Neuronale Netze, exercise sheet 1

April 13, 2015

Exercise 1

The set of points $\left\{x \in \mathbb{R}^{n} \mid w^{T} x=b\right\}$ is a hyperplane in \mathbb{R}^{n} for every choice of $w \in \mathbb{R}^{n} \backslash\{0\}$ and $b \in \mathbb{R}$. The set of points $\left\{x \in \mathbb{R}^{n} \mid \exists t_{1}, \ldots, t_{n-1} \in \mathbb{R}(x=\right.$ $\left.\left.x_{0}+\sum_{i=1}^{n-1} t_{i} v_{i}\right)\right\}$ is a hyperplane in \mathbb{R}^{n} for every $x_{0} \in \mathbb{R}^{n}$ and every set of linear independent vectors $\left\{v_{1}, \ldots, v_{n-1}\right\}, v_{i} \in \mathbb{R}^{n}$ for $i=1, \ldots, n-1$.
a) Given the description of a hyperplane in the first form. Is it possible to compute a description of the same hyperplane in the second form? And the other way around?
b) Does $\left\{x \in \mathbb{R}^{n} \mid w^{T} x=b\right\}=\left\{x \in \mathbb{R}^{n} \mid w^{\prime T} x=b^{\prime}\right\}$ imply that $w=w^{\prime}$ and $b=b^{\prime}$, or in other words, is this description of a hyperplane unique? Does $\{x \in$ $\left.\mathbb{R}^{n} \mid \exists t_{1}, \ldots, t_{n-1} \in \mathbb{R}\left(x=x_{0}+\sum_{i=1}^{n-1} t_{i} v_{i}\right)\right\}=\left\{x \in \mathbb{R}^{n} \mid \exists t_{1}, \ldots, t_{n-1} \in \mathbb{R}(x=\right.$ $\left.\left.x_{0}^{\prime}+\sum_{i=1}^{n-1} t_{i} v_{i}^{\prime}\right)\right\}$ imply that $x_{0}=x_{0}^{\prime}$ and $\left\{v_{1}, \ldots, v_{n-1}\right\}=\left\{v_{1}^{\prime}, \ldots, v_{n-1}^{\prime}\right\}$?
c) Given a hyperplane H in \mathbb{R}^{n} and a point $p \in \mathbb{R}^{n}$. How can one compute the distance between H and p ?

Exercise 2

Design a perceptron which correctly distinguishes the following sets of points (if possible).
a) $\{1,3,4,5\}$ and $\{7,8,9\}$ in \mathbb{R}
b) $\{1,3,4,5\}$ and $\{2\}$ in \mathbb{R}
c) $\{(2,5),(3,4),(2,7)\}$ and $\{(8,6),(2,1)\}$ in \mathbb{R}^{2}
d) $\{(1,2,-1),(3,5,-4),(6,2,-2)\}$ and $\{(2,2,3),(3,1,4),(2,5,7)\}$ in \mathbb{R}^{3}

Exercise 3

Given a McCulloch-Pitts neuron with weights w_{i} and bias b and a McCullochPitts neuron with weights w_{i}^{\prime} and bias b^{\prime}. If for every input both neurons give the same output, does this imply that $w_{i}=w_{i}^{\prime}$ and $b=b^{\prime}$?

Exercise 4

a) Is it possible to approximate a McCulloch-Pitts neuron with a neuron with activation function $t \mapsto \frac{1}{1+e^{-t}}$?
b) Is it possible, for small values of x_{i} and w_{i}, to approximate a neuron which has an activation function $t \mapsto \frac{1}{1+e^{-t}}$ with a neuron which has a linear activation function?

Exercise 5

Find out what the following possible activation functions look like.

$$
\phi_{1}(t):=\frac{1}{1+e^{-c t}}, \quad \phi_{2}(t):=\tanh \left(\frac{c t}{2}\right):=\frac{1-e^{-c t}}{1+e^{-c t}}, \quad \phi_{3}(t):=\frac{t}{\sqrt{1+t^{2}}} .
$$

Can you express the derivative of the function in terms of the function itself?

