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Motivation 

Objective 

• In aerospace industry more and more detailed FEM models are used for prediction of 

engine behavior 

• Goal is the thermo-mechanical simulation of a 

running engine with almost no idealizations or 

simplifications over a time-span of a few seconds 

 

 

 

 

 

Dynamic models with millions of DOF  

(including contact, non-linear material behavior 

and huge displacements) 

Implicit time-integration could be a solution 

• But since the explicit analysis of even 40ms of 

engine model takes a few weeks on thousands of 

cores, the explicit analysis is not an option for the 

simulation of a running engine over a few seconds 
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Description of Problem 

Implicit Simulation of Spinning Plate with Newmark algorithm 

Model: Load curve: Simulation: 

• Newmark algorithm becomes instable with standard parameters 

• Change of parameters improves situation but new parameters are only valid for particular problem 
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Analytical solution 

Explicit, time step 3.48e-7 

Implicit, time step 1e-4 (const), gamma=0.5, 
beta=0.25 (classical Newmark) 

Implicit, time step 1e-3 (const), gamma=0.5, 
beta=0.25 (classical Newmark) 

Implicit, time step 1e-3 (const.), 
gamma=0.55, beta=0.2756 
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Description of Problem 
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Analytical solution 

Explicit, time step 3.48e-7 

Implicit, time step 1e-4 (const), gamma=0.5, 
beta=0.25 (classical Newmark) 

Implicit, time step 1e-3 (const), gamma=0.5, 
beta=0.25 (classical Newmark) 

Implicit, time step 1e-3 (const.), gamma=0.55, 
beta=0.2756 

Implicit, NEWMARK-EULER, time-step 1e-3 
(const), standard parameters 

• Literature suggests more advanced time-integration methods like Newmark-Euler: 

• Newmark-Euler works better than classical Newmark algorithm but also becomes 

instable in certain situations (automatic time-step control is used): 
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Newmark 

Newmark-Euler 

Driven by pressure load on blades 
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Stability Considerations of Time-integration 

Algorithms 

• Stability analysis is useful to discover possible weak points of an integration algorithm 

and to show the borders of its applicability in terms of stability 

• Many time integration methods (e.g. Newmark, Newmark-Euler) can be written in the 

form 
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A =  Matrix of integration approximation 

L = Load operator 

r = External loads 

• Matrix A depends on the time integration method (and the mechanical problem), that is 

used 

• An integration method is stable if the spectral radius of the matrix A (depending on 

Dt/T) is always smaller or equal than 1 

Spectral radius of A:   3,2,1,max  ii A

Stability criterion:   1A

• For stability analysis it is sufficient to consider the simple undamped free vibration 

problem: 

02  xx  => r = 0 
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Stability Considerations of Time-integration 

Algorithms 

• With T = 2p/ = 1 it is possible to compute a stability map (plot of spectral radius over Dt/T): 

Area of conditional stability (depending on the time step size) 

Area of unconditional stability 

g=0.4, 

b=0.25 

g=0.55, 

b=0.3 
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g=0.5, b=0.25 

(classical Newmark) 

Stability Map of Newmark algorithm 
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Stability Considerations of Time-integration 

Algorithms 

Stability Map of Newmark-Euler algorithm 

• With T = 2p/ = 1 it is possible to compute a stability map (plot of spectral radius over Dt/T): 
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(A
) Area of conditional stability (depending on the time step size) 

Area of unconditional stability 

Curve for h=0.5, g=0.5, b=0.25 

(“classical” Newmark-Euler) 
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Stability Considerations of Time-integration 

Algorithms 

• Stability analysis shows that neither the Newmark algorithm nor the 

Newmark-Euler algorithm become instable with their standard 

parameters for arbitrary big time-steps 

• But used method for stability analysis is actually only valid for linear 

problems 

 => Time-step size has to be small enough (computation of every time-

 step can be considered to be linear) 

• Here, time-steps are small enough 

• For special cases (e.g. Newmark algorithm with standard parameters) 

methods from control theory can be used to show stability of 

algorithm also for nonlinear problems (large time steps) 

 

Time-integration algorithm cannot be the source of instability 
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Simplified Model and Reasons for Instability 

Rotating pendulum with spring (gravity neglected) 

Model and equation of motion in Cartesian coordinates 
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Equations of motion: 
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with l0= non-elongated length of spring and k=stiffness of spring 

Equations of motion with NEWMARK time-integration (for m=1kg and F=0N): 
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Solution by Newton iteration: 
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Simplified Model and Reasons for Instability 

