Prof. K. Meer

BTU Cottbus, March 28, 2024
A. Wurm

Neural Networks and Learning Theory - Summer Term 2024

Sheet 0
Version 12.04.2024

Algorithms for training of neural networks heavily depend on derivatives, we will therefore start by repeating the basic concepts from calculus.

Exercise 1. Give the derivatives f^{\prime} of the following functions f and draw both f and f^{\prime} :
a) $f(x)=2 x^{2}+x+3$
b) $f(x)=\cos (x)$
c) $f(x)=2^{x}$
d) $f(x)=\sqrt{x}$

Exercise 2. Repeat/research the following properties of derivatives, give one example each and prove them if possible.
a) Linearity/Sum rule
b) Product rule
c) Chain rule
d) Inverse function rule
e) Quotient rule/Reciprocal rule
f) Power rule

Exercise 3. A function is called sigmoidal if it admits the following properties:

- Differentiable
- Strictly increasing
- Exactly one inflection point
- $\lim _{x \rightarrow-\infty} f(x)=a, \lim _{x \rightarrow \infty} f(x)=b$ exist

Give a function with all these properties and draw it. What can be said about the derivative of such a function?

Exercise 4. Give the derivatives f^{\prime} of the following functions f and draw both f and f^{\prime} :
a) $f(x)=\log (\exp (x)+1)$
b) $f(x)=x^{x}$
c) $f(x)=x^{a}-a^{x}$
d) $f(x)=\sin (x)^{\ln (x)}$
e) $f(x)=\sqrt[3]{\cos (x)}$

Exercise 5. If a function f depends on more than one variable, we write $\frac{\partial}{\partial x}(f(x, y, z, \ldots))$ for the derivative with respect to the variable x. If you are not familiar with the concept, research "partial derivative". Compute the following:
a) $\frac{\partial}{\partial x} \frac{\partial}{\partial y}\left(x^{y}-y^{x}\right)$
b) $\frac{\partial}{\partial x} \frac{\partial}{\partial x}(x \cdot \sin (x))$
c) $\frac{\partial}{\partial x} \frac{\partial}{\partial y}\left(\ln (2 x)+\sin \left(x y^{2}\right)\right)$
d) $\frac{\partial}{\partial y} \frac{\partial}{\partial x}\left(\ln (2 x)+\sin \left(x y^{2}\right)\right)$
e) $\frac{\partial}{\partial x} \frac{\partial}{\partial y} f(0,0), f(x, y)= \begin{cases}0 & x=y=0 \\ \frac{x^{3} y-y^{3} x}{x^{2}+y^{2}} & \text { else }\end{cases}$
f) $\frac{\partial}{\partial y} \frac{\partial}{\partial x} f(0,0), f(x, y)= \begin{cases}0 & x=y=0 \\ \frac{x^{3} y-y^{3} x}{x^{2}+y^{2}} & \text { else }\end{cases}$

