M13 Physikalisches Praktikum

Gekoppeltes Pendel

In diesem Versuch werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken werden Schwingungsdauer der beiden Grundschwingungen sowie die Dauer der Schwebung des Systems gemessen. Die Schwebungsdauer wird mit dem Erwartungswert verglichen.

1. Theoretische Grundlagen

1.1 Allgemeines

Um den Schwingungszustand eines gekoppelten Pendels zu beschreiben, müssen zunächst die Differentialgleichungen für die einzelnen Pendel aufgestellt werden. Betrachtet wird zunächst ein einzelnes, ungekoppeltes Pendel mit dem Trägheitsmoment J und dem Direktionsmoment $D=m\cdot g\cdot l$, wobei l die Pendellänge, m die Masse und g die Erdbeschleunigung darstellen. Für das Pendel gilt für kleine Winkel φ die Differentialgleichung:

$$J \cdot \ddot{\varphi} = -D \cdot \varphi \,. \tag{1}$$

Die Lösung beschreibt eine harmonische Schwingung mit der Kreisfrequenz

$$\omega = \sqrt{\frac{D}{I}} = \sqrt{\frac{g}{l}}.$$
 (2)

Werden nun zwei solcher Pendel durch eine Feder mit dem Direktionsmoment $D' = D_F \cdot l_F^{\ 2}$ (D_F beschreibt die Federkonstante und l_F die Länge der Federaufhängung zur Pendelachse) gekoppelt, so wirken zusätzliche Drehmomente M_i , die von den jeweiligen Auslenkungswinkeln φ_1 , φ_2 abhängen:

Pendel 1:
$$M_1 = D' \cdot (\varphi_2 - \varphi_1)$$

Pendel 2: $M_2 = D' \cdot (\varphi_1 - \varphi_2)$ (3)

Diese zusätzlichen Drehmomente müssen bei der Differentialgleichung des freien Pendels (1) addiert werden. Damit ergibt sich ein System aus zwei gekoppelten Differentialgleichungen,

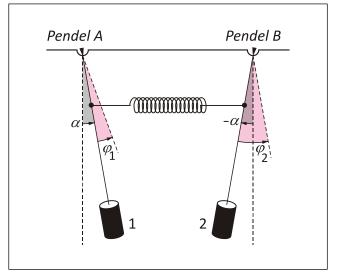


Bild 1: Gekoppelte Pendel

$$J \cdot \ddot{\varphi}_1 = -D \cdot \varphi_1 + D' \cdot (\varphi_2 - \varphi_1)$$

$$J \cdot \ddot{\varphi}_2 = -D \cdot \varphi_2 + D' \cdot (\varphi_1 - \varphi_2),$$
(4)

die sich leicht entkoppeln lassen, wenn man $u=\varphi_1+\varphi_2$ und $v=\varphi_1-\varphi_2$ substituiert.

Anmerkung:

Hinweis zur Versuchsvorbereitung: Addieren und subtrahieren Sie jeweils die Gleichungen (4) und führen Sie dann die Substitution durch.

Damit erhalten wir ein einfaches System von zwei unabhängigen Differentialgleichungen:

$$J \cdot \ddot{u} + D \cdot u = 0$$

$$J \cdot \ddot{v} + (D + 2D') \cdot v = 0.$$
(5)

Die Lösungen sind harmonische Schwingungen mit den Kreisfrequenzen ω_1 , ω_2 :

$$u = u(t) = A_1 \cdot \cos \omega_1 \cdot t + B_1 \cdot \sin \omega_1 \cdot t \text{ mit } \omega_1 = \sqrt{\frac{D}{J}}$$

$$v = v(t) = A_2 \cdot \cos \omega_2 \cdot t + B_2 \cdot \sin \omega_2 \cdot t \text{ mit } \omega_2 = \sqrt{\frac{D + 2D'}{J}}$$
(6)

Durch erneute Substitution mit $\varphi_1 = \frac{1}{2}(u+v)$ und $\varphi_2 = \frac{1}{2}(u-v)$ erhalten wir schließlich die Gleichungen (7) für die Auslenkungswinkel der Pendel:

$$\varphi_1(t) = \frac{1}{2}(A_1 \cdot \cos \omega_1 \cdot t + B_1 \cdot \sin \omega_1 \cdot t + A_2 \cdot \cos \omega_2 \cdot t + B_2 \cdot \sin \omega_2 \cdot t)$$

$$\varphi_2(t) = \frac{1}{2}(A_1 \cdot \cos \omega_1 \cdot t + B_1 \cdot \sin \omega_1 \cdot t - A_2 \cdot \cos \omega_2 \cdot t - B_2 \cdot \sin \omega_2 \cdot t)$$
(7)

Diese allgemeinen Lösungen beschreiben auf den ersten Blick eine recht komplexe Bewegung der Pendel. Für bestimmte Anfangsbedingungen ergeben sich allerdings sehr anschauliche Schwingungsgleichungen. Dazu müssen die im Folgenden besprochenen Anfangsbedingungen $\varphi_i=(t=0)$ und $\dot{\varphi}=(t=0)$ in die Gleichungen (7) eingesetzt und die Koeffizienten A_i und B_i bestimmt werden.

