Cryptography

Prof. Dr. Klaus Meer, Ameen Naif
Exercise Sheet 2
Version 11.04.2018

Exercise 1.

The recursive version of the Euclidean Algorithm is given below:
Data: $a, b \in \mathbb{N}_{0}$ and $b \leq a$.
Result: $\operatorname{gcd}(a, b)$
if $b=0$ then
return a and stop
else
$\operatorname{gcd}(b, a \bmod b)$
end
For this version prove the following:
(a) Correctness of the algorithm.
(b) Suppose the algorithm calls itself k times (i.e., it runs k times into the else-part before it stops). Show that then $a \geq F_{k+2}$ and $b \geq F_{k+1}$. Here, F_{k} denotes the k-th Fibonacci number, defined via:
$F_{0}=0, F_{1}=1$ and $F_{k}:=F_{k-1}+F_{k-2}$ for $k \geq 2$.
(c) The time complexity of the algorithm is $O(\log (b))$.

Exercise 2.

Let $\phi: \mathbb{N} \rightarrow \mathbb{N}$ denote the Euler function, i.e. $\phi(n):=\left|\mathbb{Z}_{n}^{*}\right|$. Prove the following:
(a) If p is a prime and e is a positive integer, then $\phi\left(p^{e}\right)=p^{e}-p^{e-1}$.
(b) If $m=p \cdot q$ with different primes $p \neq q$, then $\phi(m)=(p-1) \cdot(q-1)$.
(c) If n and l are relatively prime and $m=n \cdot l$, then $\phi(m)=\phi(n) \cdot \phi(l)$.
(d) Let m have prime factor decomposition $m=\prod_{i=1}^{s} p_{i}^{e_{i}}$, where the p_{i} are distinct primes and $e_{i} \geq 1$. Then $\phi(m)=\prod_{i=1}^{s}\left(p_{i}^{e_{i}}-p_{i}^{e_{i}-1}\right)$.

Exercise 3.

Prove that for all $a, b \in \mathbb{Z}$ the following is true:
(a) If $\operatorname{gcd}(a, m)=1$ and $\operatorname{gcd}(b, m)=1$, then $\operatorname{gcd}(a \cdot b, m)=1$.
(b) Let $d, m \in \mathbb{N}$ where $d \mid m$ und $a=b \bmod m$, then $a=b \bmod d$.

Exercise 4.

Solve in \mathbb{Z}_{16} the following system of equations:

$$
\begin{aligned}
& 3 x+5 y+7 z=3 \\
& x+4 y+13 z=5 \\
& 2 x+7 y+3 z=4 .
\end{aligned}
$$

Exercise 5.

Show that for integers a and n the following are equivalent:
(a) there is a solution x in \mathbb{Z} to $a x=1 \bmod n$,
(b) there are solutions x and y in \mathbb{Z} to $a x+n y=1$ and
(c) a and n are relatively prime.

Exercise 6.

Find in \mathbb{Z}_{11} the inverse of the matrix

$$
M:=\left(\begin{array}{lll}
3 & 5 & 1 \\
0 & 0 & 2 \\
0 & 7 & 7
\end{array}\right) .
$$

Exercise 7.

Calculate the average number of tries needed to get a four when using an ordinary six-sided fair die.

Exercise 8.

How many tries are needed on average to get all the numbers 1 to n at least once when a fair n-sided die is used.

