

Versuchsrelevante Anwendungen

für das Physikalische Praktikum

1. Auflage

Versuchsrelevante Anwendungen

für das Physikalische Praktikum

1. Auflage

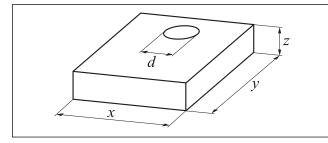
Dipl.-Ing. (FH) Ingo Berger Dr. rer. nat. Bodo Wolf

B-TU

Brandenburgische Technische Universität Cottbus - Senftenberg Standort: Senftenberg

Universitätsplatz 1 01968 Senftenberg

1. Auflage 2021


Inhaltsverzeichnis

1. Versuchsbezogene Anwendungsbeispiele	5
1.1 Einfache Fehlerrechnung aus dem Potenzprodukt	5
1.2 Mittelwertbildung	7
1.3 Lineare Regression	8
1.4 Bestimmung der Funktionsgleichung einer halblog. Darstellung	16
1.5 Bestimmung der Funktionsgleichung einer doppellog. Darstellung	20
1.6 Gewichteter Mittelwert	23
2. Bewegungsgesetze	25
2.1 Kinematik – Geradlinige Bewegung	25
2.2 Kinematik – Drehbewegung um eine feste Achse	26
2.3 Wurf, Freier Fall	27
3. Massenträgheitsmomente homogener Körper bezüglich verschiedener Drehachsen	28
4. Tabellen, Formelzeichen und Naturkonstanten	29
4.1 Vorsätze zum Bilden eines Vielfachen bzw. Teilen von Einheiten	29
4.2 Formelzeichen und Einheiten	29
4.3 Naturkonstanten	32
4.4 Umrechnung von Einheiten	32
4.5 Stoffeigenschaften	33

1. Versuchsbezogene Anwendungsbeispiele

1.1 Einfache Fehlerrechnung aus dem Potenzprodukt

Als Beispiel für die einfache Fehlerrechnung aus dem Potenzprodukt wird im Versuch M01 (*Dichtebestimmung*) die Dichte eines Körpers unbekannten Stoffes bestimmt (siehe *Bild 1-1*). Dabei gibt es die Möglichkeit, das Volumen dieses Körpers mit Hilfe eines Messschiebers sowie die Masse mit einer Analysenwaage zu ermitteln. Die nummerischen Ergebnisse sind in der *Tabelle 1-1a* zusammengefasst.

Kantenlänge x	35,12 mm
Kantenlänge y	45,26 mm
Körperhöhe z	7,98 mm
Lochdurchmesser d	10,00 mm
Masse m	85,715 g

Bild 1-1: Skizze

Tabelle 1-1a: Messwerte

1.1.1 Bestimmung der zufälligen bzw. der systematischen Messunsicherheiten

Die Gesamtabweichung ergibt sich aus der zufälligen und der systematischen Messunsicherheit

$$u(x, y, z, d) = u_Z(x, y, z, d) + u_S(x, y, z, d)$$

Für den Messschieber gibt es in der Platzanleitung folgendes laut Herstellerangaben zu beachten

$$u(x, y, z, d) = 20 \mu m + 10^{-4} \cdot (x, y, z, d)$$

Dabei ist die Ablesegenauigkeit $e=u_Z=20~\mu\mathrm{m}$ und die systematische Messunsicherheit $u_S=10^{-4} \cdot L$ ängenmaß. Ähnliches gilt beim Umgang mit der Analysenwaage zu beachten. Hier ist die Ablesegenauigkeit $e=u_Z=1~\mathrm{mg}$. Die systematische Messungenauigkeit u_S ergibt sich aus der Summe der Ungenauigkeiten der verwendeten Messgewichte. Diese sind in verschiedene Fehlerklassen unterteilt. Im Versuch werden Präzisionsgewichte der Fehlerklasse F verwendet (siehe **Tabelle 1-1b**).

Gewichte in g	1	2	5	10	20	50	100
$u_S(m)$ in mg	0,15	0,15	0,23	0,23	0,30	0,45	0,75

Tabelle 1-1b: Unsicherheiten der Präzisionsgewichte

Somit ergibt sich eine systematische Messungenauigkeit der Masse für m=85 g

$$u_S(m) = (0.45 + 0.30 + 0.23 + 0.23) \text{ mg} = 1.21 \text{ mg}$$

Beim Ergebnis werden auf die Nachkommastellen nicht betrachtet, weil die Ablesegenauigkeit der Waage e=1 mg beträgt. Es wird allerding aufgerundet ($u_S(m)=2$ mg), weil bei Fehlerberechnungen in solchen Fällen immer aufgerundet wird.

Alle absoluten und relativen Messunsicherheiten sind in der *Tabelle 1-1c* zusammengefasst.

Kantenlänge x	$(35,12 \pm 0,024) \text{ mm}$	u(x)/x = 0.067 %
Kantenlänge y	$(45,26 \pm 0,025) \text{ mm}$	u(y)/y = 0.052 %
Körperhöhe z	$(7,98 \pm 0,021) \text{ mm}$	u(z)/z = 0.261 %
Lochdurchmesser d	$(10,00 \pm 0,020) \text{ mm}$	u(d)/d = 0.200 %
Masse m	$(85,715 \pm 0,003)$ g	u(m)/m = 0.004 %

Tabelle 1-1c: Messwerte mit den Messunsicherheiten

1.1.2 Berechnung der Teilgröße

Am einfachsten lässt sich die Dichte des Körpers bestimmen, indem zunächst die Teilvolumina berechnet werden (*Quader- und Lochvolumen*) und daraus das Gesamtvolumen. So ist das Quadervolumen

$$V_{ouad} = x \cdot y \cdot z = (35,12 \cdot 45,26 \cdot 7,98) \text{ mm}^3 = \underline{12,684 \text{ cm}^3}$$

und das Lochvolumen

$$V_{Loch} = \frac{1}{4}\pi \cdot d^2 \cdot z = (\frac{1}{4} \cdot \pi \cdot (10,00)^2 \cdot 7,98) \text{ mm}^3 = \underline{0,627 \text{ cm}^3}$$

sowie das Gesamtvolumen

$$V = V_{Quad} - V_{Loch} = (12,684 - 0,627) \text{ cm}^3 = \underline{12,057 \text{ cm}^3}.$$

1.1.3 Berechnung der Dichte

Wie schon erwähnt wird die Dichte ϱ aus der Masse und dem Gesamtvolumen des Körpers bestimmt.

$$\varrho = \frac{m}{V} = \frac{85,715 \text{ g}}{12.057 \text{ cm}^3} = \frac{7,1096 \text{ g} \cdot \text{cm}^{-3}}{12.057 \text{ cm}^3}$$

1.1.4 Fehlerrechnung

Da die Bestimmungsgleichung der beiden Teilvolumina ein Potenzprodukt ist, werden die *relativen Abweichungen* wie folgt bestimmt:

$$\frac{u(V_1)}{V_1} = \left| \frac{u(x)}{x} \right| + \left| \frac{u(y)}{y} \right| + \left| \frac{u(z)}{z} \right| = 0,067\% + 0,052\% + 0,261\% = \underline{0,380\%}$$

$$\frac{u(V_2)}{V_2} = 2 \left| \frac{u(d)}{d} \right| + \left| \frac{u(z)}{z} \right| = 2 \cdot 0,200\% + 0,261\% = \underline{0,461\%}.$$

Die absoluten Abweichungen sind dann:

$$u(V_1) = V_1 \cdot \frac{u(V_1)}{V_1} = 12,684 \text{ cm}^3 \cdot 0,380\% = \underline{0,048 \text{ cm}^3}$$

 $u(V_2) = V_2 \cdot \frac{u(V_2)}{V_2} = 0,627 \text{ cm}^3 \cdot 0,461\% = \underline{0,004 \text{ cm}^3}.$

Da sich das Gesamtvolumen aus $V=V_1-V_2$ ergibt, müssen nun die absoluten Abweichungen addiert werden. So ist

$$u(V) = u(V_1) + u(V_2) = (0.048 + 0.004) \text{ cm}^3 = 0.052 \text{ cm}^3$$
.

Die Bestimmungsgleichung der Dichte ist ein Potenzprodukt. Aus diesem Grund werden nun wieder die relativen Abweichungen der Masse und des Gesamtvolumens addiert.

$$\frac{u(\varrho)}{\varrho} = \left| \frac{u(m)}{m} \right| + \left| \frac{u(V)}{V} \right| = 0.004\% + \left| \frac{0.052 \text{ cm}^3}{12,057 \text{ cm}^3} \right| = \underline{0.435 \%}$$

$$u(\varrho) = \varrho \cdot \frac{u(\varrho)}{\varrho} = 7,1096 \text{ g} \cdot \text{cm}^{-3} \cdot 0,435\% = \underline{0,0309 \text{ g} \cdot \text{cm}^{-3}}$$

1.1.5 Ergebnisdarstellung und Diskussion

Für die Darstellung des Endergebnisses wird folgende Schreibweise angewendet:

$$\varrho = (7.11 \pm 0.03) \text{ g} \cdot \text{cm}^{-3}$$
 $\frac{u(\varrho)}{\varrho} = 0.42 \%$

Da die Messwerte der Längenmessung zwei Nachkommastellen aufweisen, wird der Endwert ebenfalls mit zwei Nachkommastellen ausgegeben, denn dieser kann nicht genauer sein als die Messwerte. Die Grenzen des berechneten Wertes betragen:

$$\varrho_{min} = \varrho - u(\varrho) = (7,11 - 0,03) \text{ g·cm}^{-3} = \underline{7,08 \text{ g·cm}^{-3}}$$

$$\varrho_{max} = \varrho + u(\varrho) = (7,11+0,03) \text{ g·cm}^{-3} = \underline{7,14 \text{ g·cm}^{-3}}.$$

Der Tabellenwert für die Dichte von Zink beträgt ϱ =7,13 g·cm⁻³ und liegt somit innerhalb der bestimmten Grenzen des berechneten Wertes.

1.2. Mittelwertbildung

Die Schwingungsdauer T eines Pendels soll ermittelt werden. Zu diesem Zweck wird die Zeit t für 20 Schwingungen bestimmt. Um die statistische Sicherheit zu erhöhen wird die Messung 5-mal wiederholt. Die Messdaten sind in der **Tabelle 1-2a** aufgeführt.

Der arithmetische Mittelwert ergibt sich aus

$$\bar{t} = \frac{1}{n} \sum_{i=1}^{n} t_i = \underline{40.02 \text{ s}}.$$

n	t
	S
1	39,9
2	40,1
3	40,0
4	39,8
5	40,3

Tabelle 1-2a: Messwerte

1.2.1 Bestimmung der zufälligen bzw. der systematischen Messunsicherheit

Zur Bestimmung der zufälligen Messunsicherheit muss zunächst die Standardabweichung des Mittelwertes gebildet werden. Sie ist

$$s_{\bar{t}} = \sqrt{\frac{1}{n \cdot (n-1)} \cdot \sum_{i=1}^{n} (t_i - \bar{t})^2}$$
$$= \sqrt{\frac{1}{20} \cdot 0.1480 \text{ s}^2} = \underline{0.086 \text{ s}}.$$

Da die Bestimmung der Schwingungsdauer auf 5 Messungen (n=5) basiert, ist die Student-t-Verteilung (Einführung in das Physikalische Praktikum **Tabelle 4.4**) t=2,78. Somit ergibt sich für die **absolute zufällige Messunsicherheit**

$$u_Z(b) = t \cdot s_{\bar{t}}$$

= 2,78 \cdot 0,086 s = 0,24 s.

