Considerations for the selection and dosing of inhibitors for CaCO₃-scaling in reverse osmosis and nanofiltration plants

Gerd Braun, Christine Kleffner CML Cologne Membrane Lab, Technische Hochschule Köln

Today's agenda

What is the problem?

How do antiscalants work?

How much antiscalant is necessary?

What is the challenge for analytics?

What is the problem?

Membranes 2022, 12(12), 1287; https://doi.org/10.3390/membranes12121287

https://aqua-technik-gmbh.de/produkte-undchemikalien-antiscalants-membranreiniger/

https://complete-water.com/blog/reverse-osmosismembrane-failure-no-flow-high-conductivity

How do antiscalants work?

Scale formation without antiscalants

https://doi.org/10.1016/j.petrol.2019.106380

How do antiscalants work?

https://doi.org/10.1016/j.petrol.2019.106380

The morphology of the scaling layer depends on the AS-dosage.

CS24 20 kV 26 mm BE 563,3 µm 100 µm-100 µm-1

How much antiscalant is necessary?

https://ars.els-cdn.com/content/image/1-s2.0-S0920410516303576-fx1_lrg.jpg

https://www.genesysro.com/sdi-particlecounting-turbidity-jar-test-tests.php

Jar tests are easy to carry out, but are the data obtained reliable?

Investigating the effect of antiscalants with a test plant is more complex, but provides more reliable data.

How does our membrane test plant look like?

Membrane area 2 x 80 cm² Feed-flow rate 1.2 L/h Max. pressure 60 bar

Permeate-flux 30 L/m²/h Permeate-flow rate 480 cm³/h Concentrate-flow rate 240 cm³/h

What are the typical test phases?

1 = Concentration phase

- 2 = Period of pressure increase
- **3** = Period of rapid membrane blocking

What are the typical test phases?

1 = Concentration phase

- 2 = Period of pressure increase
- **3** = Period of rapid membrane blocking

What are the typical test phases?

- 1 = Concentration phase
- 2 = Period of pressure increase
- **3** = Period of rapid membrane blocking

Different test water compostions for the test runs

		RFWC				
Parameter	Unit	0.8	1	1.3	1.5	1.7
Cations						
Na⁺	mg/L	81.8	102.2	132.9	153.3	173.7
Mg ²⁺	mg/L	10.4	13.0	16.9	19.5	22.1
Ca ²⁺	mg/L	74.4	93.0	120.9	139.5	158.1
Anions						
CI	mg/L	96.0	120.0	156.0	180.0	204.0
SO4 ²⁻	mg/L	55.4	69.2	90.0	103.8	117.6
NO ₃ -	mg/L	79.5	99.4	129.2	149.1	169.0
HCO ₃ -	mg/L	180.6	225.8	293.5	338.7	383.9
рН		8.2	8.2	8.2	8.2	8.2
LSI of the feed water		0.85	1.07	1.25	1.58	1.70
Calculated LSI of the concentrate		1.8	2.0	2.2	2.4	2.5

Variation of Ionic Concentrations at different

Relative Feed-Water Concentration ratios (RFWC)

Pressure development vs. time for different PCA-dosing

Pressure development vs. time for different PCA-dosing

There is a risk of overdosing.

Critical PCA-concentration vs. Ca-Concentration in the concentrate

Pressure development vs. time for different PCA-dosing

Membrane SEM-images for increasing PCA-dosage

How can we measure the scaling layer thickness?

XRF can be used to estimate the layer thickness.

Clean Membrane

Scaled Membrane

What happens if we use polycarboxylates?

PAA

AA/EA

Acrylic acid partially neutralized

P- free N- free Acrylic Acid / Ethylacrylate

> P- free N- free

AA/AMPS

Acrylic Acid / Acryl-amido-propyl-sulfonic acid

P- free

Scaling layer morphology depends on AS-dosage and AS-type.

Cologne Membrane Lab

AA/AMPS, RFWC 0.8

Scaling layer morphology depends on AS-dosage and AS-type.

Scaling layer morphology depends on AS-dosage and AS-type.

AA/EA, RFWC 0.8

What is the challenge for the analytics?

- We know that AS work
- However, it is also known that too much AS can promote membrane blockage and unnecessarily pollute the environment

So Charly Calcite asks:

How can the concentration of the effective AS components be measured during the operation of an RO/NF system?

