all the numbers 1 to n at least once when a fair n-sided die is used.