Für die verwendete Stoppuhr gibt es in der Platzanleitung folgendes laut Herstellerangaben zu beachten:

n	t	$(t_i - \bar{t})^2$
	S	S^2
1	39,9	0,0144
2	40,1	0,0064
3	40,0	0,0004
4	39,8	0,0484
5	40,3	0,0784
Mittelwert:	40,02	0,1480
Stababwei-		
chung des	0,086	
Mittelwertes:		
Student-t-	2,78	
Verteilung	2,70	
$u_Z(t)$	0,24	
$u_S(t)$	0,02	
u(t)	0,26	
u(t)/t	0,65 %	

Tabelle 1-2b: erweiterte Tabelle

$$u(t) = 0.1 \text{ s} + 5 \cdot 10^{-4} \cdot t$$

Da hier eine Mehrfachmessung vorliegt wird die Ablesegenauigkeit von e=0,1 s durch die zuvor ermittelte zufällige Messunsicherheit $u_Z(t)$ ersetzt. Somit ist die **Gesamtabweichung**

$$u(t) = 0.24 \text{ s} + 5 \cdot 10^{-4} \cdot t = (0.24 + 0.02) \text{ s} = \underline{0.26 \text{ s}}.$$

Die relative Abweichung der Zeit ist

$$\frac{u(t)}{t} = \frac{0.26 \, s}{40.02 \, s} = \underline{0.65 \, \%}.$$

1.2.2 Berechnung der Schwingungsdauer mit ihrer Abweichung

Da die Zeit für 20 Schwingungen ermittelt wurde ist der Mittelwert der Schwingungsdauer

$$\bar{T} = \frac{1}{20} \cdot \bar{t} = \frac{1}{20} \cdot 40,02 \, s = \underline{2,001 \, s} \, .$$

Die relativen Abweichungen der Zeit und der Schwingungsdauer sind gleich. So ist:

$$\frac{u(t)}{t} = \frac{u(T)}{T} = 0.65 \%$$
.

Die absolute Abweichung ist dann

$$u(T) = T \cdot \frac{u(T)}{T} = 2,001 \text{ s} \cdot 0,65\% = \underline{0,013 \text{ s}}.$$

1.2.3 Ergebnisdarstellung und Diskussion

Für die Darstellung des Endergebnisses wird folgende Schreibweise angewendet:

$$T = (2,001 \pm 0,013) \text{ s}$$
 $\frac{u(T)}{T} = 0.65 \%$

Die Anzahl der Nachkommastellen richtet sich hier nach dem Anwendungsbeispiel. Für den Wert der Schwingungsdauer T werden deshalb drei Nachkommastellen geschrieben, weil der im Beispiel zu vergleichende Wert auch drei Nachkommastellen hat.

1.3. Lineare Regression

Als Beispiel für die lineare Regression wird im Versuch Fotoeffekt (A02) die Abhängigkeit der Elektronenenergie von der Frequenz der elektromagnetischen Welle des einstrahlenden Lichtes einer Spektrallampe untersucht.

Aufgabe:

- Ermitteln Sie die Bremsspannung U_0 einer Quecksilberdampflampe (bei Fotostrom I_F =0) für ausgewählte charakteristische Spektrallinien.
- Stellen Sie die Abhängigkeiten $U_0 = f(f)$ graphisch dar und führen Sie eine lineare Regression durch.
- Ermitteln Sie die Messunsicherheit des Anstieges unter Verwendung der Daten aus der linearen Regression und aus der maximalen relativen Messunsicherheit. Vergleichen Sie beide Ergebnisse.
- Berechnen Sie das Planck'sche Wirkungsquantum und ermitteln Sie die Gesamtabweichung aus zufälliger und systematischer Messunsicherheit rechnerisch.
- Vergleichen Sie das Ergebnis hinsichtlich des Messwertes und der aufgestellten Messwertgrenzen.

1.3.1 Graphische Darstellung

Um die Funktion $U_0 = f(f)$ graphisch darzustellen, fertigt man zunächst eine Messwerttabelle an. Dort werden alle für die Darstellung wichtigen relevanten Werte eingetragen.

Bezogen auf das Beispiel befindet sich in der ersten Spalte (*Tabelle 1-3a*) eine einfache Durchnummerierung der Ereignisse. In der zweiten Spalte stehen die spezifischen Spektralfarben der Quecksilberlampe.

Da Lichtphotonen unter anderem einen Wellencharakter aufweisen, befinden sich in der dritten Spalte unter den gegebenen Werten die zu den Farben dazugehörigen Frequenzen. In der letzten Spalte sind die Bremsspannungen notiert.

Mit Hilfe dieser Übersicht lässt sich sehr einfach die richtige Achse des zu erstellenden Diagramms zuordnen. Für dieses Beispiel ist die x-Achse die Frequenz f und die y-Achse die Bremsspannung U_0 .

Im *Bild 1-3a* ist das zugehörige Diagramm dargestellt. Im Physikalischem Praktikum werden Diagramme immer einzeln auf *Millimeterpapier* bzw. anderen *Funktionspapieren* gezeichnet. Hierbei sollte Folgendes beachtet werden:

1	2	3	4
n	Spektral- farbe	gegebene Werte f Hz $\times10^{14}$	gemessene Werte U ₀ V
1	violett	7,31	1,45
2	blau	6,88	1,20
3	blaugrün	6,00	0,80
4	grün	5,77	0,66
5	gelb	5,17	0,48

Tabelle 1-3a: gegebene bzw. gemessene Werte

- Diagrammüberschrift (Beziehung zwischen Bremsspannung und Frequenz der elektromagnetischen Welle der Spektrallinien)
- Funktionsbezeichnung oder Funktionszusammenhang ($U_0 = f(f)$)
- Achsenbezeichnung (Bremsspannung bzw. Frequenz der elektromagnetischen Welle)
- Achsenskalierung (so wählen, dass die Funktion sich in der Mitte der Darstellung befindet)
- Formelzeichen und Einheit immer am Ende jeder Achse (U_0/V ; $f/10^{14}$ Hz)
- Messpunkte nicht verbinden

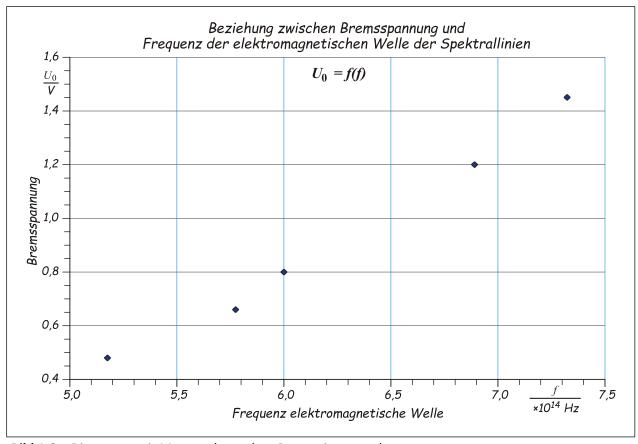


Bild 1-3a: Diagramm mit Messpunkten ohne Regressionsgerade

1.3.2 Berechnung der Regressionsgeraden

Als Grundlage der Regressionsberechnung wird die **Tabelle 1-3a** um eine Zeile und drei Spalten erweitert. In der Spalte 5 werden die quadrierten **x-Werte**, in Spalte 6 die quadrierten **y-Werte** und in der letzten Spalte das Produkt aus den **x** und **y-Werten** eingetragen. In der unteren Zeile befinden sich die Mittewerte der einzelnen Spalten.

1	2	3	4	5	6	7
	Spektralfarbe	x-Achse	y-Achse	x²-Werte	y²-Werte	$x \cdot y$ -Werte
	n	f	U_0	f^2	U_0^2	$f \cdot U_0$
		Hz	V	s-2	V	V/s
		$\times 10^{14}$		× 10 ²⁸		$\times 10^{14}$
1	violett	7,31	1,45	53,436	2,103	10,600
2	blau	6,88	1,20	47,334	1,440	8,256
3	blaugrün	6,00	0,80	36,000	0,640	4,800
4	grün	5,77	0,66	33,293	0,436	3,808
5	gelb	5,17	0,48	26,729	0,230	2,482
	Mittelwert:	6,226	0,918	39,358	0,970	5,989

Tabelle 1-3b: Grundlage der Regressionsberechnung

a) Berechnung des Anstieges b aus Covarianz und Varianz

Die allgemeine Gleichung für die Berechnung einer linearen Funktion (Regressionsgerade) lautet:

$$y = a + b \cdot x$$

Die Bestimmung des Anstieges aus Cov(x, y) und V(x) wird folgende die Beziehung herangezogen:

$$b = \frac{(n-1) \cdot \operatorname{Cov}(x, y)}{(n-1) \cdot \operatorname{V}(x)} .$$

Dabei ist $(n-1)\cdot \operatorname{Cov}(x,y) = \overline{x\cdot y} - \overline{x}\cdot \overline{y}$ und $(n-1)\cdot \operatorname{V}(x) = \overline{x^2} - (\overline{x})^2$. Somit gilt:

$$b = \frac{\overline{x \cdot y} - \overline{x} \cdot \overline{y}}{\overline{x^2} - (\overline{x})^2}$$

Auf das Beispiel und den Werten aus Tabelle 1-3b bezogen ist

$$b = \frac{\overline{f \cdot U_0} - \overline{f} \cdot \overline{U_0}}{\overline{f^2} - (\overline{f})^2}$$

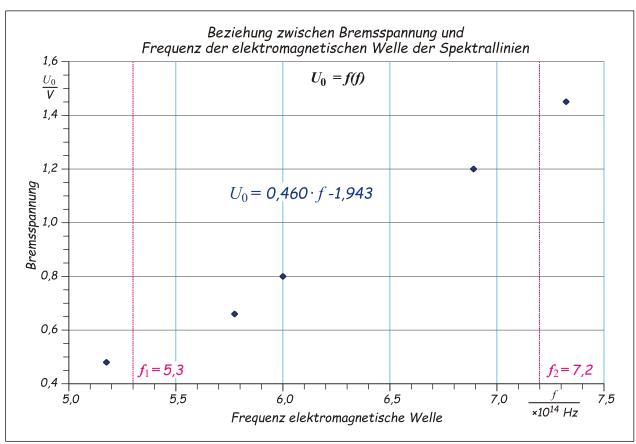
$$= \frac{5,989 \cdot 10^{14} \, V \cdot s^{-1} - 6,226 \cdot 10^{14} \, s^{-1} \cdot 0,918 \, V}{39,358 \cdot 10^{28} \, s^{-2} - (6,226 \cdot 10^{14} \, s^{-1})^2}$$

$$= \frac{0,274 \cdot 10^{14} \, V \cdot s^{-1}}{0.595 \cdot 10^{28} \, s^{-2}} = \underline{0,4595 \cdot 10^{-14} \, V \cdot s}.$$

b) Berechnung des Achsenschnittpunkts bei x=0

Ausgehend von der allgemeinen Gleichung der linearen Regressionsgerade und nach a umgestellt, ist:

$$a = \bar{y} - b \cdot \bar{x} .$$


In der Anwendung auf das Beispiel werden für x und y die entsprechenden Mittelwerte eingesetzt.

$$a = 0.918 \text{ V} - 0.4595 \cdot 10^{-14} \text{ V} \cdot \text{s} \cdot 6.226 \cdot 10^{14} \text{ s}^{-1} = -1.9428 \text{ V}$$

Da die Funktionsgleichung im Zusammenhang mit dem *Diagramm 1-3b* und seinen dazugehörigen Achsen betrachtet wird, kann auf die Potenz beim Anstieg bzw. auf die Einheiten verzichtet werden. Für die Darstellungsparameter sind 3 Nachkommastellen völlig ausreichend. Die Funktionsgleichung lautet also:

$$U_0 = 0,460 \cdot f - 1,943$$

Um die Regressionsgerade in das Diagramm einzeichnen zu können, benötigt man zwei Punkte die durch x und y charakterisiert sind. In diesem Fall werden die x-Werte vorgegeben (f_1 =5,3 und f_2 =7,2).

