Neural Networks and Learning Theory

Prof. Dr. Klaus Meer, Ameen Naif

Exercise Sheet 2
Version 26.04.2019

Exercise 1.

Let C_{1} and C_{2} be two finite pointsets of \mathbb{R}^{n} such that there are some $b \in \mathbb{R}$ and some $z \in \mathbb{R}^{n}$ with:

$$
z^{T} \cdot x \geq b \quad \forall x \in C_{1} \quad, \quad z^{T} \cdot x<b \quad \forall x \in C_{2} .
$$

(a) Show that you can assume without loss of generality that b is equal to 1 .
(b) Prove that there exist a vector $\tilde{z} \in \mathbb{R}^{n}$ and a real positive number $c>0$ such that:

$$
\tilde{z}^{T} \cdot x \geq 1+c \quad \forall x \in C_{1} \quad, \quad \tilde{z}^{T} \cdot x \leq 1-c \quad \forall x \in C_{2} .
$$

Exercise 2.

Let C_{1}, C_{2} like in Exercise 1. Furthermore, there are $\tilde{z} \in \mathbb{R}^{n}$ and $c>0$ with:

$$
\tilde{z}^{T} \cdot x \geq 1+c \quad \forall x \in C_{1} \quad, \quad \tilde{z}^{T} \cdot x \leq 1-c \quad \forall x \in C_{2} .
$$

Show that:

$$
\inf \left\{\|x-y\|_{2} \mid x \in C_{1}, y \in C_{2}\right\} \geq \frac{2 c}{\|\tilde{z}\|_{2}},
$$

where $\|\tilde{z}\|_{2}:=\sqrt{\sum_{i=1}^{n} \tilde{z}_{i}^{2}}$ denotes the Euclidean norm of $\tilde{z} \in \mathbb{R}^{n}$.

Exercise 3.

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a real-valued function of parameter vector x. The Derivative of $f(x)$ with respect to x is defined by the vector (we disregard here a more mathematical approach for defining the Derivative):

$$
D f(x)=\frac{\partial f(x)}{\partial x}:=\left(\frac{\partial f(x)}{\partial x_{1}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right) .
$$

Using above definiton, prove that the following equalities hold:
(a)

$$
\frac{\partial h^{T} \cdot x}{\partial x}=\frac{\partial x^{T} \cdot h}{\partial x}=h
$$

for all vectors $x, h \in \mathbb{R}^{n}$.
(b)

$$
\frac{\partial x^{T} \cdot M \cdot x}{\partial x}=2 \cdot M \cdot x
$$

for some symmetric matrix $M \in \mathbb{R}^{n \times n}$, i.e. $M^{T}=M$.
(c)

$$
\frac{\partial\|x\|_{2}}{\partial x}=\frac{x}{\|x\|_{2}}
$$

for all $x \in \mathbb{R}^{n} \backslash\{0\}$.

Exercise 4.

Using the method of Lagrange multipliers, find the points (x, y) on the ellipse $x^{2}+x y+y^{2}-3=0$ with minimum and maximum distance to the origin $(0,0)$.
(a) Formulate this problem as an optimization problem, i.e. find the objective function f to be minimized (maximized) and the conditions (a function $g=0$) of the optimization problem.
(b) Define the Lagrange function $L(x, y, \lambda):=f(x, y)-\lambda g(x, y)$ and solve the equation $D L(x, y, \lambda)=0$.
(c) Replace the Solution of the obove equation in the condition $g(x, y)=0$ to find the the maxima and minima.

Exercise 5.

(a) Show that $f(x):=\frac{1}{2} x^{T} x$ is a convex function.
(b) Show that the affine function $f(x):=b^{T} x+c, b \in \mathbb{R}^{n}, c \in \mathbb{R}$ is convex.
(c) Show that: for a symmetric matrix $M \in \mathbb{R}^{n \times n}$ is the function

$$
f(x):=x^{T} M x
$$

convex if and only if the matrix M is positive semi-definite, i.e. $\forall h \in \mathbb{R}^{n}$ is $h^{T} \cdot M \cdot h \geq 0$.

