Cryptography

Prof. Dr. Klaus Meer, Ameen Naif

Exercise Sheet 4 Version 07.06.2019

Exercise 1.

We are given a pair $(p, c) \in \{0, 1\}^{64} \times \{0, 1\}^{64}$ where c is the encryption of the plaintext p with an unknown key K using 1-Round DES. We want to find the 48-bit key K.

- (a) Why is the output of all S-boxes known?
- (b) Given the 4-bit output of S_1 -Box how many 6-bit combinations are possible as input to S_1 -Box?
- (c) How many 6-bit combinations are possible as the 6 bit key which takes part in the creation of the input to S_1 -Box?
- (d) How many 48-bit combinations are possible for K?

Note: the S-boxes, the permutations $\pi \in S_{64}$ and $\sigma \in S_{32}$ and the expansion function E in the DES-cryptosystem are fixed and known.

Exercise 2.

Let $n = p \cdot q$ be the product of two unknown prime numbers. Let a, b be two integers such that $e \cdot d = 1 \mod \phi(n)$. Find the prime factors q and p of n in the following cases:

- (a) If n and $\phi(n)$ are known.
- (b) If n, e and d are known.

Exercise 3.

Let (G, \cdot) be a cyclic group generated by $a \in G$.

- (a) Suppose that k is the minimal integers such that $a^l = a^k$ and l < k for some integer l. Then |G| = n = k l and $G = \{a^0, a^1, ..., a^{n-1}\}$.
- (b) Let $m \in \mathbb{N}$ and d = gcd(m, n). Then a^m and a^d generate the same subsets of G.

Exercise 4.

Show the following: If there is a polynomial time decision algorithm for **Factoring** II, then all prime factors of n can be computed in polynomial time. (**Hint**: Binary search for factors of n).

Factoring II: Input $(n, k) \in \mathbb{N}^2$, k < n. Question: Is there a factor of n which is $\leq k$?

Exercise 5.

Suppose that **Subset Sum** is \mathcal{NP} -complete:

- (a) Show that **PARTITION** is in \mathcal{NP} .
- (b) Prove that **PARTITION** is \mathcal{NP} -complete by giving a reduction from **Subset Sum**.

Subset Sum: Input $n, s_1, ..., s_n, T$, all are positive integers. Question: Is there a subset $S \subseteq \{1, ..., n\}$ such that $\sum_{i \in S} s_i = T$

PARTITION: Input $n, s_1, ..., s_n$, all are positive integers. Question: Is there a subset $S \subseteq \{1, ..., n\}$ such that $\sum_{i \in S} s_i = \sum_{i \in \overline{S}} s_i$? Where $\overline{S} = \{1, ..., n\} \setminus S$ is the complement set of S.

Exercise 6.

Let x be a decimal number and suppose that $\log_2 x$ is a positive integer.

- i) How can you compute the value $\log_2 x$ efficiently for the input x?
- ii) Given a prime p, how can $\log_2 x \mod p$ be computed? What is the running time of your algorithm?