Bild 1-3b: Diagramm mit Regressionsgleichung und willkürlich ausgewählten Frequenzen für f_1 und f_2

Eingesetzt in die Funktionsgleichung ergibt das für $U_{0(1)}$ und $U_{0(2)}$:

$$U_{0(1)} = 0,460 \cdot 5,3 - 1,943 = \underline{0,492}$$

 $U_{0(2)} = 0,460 \cdot 7,2 - 1,943 = \underline{1,366}$.

Aufgrund der beiden Wertepaare $P_1(5,3;\ 0,492)$ und $P_2(7,2;\ 1,366)$ (siehe **Bild 1-3c**) lässt sich nun die Regressionsgrade im Diagramm platzieren (siehe **Bild 1-3d**).



Bild 1-3c: Diagramm mit den 2 Punkten, durch die die Regressionsgerade laufen soll

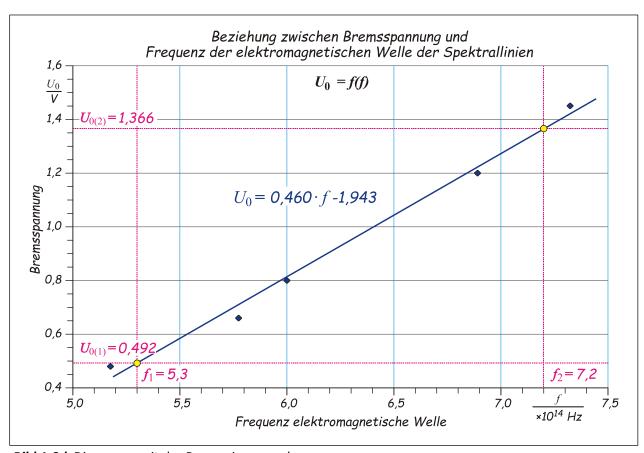


Bild 1-3d: Diagramm mit der Regressionsgeraden

Diese Vorgehensweise lässt sich auch in umgekehrter Reihenfolge realisieren. Also erst die Regressionsgerade in das Diagramm so einzeichnen, dass der Abstand der Messpunkte zur Geraden minimal ist, dann die Werte für Δx und Δy festlegen und daraus wie folgt den Anstieg bestimmen.

$$b=rac{\Delta y}{\Delta x}$$
 bzw. $b=rac{\Delta U_0}{\Delta f}$

1.3.3 Berechnung des Planck'schen Wirkungsquantums

In der Anleitung des Versuches A02 besagt die Gleichung (5)

$$e \cdot U = h \cdot f - W_{A,2}$$

Wenn der Fotostrom I_F =0 ist, so ist auch die Austrittsarbeit $W_{A,2}$ =0. Also kann folgendes für die Berechnung des Planck'schen Wirkungsquantums festgehalten werden:

$$h = e \cdot \frac{\Delta U_0}{\Delta f} = e \cdot b$$

Die gegebene Größe hierbei ist die Elementarladung $e=1,602\cdot10^{-19}$ As. Somit ist

$$h = 1,602 \cdot 10^{-19} \,\mathrm{A \cdot s} \cdot 0,4595 \cdot 10^{-14} \,\mathrm{V \cdot s} = \frac{7,36 \cdot 10^{-34} \,\mathrm{W \cdot s}^2}{2}$$

Das Planck'sche Wirkungsquantum aus dem Anstieg der Funktion $U_0 = f(f)$, basierend der Messdaten aus **Tabelle 1-3a**, beträgt $h=7,36\cdot10^{-34}$ W·s².

1.3.4 Fehlerrechnung

a) Zufällige Abweichung

Die Bestimmung der zufälligen Abweichung lässt sich auf zwei Arten realisieren. Zum einen durch die Berechnung der *Abweichung des Anstieges* und zum anderen die graphische Bestimmung der *maximalen relativen Messunsicherheit*. Die letzte Methode ist allerdings sehr stark vom "*Anwender*" sowie von der Größe des Diagramms abhängig und somit eine empirische Methode.

Betrachten wir zunächst die rechnerische Methode. Grundlage ist wieder die Messwerttabelle. Hier (siehe **Tabelle 1-3c**) wechseln aus Übersichtsgründen die Spalten U_0 und f^2 ihre Plätze. In der Spalte 6 sind die Werte von U_0' eingetragen. Diese Werte ergeben sich aus der zuvor ermittelten Funktionsgleichung und beschreiben die exakten Werte für U_0 auf der Regressionsgraden für die jeweiligen Frequenzen f. In der letzten Spalte stehen die quadrierten Differenzen von U_0 und U_0' . In der unteren Zeile befinden sich diesmal die Summen der Spalten 3, 4 und 7.

1	2	3	4	5	6	7
	n	f	f^2	U_0	$U_0{}'$	$(U_0 - U_0')^2$
		Hz	s-2	V	V	V^2
		$ imes 10^{14}$	× 10 ²⁸			× 10-3
1	violett	7,31	53,44	1,45	1,416	1,148
2	blau	6,88	47,33	1,20	1,219	0,343
3	blaugrün	6,00	36,00	0,80	0,814	0,200
4	grün	5,77	33,29	0,66	0,708	2,348
5	gelb	5,17	26,73	0,48	0,433	2,233
	Summe:	31,13	196,79			6,272

Tabelle 1-3c: Grundlage der Regressionsberechnung

Die Standardabweichung der y-Werte (Bremsspannung U_0) ist definiert:

$$s_{U_0} = \sqrt{\frac{1}{n-2} \sum (U_0 - U_0')^2} = \sqrt{\frac{1}{3} \cdot 6,272 \cdot 10^{-3} \text{ V}^2} = \underline{0,0457 \text{ V}}.$$

Auf dieser Grundlage kann nun die Standardabweichung des Anstieges b bestimmt werden. Sie ist:

$$\begin{split} s_b &= s_{U_0} \cdot \sqrt{\frac{n}{n \cdot (\sum f^2) - (\sum f)^2}} \\ &= 0.0457 \, V \cdot \sqrt{\frac{5}{5 \cdot 196.76 \cdot 10^{28} \, \text{s}^{-2} - (31.13 \cdot 10^{14} \, \text{s}^{-1})^2}} = \underline{0.0265 \cdot 10^{-14} \, \text{V/s}} \,. \end{split}$$

Da die Fehlerbetrachtung auf 5 Messungen (n=5) basiert, ist die Student-t-Verteilung t=2,78 ($Einf \ddot{u}h$ -rung in das Physikalische Praktikum **Tabelle 4.4**). Somit ergibt sich für die absolute zufällige Abweichung des Anstieges:

$$u_Z(b) = t \cdot \frac{s_b}{\sqrt{n}} = 2,78 \cdot \frac{0,0265 \cdot 10^{-14} \text{ V/s}}{\sqrt{5}} = \underline{0,0329 \cdot 10^{-14} \text{ V/s}}.$$

Die relative, zufällige Abweichung des Anstieges ist also:

$$\frac{u_Z(b)}{b} = \frac{0,0329 \cdot 10^{-14} \text{ V/s}}{0,4595 \cdot 10^{-14} \text{ V/s}} = \frac{7,17\%}{0}.$$

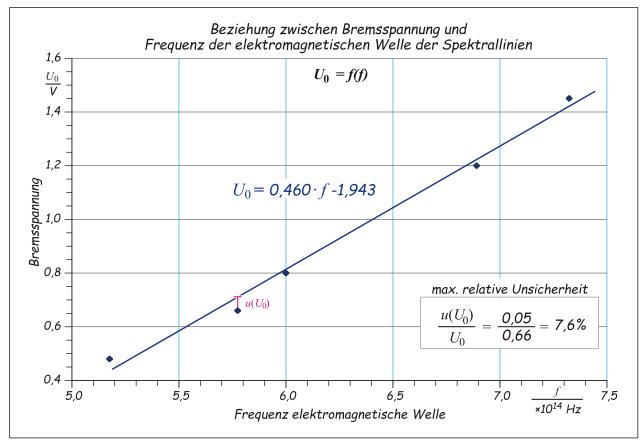


Bild 1-3e: Bestimmung der max. relativen Messunsicherheit aus dem Diagramm

Die relative zufällige Abweichung $u_Z(b)/b = u_Z(h)/h$ ist. So ist die absolute zufällige Abweichung:

$$u_Z(h) = h \cdot \frac{u_Z(h)}{h} = 7,36 \cdot 10^{-34} \,\mathrm{W \cdot s^2 \cdot 7,17\%} = \underline{0,528 \cdot 10^{-34} \,\mathrm{W \cdot s^2}}.$$

Die zufällige Abweichung des Anstieges lässt sich auch direkt aus dem Diagramm ableiten. Dazu wird die maximale relative Messunsicherheit für x (f) und y (U_0) wie folgt bestimmt (siehe **Bild 1-3e**).

An dem Messpunkt, der *relativ gesehen am weitesten* in x- und y-Richtung von der Regressionsgraden entfernt liegt, werden die Fehlerbalken in x- und y-Richtung angetragen. Der Abstand zur Regressionsgraden ist die absolute Messunsicherheit für diesen einen Messpunkt und wird in Relation zum Messwert betrachtet. Durch Addition beider relativer Messunsicherheiten wird die maximale relative Abweichung des Anstieges b bestimmt.

Bezogen auf das Beispiel ist $u_Z(U_0)/U_0=7.6\%$. Die zufällige Messunsicherheit $u_Z(f)/f$ wird nicht betrachtet, da hier kein Messwert vorliegt (*Tabellenwerte*). Ein Vergleich beider Unsicherheiten zeigt einen Unterschied von beider Werte $\Delta u_Z(b)/b=0.43\%$, wobei der berechnete Wert der genauere ist.

b) Systematische Abweichung

Basierend auf der Bestimmungsgleichung für das Planck'sche Wirkungsquantum h ist die Spannung U_0 die Messgröße (reine Ablesewert), bei der eine systematische Messunsicherheit auftreten kann. Da der Messbereich von $U_{MB}=1,5$ V bei jeder der Messung konstant war, wird der kleinste Spannungswert ($U_0=0,48$ V) für die Berechnung genutzt. Die Fehlerklasse der Skale ist 1%. Somit ist die absolute, systematische Messunsicherheit von $u_S(U_0)=0,015$ V. Die relative systematische Messunsicherheit ist

$$\frac{u_{\rm S}(U_0)}{U_0} = \frac{0.015\,\rm V}{0.48\,\rm V} = \ \underline{3.13\%}\,.$$

Da $u_S(U_0)/U_0 = u_S(h)/h$ ist, so ist auch die absolute systematische Abweichung:

$$u_S(h) = h \cdot \frac{u_S(h)}{h} = 7,36 \cdot 10^{-34} \text{ W} \cdot \text{s}^2 \cdot 3,13\% = \underline{0,230 \cdot 10^{-34} \text{ W} \cdot \text{s}^2}.$$

Die Gesamtabweichung für h ist dann

$$u(h) = u_Z(h) + u_S(h)$$

= $(0.528 + 0.230) \cdot 10^{-34} \text{ W} \cdot \text{s}^2 = \underline{0.758 \cdot 10^{-34} \text{ W} \cdot \text{s}^2}$.

