Neuronale Netze, exercise sheet 1

April 13, 2015

Exercise 1

The set of points $\{x \in \mathbb{R}^n | w^T x = b\}$ is a hyperplane in \mathbb{R}^n for every choice of $w \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$. The set of points $\{x \in \mathbb{R}^n | \exists t_1, \ldots, t_{n-1} \in \mathbb{R} | x_0 + \sum_{i=1}^{n-1} t_i v_i)\}$ is a hyperplane in \mathbb{R}^n for every $x_0 \in \mathbb{R}^n$ and every set of linear independent vectors $\{v_1, \ldots, v_{n-1}\}, v_i \in \mathbb{R}^n$ for $i = 1, \ldots, n-1$.

a) Given the description of a hyperplane in the first form. Is it possible to compute a description of the same hyperplane in the second form? And the other way around?

b) Does $\{x \in \mathbb{R}^n | w^T x = b\} = \{x \in \mathbb{R}^n | w'^T x = b'\}$ imply that w = w' and b = b', or in other words, is this description of a hyperplane unique? Does $\{x \in b \}$ $\begin{array}{l} \mathbb{R}^{n} | \exists t_{1}, \ldots, t_{n-1} \in \mathbb{R}(x = x_{0} + \sum_{i=1}^{n-1} t_{i}v_{i}) \} = \{x \in \mathbb{R}^{n} | \exists t_{1}, \ldots, t_{n-1} \in \mathbb{R}(x = x_{0}' + \sum_{i=1}^{n-1} t_{i}v_{i}')\} \text{ imply that } x_{0} = x_{0}' \text{ and } \{v_{1}, \ldots, v_{n-1}\} = \{v_{1}', \ldots, v_{n-1}'\} \} \\ \text{c) Given a hyperplane } H \text{ in } \mathbb{R}^{n} \text{ and a point } p \in \mathbb{R}^{n}. \text{ How can one compute } \end{array}$

the distance between H and p?

Exercise 2

Design a perceptron which correctly distinguishes the following sets of points (if possible).

a) $\{1, 3, 4, 5\}$ and $\{7, 8, 9\}$ in \mathbb{R}

b) $\{1, 3, 4, 5\}$ and $\{2\}$ in \mathbb{R}

c) $\{(2,5), (3,4), (2,7)\}$ and $\{(8,6), (2,1)\}$ in \mathbb{R}^2

d) $\{(1,2,-1), (3,5,-4), (6,2,-2)\}$ and $\{(2,2,3), (3,1,4), (2,5,7)\}$ in \mathbb{R}^3

Exercise 3

Given a McCulloch-Pitts neuron with weights w_i and bias b and a McCulloch-Pitts neuron with weights w'_i and bias b'. If for every input both neurons give the same output, does this imply that $w_i = w'_i$ and b = b'?

Exercise 4

a) Is it possible to approximate a McCulloch-Pitts neuron with a neuron with activation function $t \mapsto \frac{1}{1+e^{-t}}$?

b) Is it possible, for small values of x_i and w_i , to approximate a neuron which has an activation function $t \mapsto \frac{1}{1+e^{-t}}$ with a neuron which has a linear activation function?

Exercise 5

Find out what the following possible activation functions look like.

$$\phi_1(t) := \frac{1}{1 + e^{-ct}}, \quad \phi_2(t) := \tanh(\frac{ct}{2}) := \frac{1 - e^{-ct}}{1 + e^{-ct}}, \quad \phi_3(t) := \frac{t}{\sqrt{1 + t^2}}.$$

Can you express the derivative of the function in terms of the function itself?