Drei Spezialfälle, die in Bild 2 skizziert sind, werden im Folgenden näher betrachtet:

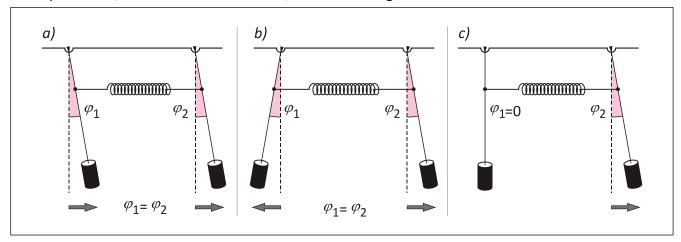


Bild 2: Schwingungsformen des gekoppelten Pendels für unterschiedliche Randbedingungen. **a)** symmetrische Schwingung, **b)** asymmetrische Schwingung, **c)** Schwebung

1.2 Symmetrische Schwingung

Beide Pendel (**Fall a**) werden um den gleichen Winkel ausgelenkt und zum Zeitpunkt t=0 gleichzeitig losgelassen.

Anfangsbedingung:

$$\varphi_1(0) = \varphi_2(0) = \varphi_0
\dot{\varphi}_1(0) = \dot{\varphi}_2(0) = 0$$
(8)

Für die Koeffizienten ergibt sich:

$$A_1 = 2\varphi_0, \ A_2 = B_1 = B_2 = 0 \tag{9}$$

und damit schließlich

$$\varphi_1(t) = \varphi_2(t) = \varphi_0 \cdot \cos \omega_1 \cdot t \,. \tag{10}$$

Die beiden Pendel schwingen harmonisch und phasengleich mit der Frequenz ω_1 . Nach Gleichung (6) hängt ω_1 nicht vom Direktionsmoment der Kopplung ab (ω_1 ist nur vom Direktionsmoment D des freien, ungekoppelten Pendels abhängig). Die Pendel schwingen also so, als seien sie gar nicht gekoppelt. Dies ist sofort einzusehen, da beide Pendel stets den gleichen Abstand voneinander aufweisen und die Kopplungsfeder während der Schwingung niemals gestaucht oder gedehnt wird. Es findet somit keine Kopplung von einem Pendel auf das andere statt.

1.3 Asymmetrische Schwingung

Beide Pendel (*Fall b*) werden gegenphasig um den gleichen Winkelbetrag ausgelenkt und zum Zeitpunkt t=0 gleichzeitig losgelassen.

Anfangsbedingung:

$$\varphi_1(0) = -\varphi_2(0) = \varphi_0
\dot{\varphi}_1(0) = \dot{\varphi}_2(0) = 0$$
(11)

Für die Koeffizienten ergibt sich:

$$A_2 = 2\varphi_0, \ A_1 = B_1 = B_2 = 0 \tag{12}$$

und damit schließlich

$$\varphi_1(t) = -\varphi_2(t) = \varphi_0 \cdot \cos \omega_2 \cdot t. \tag{13}$$

Die beiden Pendel schwingen harmonisch aber diesmal gegenphasig mit der Frequenz ω_2 . Die Frequenz ω_2 hängt sowohl vom Direktionsmoment des Pendels als auch vom Direktionsmoment D der Kopplung ab.

1.4 Schwebungsschwingung

Das eine Pendel (*Fall c*) verharrt in Ruhelage während das andere um den Winkel φ_0 ausgelenkt wird.

Anfangsbedingung:

$$\varphi_1(0) = 0, \ \varphi_2(0) = \varphi_0$$

$$\dot{\varphi}_1(0) = \dot{\varphi}_2(0) = 0$$
(14)

Für die Koeffizienten ergibt sich:

$$A_1 = -A_2 = \varphi_0, \ B_1 = B_2 = 0 \tag{15}$$

und damit schließlich (nach einigen Umformungen):

$$\varphi_{1}(t) = \varphi_{0} \cdot \sin\left(\frac{\omega_{2} - \omega_{1}}{2} \cdot t\right) \cdot \sin\left(\frac{\omega_{2} + \omega_{1}}{2} \cdot t\right)$$

$$\varphi_{2}(t) = \varphi_{0} \cdot \cos\left(\frac{\omega_{2} - \omega_{1}}{2} \cdot t\right) \cdot \cos\left(\frac{\omega_{2} + \omega_{1}}{2} \cdot t\right).$$
(16)

Diese Gleichungen beschreiben eine Schwebung. Das zu Beginn ausgelenkte Pendel überträgt allmählich seine Schwingungsenergie auf das anfangs ruhende Pendel bis es schließlich selbst stillsteht. Danach kehrt sich der Vorgang um, und das nun schwingende Pendel regt das ruhende Pendel wieder an.