1.3.5 Ergebnisdarstellung und Diskussion

Für die Darstellung des Ergebnisses wird im Physikalischen Praktikum folgende Schreibweise angewendet:

$$h = (7,36 \pm 0,76) \cdot 10^{-34} \,\mathrm{W \cdot s^2} \qquad \frac{u(h)}{h} = \frac{0,76 \cdot 10^{-34} \,\mathrm{W \cdot s^2}}{7,36 \cdot 10^{-34} \,\mathrm{W \cdot s^2}} = \frac{10,30\%}{10^{-34} \,\mathrm{$$

Da der Spannungswert 2 Nachkommastellen aufweist, wird der Endwert ebenfalls mit 2 Nachkommastellen angegeben, denn er kann nicht genauer sein, als der Messwert.

Die Extremwerte des berechneten Wertes sind

$$h_{min} = \underline{6.60 \cdot 10^{-34} \, \text{W} \cdot \text{s}^2}$$
 und $h_{max} = \underline{8.12 \cdot 10^{-34} \, \text{W} \cdot \text{s}^2}$.

Der Tabellenwert des Planck'schen Wirkungsquantums beträgt $h=6,626\cdot10^{-34}~\mathrm{W\cdot s^2}$ und liegt somit innerhalb der aufgestellten Grenzen.

1.4. Bestimmung der Funktionsgleichung einer halblogarithmischen Darstellung

Der zeitliche Verlauf der Entladungsspannung U wird an einem aufgeladenen Kondensator $C\!=\!1000~\mu\mathrm{F}$ (1 %) aufgenommen. Parallel zum Kondensator ist noch ein Widerstand $R\!=\!100~\mathrm{k}\Omega$ (5 %) geschaltet. Die Entladungsspannung wird mit einem Vielfachmessgerät ebenfalls parallel gemessen.

Aufgabe:

- Stellen Sie die Abhängigkeiten U = f(t) graphisch linear und halblogarithmisch in je einem Diagramm dar.
- \bullet Bestimmen Sie die Funktionsgleichung mit Hilfe des Anstieges und dem Schnittpunkt des Graphen bei x=0.

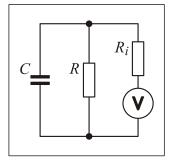


Bild 1-4a: Schaltung

• Ermitteln Sie die Zeitkonstante τ rechnerisch sowie graphisch. Bestimmen Sie die Ungenauigkeiten für die Zeitkonstante durch eine Fehlerrechnung. Vergleichen Sie beide Werte miteinander.

1.4.1 Graphische Darstellung

Für die graphischen Darstellungen, ob nun linear oder halblogarithmisch, werden die Messwerte in eine Wertetabelle (**Tabelle 1-4**) eingetragen. Laut der Funktion U = f(t) sind die Werte der y-Achse die Spannung U und die der x-Achse die Zeit t.

y-Achse	<i>U </i> V	10	9	8	7	6	5	4	3	2	1
x-Achse	<i>t</i> / s	0	11	24	39	60	74	98	131	174	252

Tabelle 1-4: gemessene Werte



Bild 1-4b: Lineares Diagramm mit Messpunkten und Regressionskurve

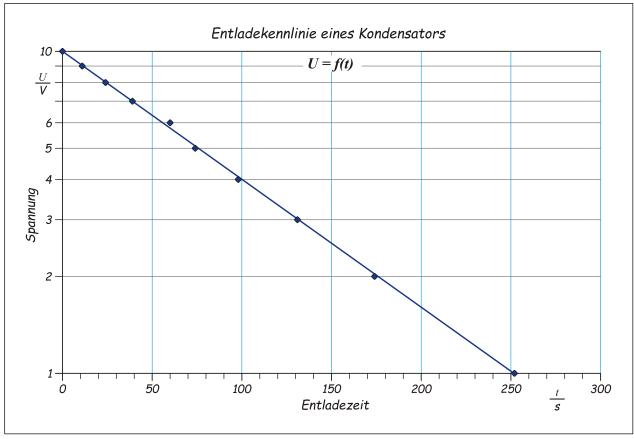


Bild 1-4c: Diagramm in halblogarithmischer Darstellung mit Messpunkten und Regressionsgerade

Vergleicht man beide Diagramme stellt man fest, dass die x-Achse bei beiden identisch ist, die y-Achse hingegen aber unterschiedlich. Im Diagramm (**Bild 1-4c**) hat die y-Achse eine logarithmische Einteilung, d.h. es gibt keinen Nullpunkt. Sie beginnt bei 1 V und endet bei 10 V. Die Einteilung wird auch als Dekade (*vielfaches von zehn*) bezeichnet.

Die Regressionskurve (*Bild 1-4b*) beschreibt eine e-Funktion. Die allgemeine mathematische Form lautet:

$$y = a \cdot e^{b \cdot x}$$

Durch die logarithmische Einteilung der y-Achse wird nun aus der Regressionskurve eine Regressionsgerade. Die Regressionsgerade wird in das Diagramm so eingezeichnet, dass der Abstand der Messpunkte zur Geraden am minimalsten ist.

1.4.2 Bestimmung der Funktionsgleichung

Die Funktionsgleichung aus Anstieg (*Exponent*) und dem Schnittpunkt der Funktion bei x=0 kann nun wieder rechnerisch oder graphisch bestimmt werden.

a) Graphische Bestimmung des Anstieges

Da die Funktionsgleichung im Zusammenhang mit dem Diagramm (*Bild 1-4d*) und seinen dazugehörigen Achsen betrachtet wird, kann auf die Einheiten verzichtet werden. Allgemein ist der Anstieg wie folgt definiert:

$$b = \frac{\ln y_2 - \ln y_1}{x_2 - x_1}$$

Bezogen auf das Beispiel ist der Exponent

$$b = \frac{\ln U_2 - \ln U_1}{t_2 - t_1} = \frac{\ln(1) - \ln(10)}{252 \, s - 0 \, s} = \underline{-0.00914 \, s^{-1}} \, .$$

b) Graphische Bestimmung des Nulldurchganges der Funktion bei x=0

Da der Kondensator zum Zeitpunkt t=0 eine Spannung von U=10 V hatte, ist auch der Nulldurchgang der Funktion a=10 V.

Die Funktionsgleichung ist also:

$$U = 10V \cdot e^{-0.00914 \, s^{-1} \cdot t}$$

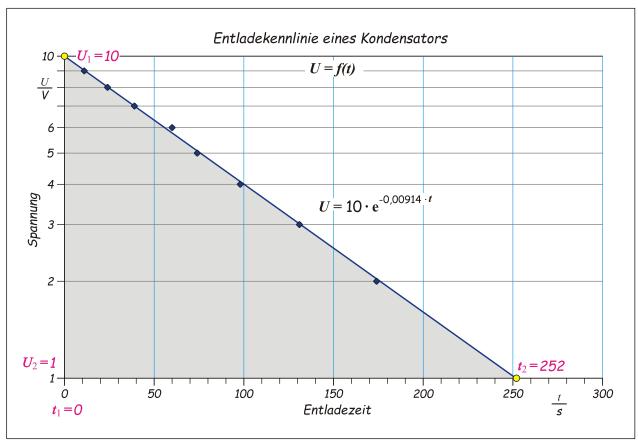


Bild 1-4d: Bestimmung der Funktionsgleichung

1.4.3 Berechnung bzw. graphische Ermittlung der Zeitkonstanten au

Die Zeitkonstante τ kann zum einen aus dem Produkt des Widerstandes und dem Kondensator berechnet werden und zum anderen mit Hilfe des Diagrammes (**Bild 1-4e**) bestimmt werden. So gilt für die Berechnung folgendes:

$$\tau_1 = R \cdot C = 100 \cdot k\Omega \cdot 1000 \ \mu F = 10^5 \frac{V}{A} \cdot 10^{-3} \frac{A \cdot s}{V} = \underline{100 \ s} \ .$$

Bei der graphischen Methode kommt die Gleichung

$$U_{\tau 2} = \frac{1}{e} \cdot U_{(t=0)} = 0.3679 \cdot 10V = \underline{3.679 \text{ V}}$$

zur Anwendung.

Durch Einzeichnen einer waagerechten Geraden bei $U_{\tau 2}$ =3,679 V ergibt ist ein Schnittpunkt mit der Regressionskurve. Der x-Wert diese Punktes ist die Zeitkonstante τ_2 =109 s.

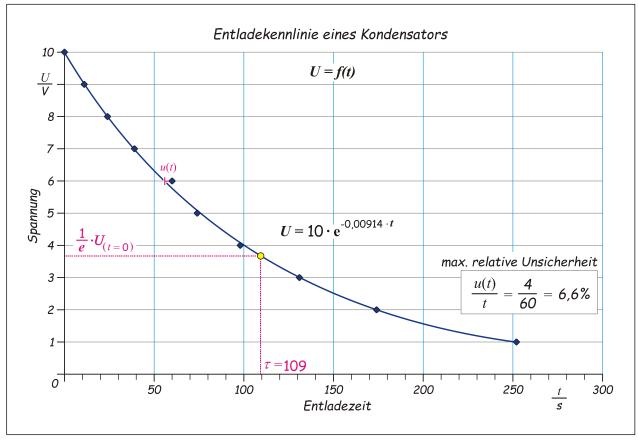


Bild 1-4e: Graphische Bestimmung der Zeitkonstanten und der max. relativen Messunsicherheit

1.4.4 Fehlerrechnung

Da es sich bei diesem Versuch um reale Bauelemente handelt, die laut Herstellerangaben relative Unsicherheiten aufweisen, kann zu der Diagramm bezogenen auch die Bauelemente bezogene Fehlerbetrachtung genutzt werden.

a) Bauelemente bezogene Fehlerbetrachtung

Laut Herstellerabgaben hat der Widerstand eine relative Unsicherheit $u(R)/R=5\,\%$ und der Kondensator $u(C)/C=1\,\%$. So ist:

$$\frac{u(\tau_1)}{\tau_1} = \left| \frac{u(R)}{R} \right| + \left| \frac{u(C)}{C} \right| = 5 \% + 1 \% = \underline{6 \%} \quad \text{und} \quad u(\tau_1) = \tau_1 \cdot \frac{u(\tau_1)}{\tau_1} = \underline{6 \text{ s}}.$$

b) Diagramm bezogene Fehlerbetrachtung

Bei dieser Fehlerbetrachtung (*Bild 1-4d*) wird nur die Zeitmessung betrachtet. Die Messunsicherheit der Spannung kann hier vernachlässigt werden, weil die Spannung der vorgegebene Wert und die Zeit die Messgröße ist. So schreibt man:

$$\frac{u(\tau_2)}{\tau_2} = \left| \frac{u(t)}{t} \right| = \underline{6.6 \%} \quad \text{und} \quad u(\tau_2) = \tau_2 \cdot \frac{u(\tau_2)}{\tau_2} = \underline{7 \text{ s}}.$$

1.4.5 Ergebnisdarstellung und Diskussion

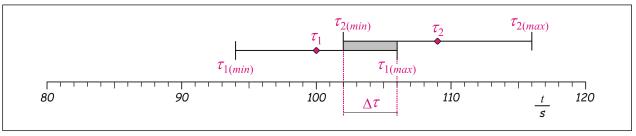
Die Ergebnisdarstellung wird als tabellarischer Methodenvergleich durchgeführt. Dabei werden die Ergebnisse der einzelnen Methoden mit ihren Abweichungen gegenübergestellt.

