BRANDENBURG UNIVERSITY of TECHNOLOGY International Symposium Aminophosphonates and Environments





# Photocatalysis of the Aminophosphonate EDTMP

Insights into Kinetics and Degradation Mechanisms of EDTMP via Doped TiO<sub>2</sub> Photocatalysts

Julia Schowarte

## **EDTMP Degradation**





https://doi.org/10.1016/j.jphotochem.2019.112192 https://scholar.google.de/scholar?q=photocatalysis+persistent+chemicals

•

## **EDTMP Degradation**



photochemical
Degradation of EDTMP

 additives H<sub>2</sub>O<sub>2</sub>, Metals...

 few publications on industrial phosphonates



Fig. 2. Publications per year regarding photocatalysis of persistent chemicals.

https://doi.org/10.1016/j.jphotochem.2019.112192 https://scholar.google.de/scholar?q=photocatalysis+persistent+chemicals

## Photocatalysis



- 1. direct: specific target degradation
  - Target needs physical contact to catalyst surface
  - e-/h+ transfer to target is possible
- 2. indirect: ROS attack target
  - More effective for degradation of organic pollutants\*







## **Characterisation of NPs: XRD**



## • **confirmed:** rutile & anatase phase

### Au-presence



Fig. 3. XRD diffractograms obtained for the Au catalyst series.

### 01.10.2024

Photocatalysis of the Aminophosphonate EDTMP

# **Characterisation of NPs: UV-VIS**

- Au: 550 nm peak  $\rightarrow$  purple appearance
- K & Y: increase of absorption

Depends on dopant amount!

Au2/Y2/P25

Au2/Y5/P25

Au2/K2/P25 Au2/K10/P25



K-doped

Fig. 4. UV-Vis spectra obtained for the Au catalysts series.



-Au2/P25

- Au2/K2/P25 -Au2/K5/P25 -Au2/K10/P25

## **Characterisation of NPs: TEM**





- spherical anatase
- angular rutile
- round small gold NPs

Fig. 5. TEM micrographs obtained for the Au catalysts series.

01.10.2024

### 01.10.2024

## Photocatalysis of the Aminophosphonate EDTMP

# Characterisation of NPs: Particle size

Percentage [%]

Percentage [%]

• Y-doping: smallest particles

• Na-doping: biggest particles



Fig. 6. Histograms of particle size distribution for the Au catalysts series.





Fig. 7. o-PO4<sup>3-</sup> Release of pre-screening photocatalysis (100 mg L<sup>-1</sup> EDTMP, pH 3;7;10).

01.10.2024

## Performance of selected NPs





### Tab. 1. $o-PO_4^{3-}$ release and mass balance.

| [%]         | o-PO <sub>4</sub> <sup>3-</sup> release | P gap [%] | C gap [%] | N gap [%] |
|-------------|-----------------------------------------|-----------|-----------|-----------|
| Reference   | 47                                      | 0         | 54        | 21        |
| Au2/Y2/P25  | 88                                      | 0         | 74        | 75        |
| Au2/Y5/P25  | 92                                      | 0         | 92        | 88        |
| Au2/K2/P25  | 79                                      | 15        | 96        | 95        |
| Au2/K10/P25 | 88                                      | 0         | 82        | 87        |
| P25         | 65                                      | 0         | 69        | 45        |

- rapid degradation of EDTMP in 60 min
- doubled o-PO<sub>4</sub><sup>3-</sup> release Au2/Y5/P25

LC-MS Fig. 8. Long-term photocatalysis (100 mg L<sup>-1</sup> EDTMP, pH 7).

### 01.10.2024

### Photocatalysis of the Aminophosphonate EDTMP

## Influence of selected NPs on the kinetics





| Catalyst   | k <sub>uv</sub> [s <sup>-1</sup> ] | Half-life<br>[min] | RSS* |
|------------|------------------------------------|--------------------|------|
| Au2/Y2/P25 | 2.9 E <sup>-3</sup>                | 3.9                | 8.4  |
| Au2/Y5/P25 | <b>3.9</b> E <sup>-3</sup>         | 2.9                | 54.4 |
| Au2/K2/P25 | 1.9 E <sup>-3</sup>                | 6.0                | 60.7 |
| P25        | 9.8 E <sup>-4</sup>                | 11.7               | 54.1 |

• highest  $k_{UV}$  & lowest  $t_{1/2}$ : Au2/Y5/P25

\*RSS: Residual sum of squares

### 01.10.2024

### Photocatalysis of the Aminophosphonate EDTMP

Brandenburg

University of Technology





- aim: investigate reactive species responsible for target degradation
- method:



https://doi.org/10.1016/j.xcrp.2022.100889

## **Determination of ROS by scavengers**





Fig. 10. Scavenger tests with 100 mg L-1 EDTMP and 100 mg L<sup>-1</sup> Au2/Y5/P25, pH 7.

Tab. 2. P release of EDTMP during photocatalysis (Au2/Y5/P25, pH 7, scavenger).

| Condition | Scavenged<br>ROS             | Scavenged<br>medium | P release                                 |             |
|-----------|------------------------------|---------------------|-------------------------------------------|-------------|
|           |                              |                     | o-PO₄ <sup>3-</sup> [mg L <sup>-1</sup> ] | o-PO₄³- [%] |
| Without   | -                            | -                   | 33                                        | 38          |
| MeOH      | h⁺ & ∙OH                     | Bulk and surface    | 19                                        | 21          |
| i-PrOH    | •OH                          | Bulk                | 12                                        | 14          |
| KI        | •OH & h⁺                     | Surface             | 47                                        | 54          |
| AsA       | •O <sub>2</sub> <sup>-</sup> | Bulk                | 14                                        | 17          |

**primary ROS:** •OH (bulk) & h<sup>+</sup> (surface)

## Influence of the dopants





### 01.10.2024

Photocatalysis of the Aminophosphonate EDTMP

#### 4 fold enhanced kinetics CO<sub>2</sub> CH<sub>4</sub> NH<sub>4</sub><sup>+</sup> PO<sub>4</sub><sup>3-</sup> H<sub>2</sub>O UV-VIS $O_2$ •OH Injection •O<sub>2</sub> AMPA HO Conduction Au e⁻ OH band h<sup>+</sup> **Visible light** OF Metal/TiO<sub>2</sub> нó НÓ OHexcitation IDMP HO •OH Valence EDTMP h+ band HO •он

• degradation mechanism similar to photochemical processes

OH

UV-VIS

#### Mechanism of photocatalytic EDTMP degradation Brandenburg University of Technology

OH

EABMP