Die zu den Eigenfrequenzen ω_1 und ω_2 gehörenden Schwingungen werden als **Normalschwingungen** bezeichnet.

Bei schwacher Kopplung ist ω_2 nur wenig größer als ω_1 . Dann lässt sich Gleichung (16) wie folgt interpretieren: Es erfolgt eine Schwingung mit der mittleren Frequenz $\omega=\frac{1}{2}(\omega_2+\omega_1)$, wobei sich die Amplitude periodisch mit der Schwebungsfrequenz $\omega_S=(\omega_2-\omega_1)$ ändert. Für die zugehörigen Schwingungsdauern ergibt sich einmal mit $T=2\pi/\omega$

$$T = 2 \frac{T_1 \cdot T_2}{T_1 + T_2} \tag{17}$$

als **harmonisches Mittel** von T_1 und T_2 . Für $T_1 \approx T_2$ gilt auch $T \approx \frac{1}{2}(T_1 + T_2)$. Zum anderen ergibt sich mit $T_S = 2\pi/\omega_S$ (**Definition der Schwebungsdauer**, siehe **Bild 3**)

$$T_S = \frac{T_1 \cdot T_2}{T_1 - T_2}$$
 Zeit zwischen zwei Phasensprüngen bzw. Pendelstillständen (18)

Hinweis:

Schwebungsdauer T_S entspricht **nicht** der Schwingungsdauer T

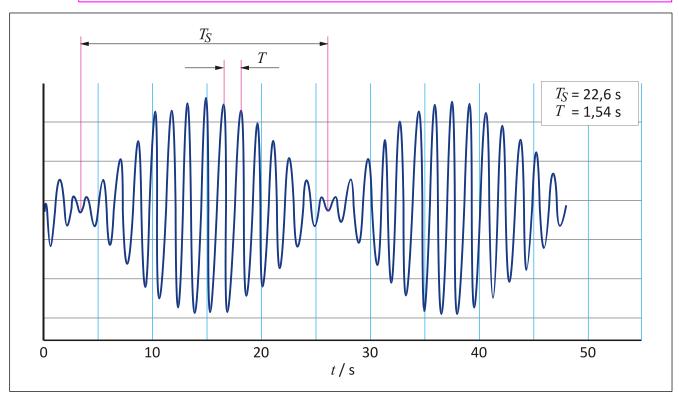


Bild 3: Schwingungsverlauf bei gekoppelten Pendeln

Allgemein gilt, dass ein System aus N gekoppelten Oszillatoren N Normalschwingungen besitzt. Jede mögliche Schwingung eines einzelnen Oszillators kann immer durch eine Linearkombination dieser Normalschwingungen dargestellt werden. So ist die Schwebungsschwingung eine Linearkombination der beiden Normalschwingungen mit den Frequenzen ω_1 und ω_2 .

Kopplungsgrad

Um die Stärke der Kopplung zu quantifizieren, definiert man den Kopplungsgrad κ durch

$$|\kappa| = \frac{D'}{D + D'} \quad . \tag{19}$$

Mit Hilfe der Gleichungen (6) für ω_1 und ω_2 erhält man für κ :

$$|\kappa| = \frac{\omega_2^2 - \omega_1^2}{\omega_2^2 + \omega_1^2} = \frac{T_1^2 - T_2^2}{T_1^2 + T_2^2} . \tag{20}$$

Der Kopplungsgrad κ kann also durch Messung der Normalschwingungen bestimmt werden, unter Verwendung der Beziehungen aus den Gleichungen (17) und (18) jedoch auch aus der Schwebungsmessung.

2.Versuch

2.1 Vorbetrachtung

Aufgabe: Leiten Sie die Gleichung (17) aus der Beziehung $\omega=\frac{1}{2}(\omega_2+\omega_1)$ und die Gleichung (18) $\omega_S=(\omega_2-\omega_1)$ sowie T_1 und T_2 aus den Schwebungsdaten her. Bestimmen Sie die Kopplungskonstante κ durch Herleitung aus den Schwebungsdaten.

2.2 Versuchsdurchführung

2.2.1 Verwendete Geräte

zwei Stabpendel mit längenverstellbaren Pendelkörpern und Potentiometerausgang zur Signalauswertung, Kopplungsfeder, zweifache potentialfreie Spannungsversorgung, Computer mit Interface und entsprechender Software

2.2.2 Versuchshinweise

Hinweis:

Ein vorbereitetes Messwertprotokoll ist bei diesem Versuch **nicht** notwendig. Die Anleitung zu den Einstellungen sowie die Hinweise zur Bedienung des PC-Messsystems befinden sich am Praktikumsplatz!