Bauelemente bezogenes Ergebnis

$$\tau_1 = (100 \pm 6) \text{ s}$$

Diagramm bezogenes Ergebnis

$$\tau_2 = (109 \pm 7) \text{ s}$$


Die Werte der Zeitkonstanten werden ohne Nachkommastellen angegeben. Eine Ausführliche Darstellung der Grenzen ergibt:

$$\tau_{1(min)} = 94 \text{ s}$$

$$\tau_{2(min)} = 102 \text{ s}$$

$$\tau_{1(max)} = \underline{106} \, \mathrm{s}$$

$$\tau_{2(max)} = \underline{116}\,\mathrm{s}$$

Bild 1-4f: Eindimensionale Darstellung von τ

Durch die eindimensionale Darstellung (**Bild 1-4f**) der beiden Zeitkonstanten τ_1 und τ_2 mit ihren Grenzen wird ein Überlappungsbereich von $\Delta \tau = 4$ s angezeigt. Die wahre Zeitkonstante befindet sich mit größter die Wahrscheinlichkeit in dem Bereich zwischen (102 ... 106) s.

1.5. Bestimmung der Funktionsgleichung einer doppellogarithmischen Darstellung

Im folgendem Versuchsbeispiel wird die Bestrahlungsstärke $\it E$ einer Lichtquelle zu ihrem Abstand $\it a$ graphisch dargestellt und ausgewertet. Dazu wird mit Hilfe einer Thermosäule die Lichtintensität in variierenden Abständen gemessen.

- Die Thermosäule gibt einen zur Bestrahlungsstärke proportionalen Spannungswert U aus. Berechnen Sie daraus die Bestrahlungsstärke der Lichtquelle $[E] = W \cdot m^{-2}$ und stellen Sie den funktionalen Zusammenhang E = f(a) in je einem Diagramm linear und doppelt-logarithmisch graphisch dar.
- Bestimmen Sie die Funktionsgleichung mit Hilfe des Anstieges und dem Schnittpunkt des Graphen bei x=0.

1.5.1 Graphische Darstellung

Um die Bestrahlungsstärke E berechnen zu können, wird folgende Bestimmungsgleichung gegeben:

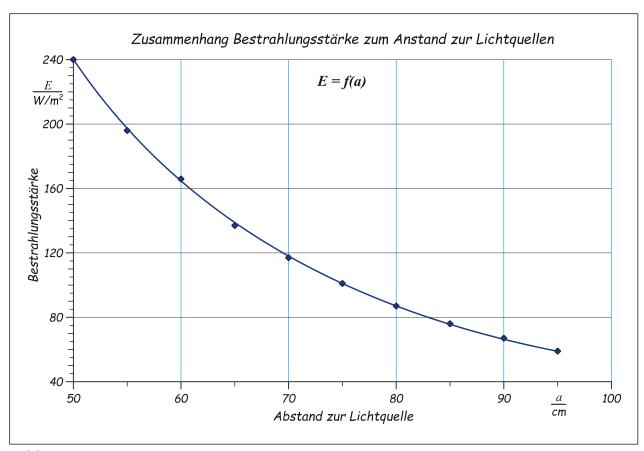
$$E = \frac{U}{\varepsilon_{Th} \cdot A} = \frac{18,87 \text{ mV}}{0,16 \text{ mV/mW} \cdot \frac{1}{4}\pi \cdot (0,025)^2 \text{ m}^2} = \underline{240 \text{ W/m}^2}.$$

Dabei ist die Spannung U der ausgegebene Wert der Thermosäule (Messwert). Die Empfindlichkeit der Thermosäule (ε =0,16 mV/mW) und der Durchmesser (d=25 mm) dieser werden von Hersteller bzw. bautechnisch vorgegeben.

In eine Wertetabelle (**Tabelle 1-5**) werden alle relevanten Werte, ob nun für die lineare oder für die doppellogarithmische Darstellung eingetragen. Laut der Funktion E = f(a) sind die Werte der y-Achse die Bestrahlungsstärke E und die der x-Achse der Abstand a.

	<i>x</i> -Werte		<i>y</i> -Werte
n	(a)	U	E
	cm	mV	W/m ²
1	50	18,87	240
2	55	15,38	196
3	60	12,88	164
4	65	10,79	137
5	70	9,20	117
6	75	7,97	101
7	80	6,85	87
8	85	5,95	76
9	90	5,26	67
10	95	4,66	59

Tabelle 1-5: Wertetabelle


Durch einen Vergleich beider Diagramme (\emph{Bild} **1-5a** und \emph{Bild} **1-5b**) kann festgestellt werden, dass aus der Regressionskurve eine Regressionsgrade geworden ist. Dabei ist diesmal die x- und die y-Achse logarithmisch.

Die allgemeine mathematische Form der Regressionskurve ist eine Potenzfunktion und lautet:

$$y = a \cdot x^b \ .$$

Für die Bestimmung der Funktionsgleichung muss zum einen der Exponent b und der Durchgang der Funktion bei x=1 ermittelt werden.

Da der Abstand das Formelzeichen (a) hat, ist darauf zu achten, dass das a des Durchganges nicht verwechselt wird.

Bild 1-5a: Lineares Diagramm mit Messpunkten und Regressionskurve

a) Graphische Bestimmung des Anstieges

Da die Funktionsgleichung im Zusammenhang mit dem **Diagramm 1-5b** und seinen dazugehörigen Achsen betrachtet wird, kann auf die Einheiten verzichtet werden. Allgemein ist der Anstieg wie folgt definiert:

$$b = \frac{\ln y_2 - \ln y_1}{\ln x_2 - \ln x_1}$$

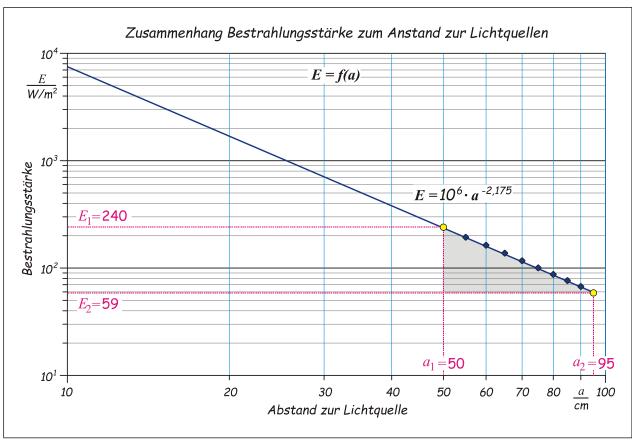
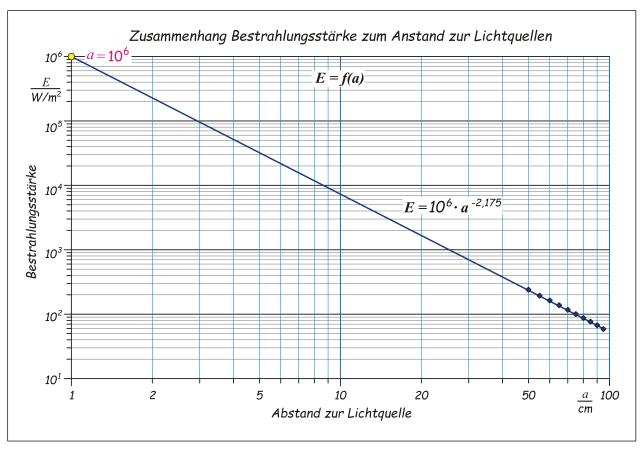



Bild 1-5b: Doppellogarithmisches Diagramm mit Messpunkten, Regressionsgrade und Anstiegsdreieck

Bild 1-5c: Doppellogarithmisches Diagramm mit Messpunkten, Regressionsgrade und Bestimmung des Durchganges der Funktion bei (a)=1

Bezogen auf das Beispiel ist der Exponent

$$b = \frac{\ln E_2 - \ln E_1}{\ln(a_2) - \ln(a_1)} = \frac{\ln(59) - \ln(240)}{\ln(95) - \ln(50)} = \frac{-2.175}{...}$$

b) Graphische Bestimmung des Durchganges der Funktion bei x=1

Aus dem Diagramm (**Bild 5c**) ist zu entnehmen, dass die Beleuchtungsstärkte beim Abstand von (a)=1 cm einen Wert von $E=10^6$ W/m² hat. Somit ist der Faktor $a=10^6$.

Die Funktionsgleichung kann in folgender Form angegeben werden:

$$E = 10^6 \cdot (a)^{-2,175}$$

1.6. Gewichteter Mittelwert

In dem Versuch wird das Direktionsmoment D auf fünf unterschiedliche Arten bestimmt. Da jeder dieser Direktionsmomente auch unterschiedliche Abweichungen hat, wird nicht der Mittelwert, sondern das gewichtete Mittel berechnet.

1.6.1 Gegebene Werte

Als Grundlage für die Berechnung des gewichten Mittelwertes dienen die zuvor ermittelten Werte der Direktionsmomente mit ihren absoluten Abweichungen.

$$D_1 = (21,49 \pm 2,25) \times 10^{-3} \text{ N} \cdot \text{m}$$

 $D_2 = (19,43 \pm 3,45) \times 10^{-3} \text{ N} \cdot \text{m}$
 $D_3 = (21,96 \pm 0,60) \times 10^{-3} \text{ N} \cdot \text{m}$
 $D_4 = (20,63 \pm 1,86) \times 10^{-3} \text{ N} \cdot \text{m}$
 $D_5 = (22,07 \pm 3,53) \times 10^{-3} \text{ N} \cdot \text{m}$

1.6.2 Theoretische Grundlage

Die Bestimmungsgleichung des Direktionsmomentes (nach **Punkt 4.4** Einführung in das Physikalische **Praktikum**) lautet:

$$\overline{\overline{D}} = \frac{\sum_{i=1}^{n} (g_i \cdot D_i)}{\sum_{i=1}^{n} g_i}$$

Die Gleichung der Unsicherheit des Direktionsmomentes ist

$$u(\overline{\overline{D}}) = \sqrt{\frac{\sum_{i=1}^{n} g_i \cdot (D_i - \overline{\overline{D}})^2}{(n-1)\sum_{i=1}^{n} g_i}}$$

1.6.3 Tabellarische Berechnung

Eine praktische Möglichkeit das gewichtete Mittel des Direktionsmomentes zu bestimmen, ist die Berechnungen in Tabellenform durchzuführen (*Tabelle 1-6*).

Die ersten drei Spalten werden die gegebenen Werte eingetragen wie Durchnummerierung der Einzelwerte (n), der Wert (D_i) und die Unsicherheit (u(D)). Die 4. Spalte enthält den quadrierten Kehrwert der Unsicherheit (g_i) . In der folgenden Spalte wird das Produkt aus g_i und D_i gebildet. In der untersten Zeile stehen die Summen der Spalten 4, 5, und 7. Das gewichtete Mittel \overline{D} ist eine Division der Summen von Spalte 5 und 4. In der Spalte 6 wird die quadrierte Differenz aus D_i und \overline{D} eingetragen. In der letzten Spalte wird das Produkt aus g_i und dem Ergebnis aus Spalte 6 gebildet.

