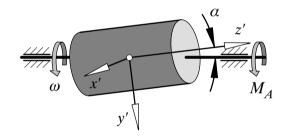
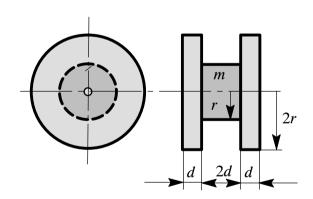


6 Kinetik der Starrkörperdrehung


Aufgabe 1

Ein homogener Quader (Masse m) rotiert mit der Winkelgeschwindigkeit Ω um seine Raumdiagonale. Berechnen Sie den Drall des Quaders im Koordinatensystems $\{C, x, y, z\}$.

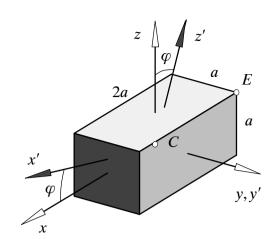
Aufgabe 2


Aufgrund von Fertigungsfehlern ist ein zylindrischer Rotor (Masse m, Radius r, Länge 3r) um den Winkel α zur Drehachse geneigt. Er wird durch ein Moment M_A angetrieben. Formulieren Sie den Drallsatz bezüglich der Drehachse.

Aufgabe 3

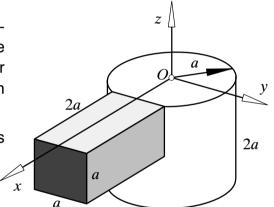
Eine homogene Walze besteht aus einem Innenzylinder (Radius r, Breite 2d, Masse m) und zylindrischen Seitenteilen (Radius 2r, Breite d).

- a) Wie groß ist die Masse m_s eines Seitenteils und die Gesamtmasse M?
- b) Berechnen Sie das Massenträgheitsmoment und den Trägheitsradius der Walze bezüglich ihrer Rotationssymmetrieachse.



Aufgabe 4

Bestimmen Sie den Trägheitstensor eines homogenen Quaders (Masse m, Schwerpunkt C) mit den Abmessungen $a \times a \times 2a$ bezüglich verschiedener Bezugspunkte in verschiedenen Koordinatensystemen.

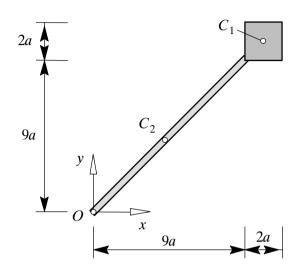

- a) Stellen Sie den Trägheitstensor für das Koordinatensystem $K\{C, x, y, z\}$ auf.
- b) Bestimmen Sie den Trägheitstensor des Quaders bezüglich des Eckpunkts *E* in *K*.
- c) Das Koordinatensystem K' $\{C, x', y', z'\}$ ist gegenüber K um den Winkel φ verdreht. Wie lautet die Drehmatrix $S_{KK'}$ und der Drehtensor bez. des Schwerpunkts im Koordinatensystem K'?

Aufgabe 5

Ein Körper besteht aus zwei aneinander geschweißten, homogenen Teilkörpern, einem Quader (Masse m, Abmessungen $a \times a \times 2a$) und einem Zylinder (Masse m, Radius a, Höhe 2a). Überschneidungen der beiden Teilkörper sollen vernachlässigt werden.

- a) Wie lautet der Trägheitstensor $\mathbf{I}_{Q,C}$ des Quaders bezüglich seines Schwerpunkts?
- b) Wie lautet der Trägheitstensor $I_{Z,C}$ des Zylinders bezüglich seines Schwerpunkts?
- c) Bestimmen Sie den Trägheitstensor des gesamten Körpers bezüglich des Koordinatenursprungs *O*.

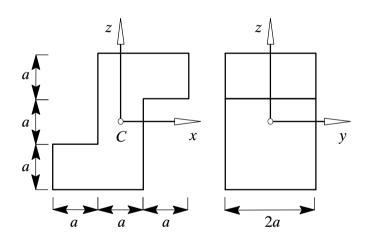
Aufgabe 6


Für eine dünne homogene quadratische Platte mit einer ebenfalls quadratischen Aussparung (Masse m) ist der Trägheitstensor im gegebenen Koordinatensystem zu berechnen.

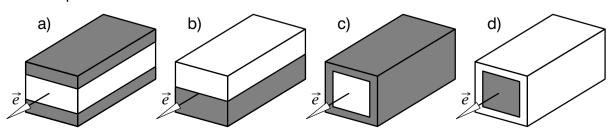
- a) Wie lautet der Trägheitstensor der ursprünglichen quadratischen Platte ohne Aussparung (Masse m_1) bez. O?
- b) Wie lautet der Trägheitstensor des ausgeschnittenen Quadrats (Masse m_2) bez. seines eigenen Schwerpunkts S und bez. des Koordinatenursprungs O?
- c) Wie verhalten sich die Teilmassen m_1 und m_2 zur Gesamtmasse m? Berechnen Sie den Trägheitstensor der ausgesparten Platte bez. des Koordinatenursprungs O.

Aufgabe 7

Ein Golfschläger soll näherungsweise als dünner Stab (Masse m, Länge $9\sqrt{2}~a$) mit einer homogenen dünnen Platte (Masse m) modelliert werden. Überschneidungen der beiden Teilkörper im Übergangsbereich können vernachlässigt werden. Die Dicke d der Platte ist im Vergleich zu den anderen Abmessungen klein. Wie lautet der Trägheitstensor des Golfschlägers bezüglich des Koordinatensystems in O?



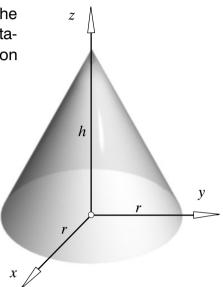
Aufgabe 8


Ein prismatischer Körper (Masse m) hat den dargestellten Querschnitt und die Länge 2a.

- a) Wie lautet der Trägheitstensor I_C des Körpers bezüglich seines Schwerpunkts?
- b) Bestimmen Sie die Hauptträgheitsmomente des Körpers.
- c) Zeichnen Sie die Hauptachsen ein.

Aufgabe 9

Ein Quader besteht je zur Hälfte aus zwei Materialien unterschiedlicher Dichte, jedoch in unterschiedlicher Schichtung. Das dunklere Material hat die Dichte ϱ_1 , das hellere die geringere Dichte $\varrho_2 < \varrho_1$. Ordnen Sie Trägheitsmomente $I_a \dots I_d$ um die Drehachse \vec{e} ihrer Größe entsprechend.


Aufgabe 10

Aus einem homogenen Blech (Dicke h, Dichte ϱ) wird ein Kreissegment (Winkel φ , Radius R) herausgeschnitten. Berechnen Sie das Massenträgheitsmoment für eine ebene Drehung um seine Spitze. Vergleichen Sie das Ergebnis mit dem Massenträgheitsmoment einer Kreisscheibe aus dem gleichen Blech.

$dm = \varrho h \varphi r dr$ φ

Aufgabe 11

Berechnen Sie von einem geraden Kreiskegel (Radius r, Höhe h, Dichte ϱ) das Massenträgheitsmoment bezüglich seiner Rotationssymmetrieachse und stellen Sie das Ergebnis als Funktion der Masse des Kegels dar.

