Cryptography
 Prof. Dr. Klaus Meer, Ameen Naif
 Exercise Sheet 1
 Version 04.04.2018

General remark: Whenever you don't remember definitions or algorthims like the extended Euclidean Algorithm, group, field etc. do a search in literature or the web.

Exercise 1.

Prove by induction that every integer $n \geq 2$ can be written as a product of prime numbers. This product is called the prime factorization of the number n and is up to ordering the factors unique. For example $90=2 \cdot 3^{2} \cdot 5$.

Exercise 2.

The greatest common divisor ($g c d$, for short) of $a \in \mathbb{N}$ and $b \in \mathbb{N}$, denoted by $\operatorname{gcd}(a, b)$, is the largest positive integer that divides both a and b.
For the pairs of integers a, b given below use the extended Euclidean Algorithm to find the $g c d g$ and integers s and t satisfying $g=a s+b t$:
i) $a=13, b=32$,
ii) $a=40, b=148$ and
iii) $a=55, b=300$.

Exercise 3.

Show that $\left(\mathbb{Z}_{n},+\right)$, the integers modulo $n \in \mathbb{N}$ with addition, is an abelian group, where \mathbb{Z}_{n} is the set $\{0,1, \ldots, n-1\}$ and the rule for addition + is defined as $a+b:=$ $(a+b) \bmod n$ for $a, b \in \mathbb{Z}_{n}$.
Recall: A group is a 2-tuple (G, \circ) consisting of a nonempty set G together with a binary operation $\circ: G \times G \rightarrow G$ that together satisfy the following conditions: Associativity of the group operation \circ, existence of the neutral element and existence of an inverse for each $a \in G$.

Exercise 4.

(a) Show that $\left(\mathbb{Z}_{n}^{*}, \cdot\right)$, the integers modulo $n \in \mathbb{N}$ with multiplication, is an abelian group, where $a \in \mathbb{Z}_{n}$ is an element of \mathbb{Z}_{n}^{*} if and only if a has a multiplicative inverse modulo n and the rule for multiplication - is defined as $a \cdot b:=(a \cdot b)$ $\bmod n$ for $a, b \in \mathbb{Z}_{n}$.
How can you use the extended Euclidean Algorithm to find the multiplicative inverse of an element $a \in \mathbb{Z}_{n}^{*}$?
(b) Find the multiplicative inverse of 8 modulo 11 using the extended Euclidean Algorithm.

Exercise 5.

Let $n \in \mathbb{N}, n \geq 1$ be fixed.
(a) Suppose every nonzero element of \mathbb{Z}_{n} has a multiplicative inverse modulo n. Show that n is a prime number.
(b) Prove that $\left(\mathbb{Z}_{n},+, \cdot\right)$ is a field if and only if n is a prime number.

Recall: For a set F with two binary operations $+: F \times F \rightarrow F$ and $\cdot: F \times F \rightarrow F$ we say that $(F,+, \cdot)$ is a field if the following holds:
i) $(F,+)$ is an abelian group; its neutral element is denoted by 0 ,
ii) $(F \backslash\{0\},$.$) is an abelian group; its neutral element is denoted by 1$
iii) the binary operations + and \cdot satisfy the distributive law: $a \cdot(b+c)=a b+a c$ for all $a, b, c \in F$.

Exercise 6.

Let $n \in \mathbb{N}$ be fixed and let $[n]:=\{1, \ldots, n\}$.
(a) Prove that $\left(S_{n}, \circ\right)$ is a group, where S_{n} is the set of all bijections from $[n]$ to $[n]$ and \circ is the usual function composition.
(b) Is $\left(S_{n}, \circ\right)$ an abelian group?
(c) Give one nontrivial subgroup of (S_{4}, \circ). How many subgroups does $\left(S_{4}, \circ\right)$ have? Hint: Use Lagrange's theorem.
Recall: (U, \circ) is a subgroup of a group (G, \circ) if $U \subseteq G$ and (U, \circ) is a group.
Lagrange's theorem: If (G, \circ) is a finite group with $\operatorname{subgroup}(U, \circ)$, then $|U|$ divides $|G|$.