1	2	3	4	5	6	7
n	D_i	u(D)	g_i			
			$g_i = \frac{1}{\left(u(D_i)\right)^2}$	$g_i\cdot D_i$	$\left(D_i-\overline{\overline{D}}\right)^2$	$g_i\cdot \left(D_i-\overline{\overline{D}}\right)^2$
	N∙m	N∙m	(N⋅m)-2	(N·m)-1	(N·m) ²	
	× 10-3	× 10-3	× 10 ⁶	× 10 ³	× 10-6	
1	21,49	2,25	0,198	4,262	0,074	0,015
2	19,43	3,45	0,084	1,634	5,423	0,456
3	21,96	0,60	2,800	61,492	0,039	0,109
4	20,63	1,86	0,289	5,963	1,283	0,371
5	22,07	3,53	0,080	1,771	0,094	0,008
		Summe:	3,452	75,123		0,580

Tabelle 6-1: Alle relevanten Werte für die Bildung des gewichteten Mittels

Das gewichtete Mittel ist also:

$$\overline{\overline{D}} = \frac{\sum \text{Spalte 5}}{\sum \text{Spalte 4}} = \frac{75,123 \cdot 10^3 \, (\text{N} \cdot \text{m})^{-1}}{3,452 \cdot 10^6 \, (\text{N} \cdot \text{m})^{-2}} = \underline{21,763 \cdot 10^{-3} \, \text{N} \cdot \text{m}}$$

$$u(\overline{\overline{D}}) = \sqrt{\frac{\sum \text{Spalte 7}}{(n-1) \cdot \sum \text{Spalte 4}}} = \sqrt{\frac{0,580}{4 \cdot 3,452 \cdot 10^6 \text{ (N} \cdot \text{m})^{-2}}} = \underline{0,205 \cdot 10^{-3} \text{ Nm}}$$

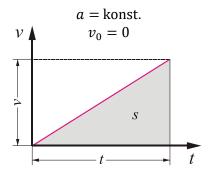
1.6.4 Ergebnisdarstellung

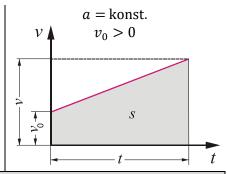
Für die Darstellung des Ergebnisses wird im Physikalischen Praktikum folgende Schreibweise angewendet:

$$\overline{\overline{D}} = (21,76 \pm 0,21) \cdot 10^{-3} \,\text{N} \cdot \text{m}$$


Die relative Abweichung ist:

$$\frac{u(\overline{\overline{D}})}{\overline{\overline{D}}} = \frac{0.21 \cdot 10^{-3} \text{ N} \cdot \text{m}}{21.76 \cdot 10^{-3} \text{ N} \cdot \text{m}} = \underline{0.97\%}.$$


2. Bewegungsgesetze


2.1 Kinematik - Geradlinige Bewegung

Gleichförmige Bewegung

Gleichmäßig beschleunigte bzw. verzögerte Bewegung

nach dem Weg s

$$s_0 = \text{konst.}$$

$$s = v \cdot t + s_0$$

$$s_0 = 0$$

$$s = \frac{1}{2}v \cdot t$$

$$s = \frac{1}{2}a \cdot t^2$$

$$s = \frac{v^2}{2a}$$

$$s_0 \neq 0$$

$$s = \frac{1}{2}(v + v_0) \cdot t$$

$$s = \frac{1}{2}a \cdot t^2 + v_0 \cdot t + s_0$$

nach der Geschwindigkeit v

$$v = \text{konst.}$$

$$v = a \cdot t$$

$$v = \sqrt{2a \cdot s}$$

$$v = \frac{2s}{t}$$

$$v = a \cdot t + v_0$$

$$v = \sqrt{2a \cdot s + v_0^2}$$

nach der Beschleunigung a

$$a = 0$$

 $v = \frac{s}{t}$

$$a = \frac{v}{t}$$

$$a = \frac{v^2}{2s}$$

$$a = \frac{2s}{t^2}$$

$$a = \frac{v - v_0}{t}$$

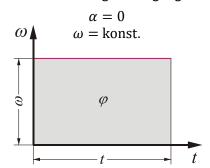
$$a = \frac{v^2 - {v_0}^2}{2s}$$

nach der Zeit t

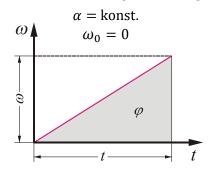
$$t = \frac{s}{v}$$

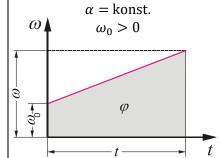
$$t=\frac{2s}{v}$$

$$t = \frac{v}{a}$$


$$t = \sqrt{\frac{2s}{a}}$$

$$t = \frac{2s}{v + v_0}$$


$$t = \frac{v - v_0}{a}$$


2.2 Kinematik - Drehbewegung um eine feste Achse

Gleichförmige Bewegung

Gleichmäßig beschleunigte bzw. verzögerte Bewegung

nach dem Weg ϕ

$$\varphi_0 = \text{konst.}$$

$$\varphi = \omega \cdot t + \varphi_0$$

$$\varphi_0 = 0$$

$$\varphi = \frac{1}{2}\omega \cdot t$$

$$\varphi = \frac{1}{2}\alpha \cdot t^2$$

$$\varphi = \frac{\omega^2}{2\alpha}$$

$$\varphi_0 \neq 0$$

$$\varphi = \frac{1}{2}(\omega + \omega_0) \cdot t$$

$$\varphi = \frac{1}{2}\alpha \cdot t^2 + \omega_0 \cdot t + \varphi_0$$

nach der Geschwindigkeit ω

$$\omega = \text{konst.}$$

$$\omega = \alpha \cdot t$$

$$\omega = \sqrt{2\alpha \cdot \varphi}$$

$$\omega = \frac{2\varphi}{t}$$

$$\omega = \alpha \cdot t + \omega_0$$

$$\omega = \sqrt{2\alpha \cdot \varphi + {\omega_0}^2}$$

nach der Beschleunigung α

$$\alpha = 0$$

 $\omega = \frac{\varphi}{t}$

$$\alpha = \frac{\alpha}{t}$$

$$\alpha = \frac{\omega^2}{2\omega}$$

$$\alpha = \frac{2\alpha}{t^2}$$

$$\alpha = \frac{\omega - \omega_0}{t}$$

$$\alpha = \frac{\omega^2 - {\omega_0}^2}{2\omega}$$

nach der Zeit t

$$t = \frac{\varphi}{\omega}$$

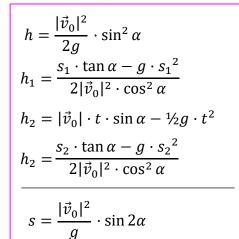
$$t = \frac{2\varphi}{\omega}$$

$$t = \frac{\omega}{\alpha}$$

$$t = \sqrt{\frac{2\varphi}{\alpha}}$$

$$t = \frac{2\varphi}{\omega + \omega_0}$$

$$t = \frac{\omega - \omega_0}{\alpha}$$


Beziehung zwischen Rotation und geradliniger Bewegung

$$\omega = \frac{v}{r}$$

$$\alpha = \frac{a}{r}$$

2.3 Wurf, Freier Fall

schräger Wurf

$$v_y = |\vec{v}_0| \cdot \sin \alpha - g \cdot t$$

$$v = \sqrt{|\vec{v}_0|^2 - 2g \cdot h}$$

$$v = \sqrt{|\vec{v}_0|^2 + g^2 \cdot t^2}$$

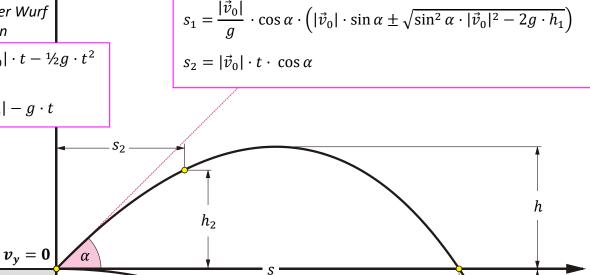
$$t_x = \frac{2|\vec{v}_0|^2}{g} \cdot \sin \alpha$$

$$t_y = \frac{|\vec{v}_0|^2}{g} \cdot \sin \alpha$$

x(s)

 h_1

 $v_x = |\vec{v}_0| \cdot \cos \alpha$


senkrechter Wurf nach unten

$$h = |\vec{v}_0| \cdot t - \frac{1}{2}g \cdot t^2$$

$$s = 0$$

$$v_y = |\vec{v}_0| - g \cdot t$$

y(h)

freier Fall

$$h = \frac{1}{2}g \cdot t^{2}$$

$$s = 0$$

$$v_{v} = g \cdot t$$

senkrechter Wurf nach unten

$$h = -|\vec{v}_0| \cdot t - \frac{1}{2}g \cdot t^2$$

$$s = 0$$

$$v_y = -|\vec{v}_0| - g \cdot t$$

waagerechter Wurf mit Anstieg 0°

$$h = \frac{1}{2}g \cdot t^{2}$$

$$h = \frac{1}{2}g \cdot \frac{s^{2}}{|\vec{v}_{0}|^{2}}$$

$$s = |\vec{v}_{0}| \cdot t$$

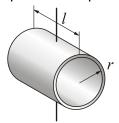
$$s = |\vec{v}_{0}| \cdot \sqrt{2h \cdot g^{-1}}$$

$$v_{x} = |\vec{v}_{0}|$$

$$v = \sqrt{|\vec{v}_{0}|^{2} + g^{2} \cdot t^{2}}$$

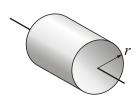
 s_1

3. Massenträgheitsmomente homogener Körper bezüglich verschiedener Drehachsen

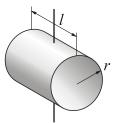

Zylindermantel

Drehachse = Körperachse

$$J=m\cdot r^2$$

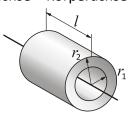

Drehachse durch Mittelpunkt ⊥ Körperachse

$$I = \frac{1}{2}m \cdot r^2 + \frac{1}{12}m \cdot l^2$$


Massiver Zylinder

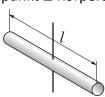
Drehachse = Körperachse

$$J=m\cdot r^2$$

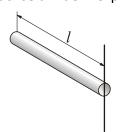

Drehachse durch Mittelpunkt ⊥ Körperachse

$$J = \frac{1}{2}m \cdot r^2 + \frac{1}{12}m \cdot l^2$$

Hohlzylinder


Drehachse = Körperachse

$$J = \frac{1}{2}m \cdot (r_1^2 + r_2^2)$$


Dünner Stab

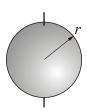
Drehachse durch Mittelpunkt ⊥ Körperachse

$$J = \frac{1}{12}m \cdot l^2$$

Drehachse am der Körperachse

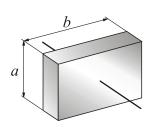
$$J = \frac{1}{3}m \cdot l^2$$

Dünne Kugelschale


Drehachse durch Mittelpunkt

$$J = \frac{2}{3}m \cdot r^2$$

Massive Kugel


Drehachse durch Mittelpunkt

$$J = \frac{2}{5}m \cdot r^2$$

Massiver Quader

Drehachse durch Mittelpunkt

$$J = \frac{1}{12}m \cdot (a^2 + b^2)$$

4. Tabellen, Formelzeichen und Naturkonstanten

4.1 Vorsätze zum Bilden eines Vielfachen bzw. Teilen von Einheiten

Vorsatz	Vorsatz- zeichen	Faktor
Еха	E	1018
Peta	P	1015
Tera	Т	1012
Giga	G	109
Меда	М	106
Kilo	k	103
Hekto	h	102
Deka	da	101

Vorsatz	Vorsatz- zeichen	Faktor
Dezi	d	10-1
Zenti	С	10-2
Milli	m	10-3
Mikro	μ	10-6
Nano	n	10-9
Piko	p	10-12
Femto	f	10-15
Atto	a	10-18