Aufgabe: Untersuchung für **3 unterschiedliche Fälle** bei Variierung der Verschiebung der Kopplungsfeder längs der Stabachse des Pendels:

- a) die Schwingungsdauer T_1 der symmetrischen Schwingung,
- **b)** die Schwingungsdauer T_2 der antisymmetrischen Schwingung und
- c) die Schwingungsdauer T und die Schwebungsdauer T_S bei Schwebungsschwingungen.
- Verändern Sie für die einzelnen Messungen den Abstand der Kopplungsfeder von der Pendelachse.
- Beginnen Sie zunächst mit der Messung bei einem Abstand von a=35 cm (Fälle a), b) und c).
- Vergrößern Sie diesen Abstand *jeweils um* 5 cm pro Messung auf a=60 cm.
- Als Ergebnis dieser Messungen erhalten Sie Messdiagramme, in denen die Amplituden als Funktionen der Zeit dargestellt sind. Bestimmen Sie aus diesen unter Verwendung möglichst vieler Schwingungen (mindestens~10) die jeweilige Schwingungsdauer bzw. Schwebungsdauer T_S .
- Nehmen Sie diese Bestimmung während der Praktikumszeit mit Hilfe eines Messschiebers vor.

2.3 Versuchsauswertung

Aufgabe: Im Folgenden sind die Berechnungen für **die 6 Stellungen** der Kopplungsfeder durchzuführen.

- Bestimmen Sie die Schwingungsdauer T_1 (**Fall a**), die Schwingungsdauer T_2 (**Fall b**), und die Schwingungsdauer T_3 (**Fall c**), aus den Diagrammausdrucken der Funktionen U_A , $U_B = f(t)$ für alle vorgegebenen Stellungen der Kopplungsfeder.
- Ermitteln Sie die jeweilige Abweichung exemplarisch für je ein Beispiel.
- Untersuchen Sie den Einfluss der Befestigung der Kopplungsfeder auf das Verhältnis der Schwingungsdauer von symmetrischer (*Fall a*) und asymmetrischer Schwingung (*Fall b*).
- Stellen Sie die Funktion ${T_1}^2/{T_2}^2=f({l_F}^2)$ in einem Diagramm graphisch dar.
- Berechnen Sie die Anstiegsfunktion, sowie die Abweichung des Anstieges.
- Diskutieren Sie die gezeigten Abhängigkeiten.

Folgende Berechnungen können tabellarisch durchgeführt werden.

- Berechnen Sie die Schwingungsdauer T und die Schwebungsdauer T_S aus den gemessenen Schwingungsdauern T_1 (symmetrische Schwingung) und T_2 (antisymmetrische Schwingung).
- Ermitteln Sie den Kopplungsgrad κ aus T_1 und T_2 sowie aus den ermittelten Werten T und T_S (**Fall a** und **b**).
- Bestimmen Sie den Kopplungsgrad κ aus den gemessenen Werten T und T_S (**Fall c**) sowie aus der Beziehung für $T \ll T_S$.
- ullet Vergleichen Sie tabellarisch alle ermittelten Werte des Kopplungsgrades κ und die Schwingungsdauer T bzw. die Schwebungsdauer T_S miteinander.
- Führen Sie jeweils eine Beispielrechnung für T und T_S aus T_1 und T_2 sowie für die Kopplungskonstante κ (für alle Methoden) durch und ermitteln Sie die Messabweichungen durch eine Fehlerrechnung.
- Diskutieren Sie Ihre daraus gewonnenen Erkenntnisse.

3. Ergänzung

3.1 Vertiefende Fragen

Diskutieren Sie den zeitlichen Verlauf der Energie bei gekoppelten Pendeln an Hand eines Diagramms (prinzipieller Verlauf).

3.2 Ergänzende Bemerkungen

Die Überlagerung auch von mehr als zwei Schwingungen unterschiedlicher Frequenz ergibt wieder eine periodische Funktion der Zeit, die im Allgemeinen jedoch nicht sinusförmig ist.

Umgekehrt kann jede beliebige Funktion f(t) mit der Periode T durch Überlagerung harmonischer Schwingungen aufgebaut werden:

$$f(t) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cdot \sin\left(n \cdot 2\pi \cdot \frac{t}{T} + \alpha_n\right) \right)$$
 (21)

Die Amplituden a_n und die Phasen α_n sind durch den Funktionsverlauf f(t) innerhalb einer Periode eindeutig bestimmt. (Für nähere Einzelheiten sei auf die mathematische Literatur zu Fourierreihen verwiesen). Die harmonische Schwingung mit n=1 heißt **Grundschwingung**, die anderen Schwingungen werden als **Oberschwingungen** bezeichnet.