Metal-Oxide Interfaces and their Role in Methane Conversion to Fuels

M. V. Ganduglia-Pirovano Instituto de Catálisis y Petroleoquímica-CSIC, Madrid, Spain

Methane dry reforming (MDR), which converts CH_4 and CO_2 into syngas (CO/H_2), is gaining attention for its environmental benefits. Additionally, direct conversion of CH_4 and hydrogenation of CO_2 to CH_3OH are highly sought goals in catalysis. Metal-ceria systems, particularly those involving Ni, Co, and Pt on CeO_2 , have emerged as promising catalysts for these processes. This presentation explores recent theoretical and experimental advances in understanding these catalysts, using DFT+U simulations alongside in situ/operando techniques (AP-XPS, XRD, XAFS) and catalytic testing.¹⁻⁴

A key finding is that low metal loading, combined with ceria's ability to stabilize oxidized metal species by re-localizing electrons on *f*-states, is essential for CH₄ activation at room temperature and efficient CH₄ reforming at relatively low temperatures (700 K). Notably, the room-temperature activation of methane on low-loaded metal/CeO₂ deviates from traditional linear scaling relationships, highlighting how this nanomaterial overcomes the "*tyranny of linear scaling*." This presents a promising strategy for developing active and stable catalysts for methane activation and conversion.

Furthermore, we present evidence that low Ni loadings on CeO₂ can catalyse methanol production at low temperatures (450 K) with high selectivity, using oxygen and water.⁵ Additionally, Pd-CeO₂ catalysts modified with carbon (Pd-*i*C-CeO₂) achieve 100% selectivity for methanol in the liquid phase at 350 K using hydrogen peroxide as the oxidant.⁶ The role of solvent interactions in enhancing selectivity is also discussed, highlighting the potential of these catalysts to drive cost-effective and selective methane conversion to valuable products. Finally, Cu/MgO is explored for selective hydrogenation to methanol, where the synergy between Cu⁺ species and water plays a crucial improving selectivity.⁷

References

- [1] Liu Z. et al. Angew. Chem. Int. Ed. 55, 7455–7459 (2016)
- [2] Liu Z. et al. Angew. Chem. Int. Ed. 56,13041-13046 (2017)
- [3] Lustemberg, P. G. et al. J. Phys. Chem. Lett. 11, 9131–9137 (2020)
- [4] Zhang, F. et al. ACS Catal. 11, 1613–1623 (2021)
- [5] Lustemberg P. G., et al. J. Am. Chem. Soc. 140, 7681–7687 (2018)
- [6] Jiménez J. D., et al. J. Am. Chem. Soc. 146, 25986-25999 (2024)
- [7] Fernández-Villanueva E., et al., J. Am. Chem. Soc. 146, 2024–2032 (2024).