4.2 Formelzeichen und Einheiten

a) Raum und Zeit

Physikalische Größen	Formel- zeichen	Einheiten		Beziehung zwischen den Einheiten
Länge Weg Höhe Radius	l s h r	Meter	m	Basiseinheit
Fläche	A	Quadratmeter Hektar	m² ha	1 ha = 10 ⁴ m
Volumen	V	Kubikmeter Liter	m³ l	1 l = 10·3 m ³
Ebener Winkel, Drehwinkel	α, β, γ φ	Rad Grad Minute Sekunde	rad ° , "	1 rad = 1 m/1 m 1° = $(\pi/180)$ rad = 60' 1' = $(\pi/10800)$ rad = 60" 1" = $(\pi/648000)$ rad
Zeit Periode (Umlaufzeit, Schwingungs- dauer)	t T	Sekunde Minute Stunde Tag	s min h d	Basiseinheit 1 min = 60 s 1 h = 3600 s 1 d = 86400 s
Frequenz	f	Hertz	Hz	$1 \text{ Hz} = 1 \text{ s}^{-1}$
Dämpfungs- konstante	δ	1 durch Sekunde	S-1	

b) Mechanik

Physikalische Größen	Formel- zeichen	Einheite	en	Beziehung zwischen den Einheiten
Geschwindigkeit	v	Meter pro Sekunde	m·s ⁻¹	$1 \text{ m/s} = 1 \text{ m} \cdot \text{s}^{-1}$
Beschleunigung	а	Meter pro Quadratsekunde	m·s⁻²	$1 \text{ m/s}^2 = 1 \text{ m} \cdot \text{s}^{-2}$
Winkel- Geschwindigkeit	ω	Radiant pro Sekunde	rad∙s ⁻¹	$1 \text{ rad/s} = 1 \cdot s^{-1}$
Winkel- Beschleunigung	α	Radiant pro Quadratsekunde	rad·s⁻²	$1 \operatorname{rad/s^2} = 1 \cdot s^{-2}$
Masse	m	Kilogramm Tonne Atomare Masseeinheit	kg t u	Basiseinheit $1\ t = 10^3\ kg$ $1\ u = 1,66052\cdot 10^{-27}\ kg$
Dichte	Q	Kilogramm pro Kubikmeter	kg·m⁻³	$1 \text{ kg/m}^3 = 1 \text{ kg·m}^{-3}$
Kraft	F	Newton	N	$1 \text{ N} = 1 \text{ kg} \cdot \text{m} \cdot \text{s}^{-2}$
Druck	p	Pascal Bar Torr	Pa Bar Torr	$1 \text{ Pa} = 1 \text{ N} \cdot \text{m}^{-2} = 1 \text{ kg} \cdot \text{m}^{-1} \cdot \text{s}^{-2}$
Arbeit	W	Joule	J	$1 J = 1 N \cdot m = 1 kg \cdot m^2 \cdot s^{-2}$
Energie	Е	Wattsekunde Elektronenvolt	Ws eV	1 Ws = 1 J 1 eV = $1,602 \cdot 10^{-19}$ J
Leistung	P	Joule pro Sekunde Watt	J·s ⁻¹ W	$1 \text{ J/s} = 1 \text{ J} \cdot \text{s}^{-1} = 1 \text{ kg} \cdot \text{m}^{2} \cdot \text{s}^{-3}$ $1 \text{ W} = 1 \text{ J} \cdot \text{s}^{-1}$
Kraftstoß	S			
Impuls	P	Newtonsekunde	N∙s	$1 \text{ N·s} = 1 \text{ kg·m·s}^{-1}$
Drehmoment	М	Newtonmeter	N∙m	$1 \text{ N·m} = 1 \text{ kg·m}^2 \cdot \text{s}^{-2}$
Trägheits- moment	J	Kilogramm mal Quadratmeter	kg·m²	
Elastizität	Е	Pascal	Pa	1 Pa = 1 N⋅m ⁻²
Torsion	G	Pascal	Pa	1 Pa = 1 N·m⁻²
Dynamische Viskosität	η	Pascal mal Sekunde	Pa∙s	$1 \text{ Pa·s} = 1 \text{ N·s·m}^{-2}$
Kinematische Viskosität	ν	Quadratmeter pro Sekunde	m²⋅s-1	

c) Thermodynamik

Physikalische Größen	Formel- zeichen	Einheiten		Beziehung zwischen den Einheiten
Temperatur	T	Kelvin	K	Basiseinheit
	θ	Grad Celsius	°C	0 °C = 273,15 K
Wärme	Q	Joule	J	$1 J = 1 N \cdot m = 1 kg \cdot m^2 \cdot s^{-2}$
Spezifische Wärmekapazität	С	Joule pro Kilo- gramm mal Kelvin	J·kg ⁻¹ ·K ⁻¹	1 J/kg·K = 1 J·kg·1·K·1

d) Elektrizität und Magnetismus

Physikalische Größen	Formel- zeichen	Einheiten		Beziehung zwischen den Einheiten	
Elektrische Stromstärke	I	Ampere	A	Basiseinheit	
Elektrische Ladung	Q	Coulomb	С	1 C = 1 A⋅s	
Elektrische Arbeit	W	Joule	J	$1 J = 1 V \cdot A \cdot s$ $1 J = 1 W \cdot s$ $1 J = 1 N \cdot m$	
Elektrische Leistung	P	Watt	W	$ 1 W = 1 V \cdot A 1 W = 1 J \cdot s^{-1} $	
Elektrische Spannung	U	Volt	V	$ 1 V = 1 W \cdot A^{-1} 1 V = 1 kg \cdot m^2 \cdot s^{-3} \cdot A^{-1} $	
Elektrische Feldstärke	Е	Volt pro Meter	V·m⁻¹	$1 \text{ V/m} = 1 \text{ W} \cdot \text{A}^{-1} \cdot \text{m}^{-1}$	
Elektrische Kapazität	С	Farad	F	$ 1 F = 1 C \cdot V^{-1} 1 F = 1 A \cdot s \cdot V^{-1} $	
Elektrischer Widerstand	R	Ohm	Ω	$1 \Omega = 1 \text{ V} \cdot \text{A}^{-1}$	
Spezifischer elektrischer Widerstand	Q	Ohmmeter	Ω·m	$\begin{array}{l} 1~\Omega\cdot m=1~m^3\cdot kg\cdot s^{-3}\cdot A^{-2}\\ 1~\Omega\cdot m=10^6~\Omega\cdot mm^2\cdot m^{-1} \end{array}$	
Spezifische Leitfähigkeit	κ	Ohmmeter	Ω-1·m-1	$1 \Omega^{-1} \cdot m^{-1} = 1 s^{3} \cdot A^{2} \cdot m^{-3} \cdot kg^{-1}$ $1 S \cdot m^{-1} = 1 m \cdot \Omega^{-1} \cdot mm^{-2}$	
Magnetischer Fluss	Ф	Weber	Wb	$ 1 Wb = 1 V \cdot s $ $ 1 Wb = 1 T \cdot m^2 $	
Magnetische Flussdichte	В	Tesla	Т	$ 1 T = 1 V \cdot s \cdot m^{-2} 1 T = 1 Wb \cdot m^{-2} $	
Induktivität	L	Henry	Н	1 H = 1 V·s·A·1 1 H = 1 Wb·A·1	

e) Physikalische Chemie

Physikalische Größen	Formel- zeichen	Einheiten		Beziehung zwischen den Einheiten
Stoffmenge (Objektmenge)	n	Mol	mol	Basiseinheit
Molare Masse	М	Kilogramm pro Mol	kg·mol⁻¹	1 kg/mol = 1 kg·mol ⁻¹
Molare Volumen	V_{M}	Kubikmeter pro Mol	m³∙mol ⁻¹	$1 \text{ m}^3/\text{mol} = 1 \text{ m}^3 \cdot \text{mol}^{-1}$

4.3 Naturkonstanten

Elementarladung	e	1,60219 ·10 ⁻¹⁹ C
Ruhemasse des Elektrons	m_{0e}	0,91095 ⋅10 ⁻³⁰ kg
Ruhemasse des Protons	m_{0p}	1,67265 ·10-27 kg
Ruhemasse des Neutrons	m_{0n}	1,67495 ⋅10- ²⁷ kg
Spezifische Ladung eines Elektrons	$e \cdot m_{0e}^{-1}$	1,75880 ·10¹¹ C·kg⁻¹
Atomare Masseeinheit	и	1,66057 ⋅10- ²⁷ kg
Planck'sches Wirkungsquantum	h	6,62618·10 ⁻³⁴ J·s
Gravitationskonstante	γ	$(6,670 \pm 0,007) \cdot 10^{-11} \mathrm{N \cdot m^2 \cdot kg^{-2}}$
Lichtgeschwindigkeit im Vakuum	С	2,99792·10 ⁸ m·s ⁻¹
Elektrische Feldkonstante	ε_0	8,85419·10 ⁻¹² A·s·V ⁻¹ ·m ⁻¹
Magnetische Feldkonstante	μ_0	1,25664·10 ⁻⁶ V·s·A ⁻¹ ·m ⁻¹

4.4 Umrechnung von Einheiten

a) Längen, Flächen, Volumenmaß

Längenmaß					
1000 km	$= 10^6 \text{m}$				
1 km	$= 10^3 \text{m}$				
1 m	$= 10^{0} \text{m}$				
1 dm	$= 10^{-1} \text{m}$				
1 cm	$= 10^{-2} \text{m}$				
1 mm	$= 10^{-3} \text{m}$				
1 μm	$= 10^{-6} \mathrm{m}$				
1 nm	$= 10^{-9} \mathrm{m}$				

	Flächenmaß						
1 km ²	$= 10^6 \text{m}^2$	$10^3 \mathrm{m} \times 10^3 \mathrm{m}$					
1 ha	$= 10^4 \text{m}^2$	$10^2 \mathrm{m} \times 10^2 \mathrm{m}$					
1 ar	$= 10^2 \text{m}^2$	$10^{1}\mathrm{m} \times 10^{1}\mathrm{m}$					
1 m ²	$= 10^0 \text{m}^2$	$10^{0} \mathrm{m} \times 10^{0} \mathrm{m}$					
1 dm ²	$= 10^{-2} \text{m}^2$	$10^{-1} \mathrm{m} \times 10^{-1} \mathrm{m}$					
1 cm ²	$= 10^{-4} \text{ m}^2$	$10^{-2} \text{ m} \times 10^{-2} \text{ m}$					
1 mm ²	$= 10^{-6} \text{m}^2$	$10^{-3} \text{ m} \times 10^{-3} \text{ m}$					
$1 \mu m^2$	$= 10^{-12} \mathrm{m}^2$	$10^{-6} \mathrm{m} \times 10^{-6} \mathrm{m}$					

		Volumenm	aß
1 m ³	$= 10^{0} \mathrm{m}^{3}$		$10^{0} \mathrm{m} \times 10^{0} \mathrm{m} \times 10^{0} \mathrm{m}$
1 dm ³	$= 10^{-3} \text{m}^3$	= 1 l	$10^{-1} \mathrm{m} \times 10^{-1} \mathrm{m} \times 10^{-1} \mathrm{m}$
1 cm ³	$= 10^{-6} \text{m}^3$	= 1 ml	$10^{-2} \text{ m} \times 10^{-2} \text{ m} \times 10^{-2} \text{ m}$
1 mm ³	$= 10^{-9} \mathrm{m}^3$	= 1 μl	$10^{-3} \text{ m} \times 10^{-3} \text{ m} \times 10^{-3} \text{ m}$
1 μm ³	$= 10^{-18} \text{m}^3$		$10^{-6} \mathrm{m} \times 10^{-6} \mathrm{m} \times 10^{-6} \mathrm{m}$

b) Druck

	Pa, N/m²	N/mm ²	bar	Torr	kp∙cm²
$1 \text{ Pa} = 1 \text{ N/m}^2$	1	10-6	10-5	7,5·10-3	1,02·10-5
1 N/mm ²	106	1	101	7,5·10 ³	1,02·10 ¹
1 bar	105	10-1	1	7,5·10 ²	1,02
1 Torr	1,33·10 ²	1,33·10-4	1,33·10-3	1	1,36·10 ⁻³
$1 \text{ kp} \cdot \text{cm}^2 = 1 \text{ at}$	9,81·104	9,81·10-2	9,81·10-1	7,36.102	1

c) Arbeit

	J	kW∙h	kp∙m	kcal	PS∙h
1 J	1	0,278·10-6	0,102	0,239·10-3	0,378·10-6
1 kW⋅h	3,6·106	1	3,67·105	8,6·10 ²	1,36
1 kp⋅m	9,81	2,72·10-6	1	2,35·10-3	3,70·10-6
1 kcal	4,18·10 ³	1,16·10 ⁻³	4,27.102	1	1,58·10 ⁻³
1 PS·h	2,65·106	0,736	0,27·106	6,32·10 ²	1

d) Leistung

	W	kW	kp·m/s	kcal/h	PS
1 W	1	10-3	0,102	0,86	1,36·10-3
1 kW	103	1	1,02·102	8,6·10²	1,36
1 kp·m/s	9,81	9,81·10-3	1	8,43	13,3·10 ⁻³
1 kcal/h	1,16	1,16·10 ⁻³	0,119	1	1,58·10 ⁻³
1 PS	7,36.102	0,736	75	6,32·10 ²	1

4.5. Stoffeigenschaften

a) Eigenschaften von festen Stoffen

7 8			Schmelz-		Siede-
	Dichte	spez. Wärme-	temperatur	spez. Schmelz-	temperatur
Stoffe	<i>Q</i> / g·cm ⁻³	kapazität	ϑ_{S} /°C	wärme	$artheta_V$ /°C
	(bei 20°C)	c/kJ⋅kg-1⋅K-1	(bei	$q_S/\mathrm{kJ}\cdot\mathrm{kg}^{\scriptscriptstyle{-1}}$	(bei
			101,3kPa)		101,3kPa)
Aluminium	2,71	0,888	660	397	2450
Blei	11,37	0,126	327	26	1755
Bronze (25% Sn)	8,66	0,394	900		
Gold	19,32	0,130	1063	65	2677
Kupfer	8,95	0,395	1083	176	2595
Messing (CuZn40)	8,52	0,377	≈ 900		
Quecksilber	13,55	0,140	-38,83	11,3	357
Silber	10,50	0,234	961	104	2180
Stahl (1% C)	7,80	≈ 0,47	≈ 1500		
Wolfram	19,30	134	3390	193	5930
Zink	7,13	0,391	419	100	907
Zinn	7,28	0,220	232	59	2430

b) Eigenschaften von Flüssigkeiten

Stoffe	Dichte	spez. Wärme- kapazität c/kJ·kg ⁻¹ ·K ⁻¹	Schmelz- temperatur ϑ _S /°C (bei 101,3kPa)	spez. Schmelz- wärme q _S /kJ∙kg ⁻¹	Siede- temperatur ϑ _V /°C (bei 101,3kPa)	spez. Ver- dampfungs- wärme $q_V/\mathrm{kJ\cdot kg^{-1}}$ (bei $101,3\mathrm{kPa}$)
Aceton	0,791	2,10	-95	82	56	520
Ethanol	0,789	2,40	-114	108	78,4	842
Glyzerin	1,260	2,40	18		290	
Methanol	0,792	2,40	-98	69	65	1102
Quecksilber	13,55	0,14	-39	11	357	285
Wasser	0,99823	4,186	0	334	100	2260

c) Eigenschaften von Gasen

Stoffe	Dichte ϱ / kg·m ⁻³ (bei 0°C und 101,3kPa)	spez. Wärme- kapazität bei konst. Volumen c _V /kJ·kg ⁻ ¹·K ⁻ ¹	spez. Wärme- kapazität bei konst. Druck c _p /kJ·kg ⁻ 1·K ⁻¹	Schmelz- temperatur ϑ _S /°C (bei 101,3kPa)	Siede- temperatur ϑ _V /°C (bei 101,3kPa)	spez. Ver- dampfungs- wärme q _V /kJ·kg ⁻¹
Helium	1,78	3,161	5,238	-270	-269	25
Kohlendioxid	1,97	0,754	1,047	-56,7*	-78,5**	574
Luft (trocken)	1,29	0,720	1,009			190
Sauerstoff	1,43	0,653	0,917	-219	-183	213
Stickstoff	1,25	0,745	1,038	-210	-195,8	198
Wasserstoff	0,09	10,130	14,270	-259	-253	455

^{*}bei 490 kPa *sublimitiert

d) Schallgeschwindigkeit (Richtwerte für 20°C und Normaldruck)

Stoff	v / m·s⁻¹	Stoff	v / m·s⁻¹	Stoff	v / m·s ⁻¹
Aluminium	6250	Kupfer	4660	Kohlendioxid	260
Beton	3800	Stahl	5920	Luft bei 0°C	331
Blei	2160	Ziegelmauerwerk	3600	Luft bei 10°C	337
Eis (-4°C)	3250	Benzin	1160	Luft bei 20°C	343
Glas	4000 5500	Wasser bei 4°C	1400	Luft bei 30°C	349
Gummi	150	Wasser bei 15°C	1460	Wasserstoff	1280

e) Elastische Eigenschaften

Werkstoff	Elastizitäts- modul E/Gpa	Torsions- modul G/Gpa	Werkstoff	Elastizitäts- modul E/Gpa	Torsions- modul G/Gpa
Aluminium (geglüht)	6,85	24,5	Messing (CuZn37)	98	42
Bronze (CuSn6 Zn)	110	42	Neusilber (CuNi18 Zn20)	142	55
Kupfer (gewalzt)	123	47	Federstahl	210	80

f) Elektrische Werte (bei 20°C)

Werkstoff	Spez. elektr. Widerstand $\varrho/\Omega\cdot\mathrm{mm^2\cdot m^{-1}}$	Spez. elektr. Leitwert $\kappa/\text{m}\cdot\Omega^{-1}\cdot\text{mm}^{-2}$	Werkstoff	Spez. elektr. Widerstand $\varrho/\Omega\cdot\mathrm{mm^2\cdot m^{-1}}$	Spez. elektr. Leitwert κ/m·Ω ⁻¹ ·mm ⁻²
Aluminium	0,0278	36	Messing (Ms63)	0,071	14
Eisen (rein)	0,10	10	Neusilber	0,369	2,71
Flussstahl	0,13	7,7	Platin	0,111	9
Gold	0,0222	45	Quecksilber	0,941	1,063
Kohle	40	0,025	Silber	0,016	62,5
Konstantan	0,48	2,08	Wolfram	0,059	17
Kupfer (E-Cu)	0,0175	57	Zink	0,061	16,5
Messing (Ms58)	0,059	17	Zinn	0,12	8,3

g) Relative Dielektrizitätskonstanten

Isolierstoff	$arepsilon_r$	Isolierstoff	$arepsilon_r$	Isolierstoff	$arepsilon_r$
Bernstein	2,8	Keramik	100 10000	Porzellan	6
Glas	516	Luft	1,0006	Trafo-Öl	2,5
Glimmer	5 10	Paraffin	2,0	Vakuum	1
Hartpapier	3,5 5	Polystyren	2,6	Wasser	81

h) Dichte von Wasser in Abhängigkeit von der Temperatur θ =(0 ... 100°C)

, - 101100	011 11 433 21 111 7 12				0 III 100 Uj		
ϑ/°С	<i>Q</i> / g·cm ⁻³	ϑ/°С	<i>Q</i> / g⋅cm ⁻³	ϑ/°С	<i>Q</i> / g⋅cm ⁻³	ϑ/°C	<i>Q</i> / g·cm ⁻³
0	0,99984	11	0,99963	22	0,99780	45	0,9902
1	0,99990	12	0,99953	23	0,99756	50	0,9880
2	0,99994	13	0,99941	24	0,99732	55	0,9857
3	0,99996	14	0,99927	25	0,99707	60	0,9832
4	0,99997	15	0,99913	26	0,99681	65	0,9806
5	0,99996	16	0,99897	27	0,99654	70	0,9778
6	0,99994	17	0,99880	28	0,99626	75	0,9749
7	0,99990	18	0,99862	29	0,99597	80	0,9718
8	0,99985	19	0,99843	30	0,99567	85	0,9686
9	0,99978	20	0,99823	35	0,9940	90	0,9653
10	0,99973	21	0,99802	40	0,9922	100	0,9583

i) Längen-Ausdehnungskoeffizient (bei ϑ =0 ... 100°C)

Stoffe	α/10 ⁻⁶ ·K ⁻¹	Stoffe	α/10 ⁻⁶ ·K ⁻¹	Stoffe	α/10 ⁻⁶ ·K ⁻¹
Aluminium	23,8	Kupfer	16,5	Prozellan	4,0
Blei	29,0	Messing	18,5	Quarzglas	0,5
Bronze	17,5	Molybdän	5,2	Silber	19,7
Gold	14,2	Neusilber	18,0	Stahl	12,0
Gusseisen	10,5	Nickel	13,0	Wolfram	4,5
Kadmium	30,0	Nickelstahl	1,5	Zink	30,0
Konstantan	15,2	Platin	9,0	Zinn	23,0

j) Volumen-Ausdehnungskoeffizient

Stoffe	γ/10 ⁻³ ·K ⁻¹	Stoffe	γ/10 ⁻³ ·K ⁻¹	Stoffe	γ/10 ⁻³ ·K ⁻¹
Aceton	1,64	Ethylacetat	1,37	Petroleum	1,0
Ethanol	1,4	Glyzerin	0,5	Terpentinöl	1,0
Benzin	1,0	Methanol	1,49	Wasser	0,18

k) Wärmedurchgangskoeffizient

k) Warmeduringangskoemzient									
	<i>k</i> / W⋅m ⁻² ⋅K ⁻¹								
Stoff		Dicke des Stoffes in mm							
	3	10	20	50	100	120	250	380	510
Eisenbeton				4,3	3,7	3,5	2,4		
Glas	5,8	5,3							
Hartschaum	4,1	2,4	1,5	0,7	0,4				
Holzwand			3,8	2,4	1,8	1,7			
Kalksandstein						3,1	2,2	1,7	1,4
Kiesbeton				4,1	3,6	3,4	2,3		
Ziegelstein						2,9	2,0	1,5	1,3

I) Brechzahlen für den Übergang des Lichts aus Luft in den betreffenden Stoff ($n_{luft} \approx n_{Vak}$) für die gelbe Natriumlinie (λ =589,3 nm)

Stoff	n	Stoff	n	Stoff	n
Diamant	2,417	Glyzerin	1,469	Quarzglas	1,459
Ethanol	1,362	Kronglas leicht	1,515	Steinsalz	1,544
Eis	1,310	Kronglas schwer	1,615	Vakuum	0,99971
Flintglas leicht	1,608	Luft	1,0003	Wasser	1,333
Flintglas schwer	1,754	Polyethylen	1,510	Zimtsäureethylester	1,559

m) Lichtgeschwindigkeiten

			,		
Stoff	<i>c</i> / km⋅s ⁻¹	Stoff	<i>c</i> / km·s ⁻¹	Stoff	<i>c</i> / km·s ⁻¹
Diamant	125·10 ³	Kronglas	200.103	Luft	299,711·10 ³
Flintglas	186·10 ³	Wasser	225·10 ³	Vakuum	299,792·10 ³

n) Strahlungskonstante (bei 20°C)

Oberflächen	c / W·m ⁻² ·K ⁻⁴	Oberflächen	c / W·m ⁻² ·K ⁻⁴	Oberflächen	<i>c</i> / W⋅m ⁻² ⋅K ⁻⁴
Aluminium (poliert)	0,23·10-8	Kupfer (oxidiert)	3,60·10-8	Stahl (poliert)	0,34·10-8
Aluminium (matt)	0,40·10-8	Messing (poliert)	0,28·10-8	Stahl (matt)	5,40·10-8
Kupfer (poliert)	0,28·10-8	Messing (matt)	1,25·10-8	schwarze Fläche	5,67·10-8