Results for 

Dt=0.001s and tmax=1s (g=0.5, b=0.25) with l(0)=1.09161m, k =1000N/m, l0=1m, vo=10m/s: 
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What happens if stiffness k and time-step size Dt are increased? 
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Simplified Model and Reasons for Instability 

For Dt=0.01s and k=107N/m 

instability appears! 
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x-coordinate in m 

Increase of stiffness from k=1000N/m to k=107N/m  

and  

increase of time-step size from Dt=0.001s to Dt=0.01s  
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Simplified Model and Reasons for Instability 

• Consideration of situation of rotating pendulum with spring at the time step before 

instability (Dt=0.01s and k=107N/m): 
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Before instability (t=0.45s) After instability (t=0.46s) 
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Simplified Model and Reasons for Instability 

What is the numerical situation right before instability? 
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• NEWMARK equations that have to be solved for xn+1 and yn+1 by Newton’s algorithm: 

 

 

 

• At t=0.45s: 
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Simplified Model and Reasons for Instability 

Cut through 3D diagram at                                                            :  m7404906190.23614647yy nn 1

• Obviously problem has 3 zeros 

• Newton iteration converges into wrong equilibrium as solution for Newmark equation 

• “Instability” is just a problem of the Newton iteration 

• Between -1< xn+1<1 the slope of the function fx is very big, which probably causes 

numerical problems when finding the zero at xn+1 = -1 

Correct 

solution 

Converged solution 

fx 

xn+1 
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Simplified Model and Reasons for Instability 

Influence of parameters k and Dt to number of zeros of function fx 

k = 105 N/m 

• No parameters changed except k 

• k decreased from 107N/m to 105N/m 

 

Only one zero 
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No “instability” even after 50s of 

simulation time! 
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Simplified Model and Reasons for Instability 

FEM Example 

• By changing the stiffness of the model or the time-step size, stability can be 

reached in combination with the Newmark algorithm 

• This can also be shown at the spinning plate example: 

 

 

 

Load 

curve 

 

 

Result with E=1.15x105 N/mm2 

 

 

Velocity vs. time plots: 

 

 

Result with E=1.15x104 N/mm2 

 

 

In analogy to explicit 

dynamics a „stiffness 

scaling“ is possible! 
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Possible Solution 
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Number of iterations per time step (for k=107 N/m and Dt=0.01s) 

• Number of time steps per 

iteration is very high 

• Actually the Newton algorithm 

converges fast or something is 

wrong 

Solution: Improved time-step control 

 

• If the Newton algorithm needs more than xx iterations per time-step, the 

time-step size should be reduced 

• If the number of iterations per time-step is lower than a certain value, the 

time-step size should be increased 
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Possible Solution 

Results with simple algorithm for time-step control 

• Implementation:  If number of iterations is bigger than 9, time-step size is reduced by 

 

 

 and (very important!) result of last time increment (which needed more than 9 

iterations) is deleted and Newton algorithm is repeated with smaller time-step. If 

number of iterations per time step is smaller than 4, time-step size is increased by 
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Results for k=107 N/m, simulation time = 50s, time-step control as above: 
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Possible Solution 

• Also other tests for convergence for Newton algorithm are possible: 

  

 Check for monotonicity of iterated results: - Error may not increase during an  

  equilibrium iteration 

  - If error of previous Newton iteration is 

   smaller than the current one, last result is 

   deleted and time-step is decreased by 

 

  - If number of iterations per time-step is 

   smaller than 5 the time-step is increased 

   by 

   

 

• This strategy has also been implemented and tested successfully but seems to be 

slower (10046 function evaluations for 1s of simulation time compared to 1332 function 

evaluations with the previous strategy, 750 function evaluations for constant time-step 

size of 0.01s with  instability) 

ttt DDD 5.0

ttt DDD 5.0
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Complex FEM example 

Solution with standard time-step control but changed parameters 

0 

5000 

10000 

15000 

20000 

25000 

0 0.1 0.2 0.3 0.4 0.5 0.6 

R
o

t.
 v

e
lo

c
it

y
 i

n
 r

p
m

 

Time in s 

"Analytical" solution 

Newmark-Euler 

Newmark 

• Differences between “analytical” solution and FEM simulation are caused by deformations 

due to centrifugal loads which are not considered in the “analytical “solution 
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Summary 

• Instability issues of implicit simulation of flexible rotating structures can now be 

explained 

• Issues are not caused by time-integration scheme (e.g. Newmark time-integration) but 

by numerical problems of the Newton iteration 

• Also improved time-integration schemes like Newmark-Euler and HHT suffer from the 

same instability problems of the Newton iteration 

• Correctness of findings has also been demonstrated for simple and more complex FEM 

simulations 

• Solution for instability problems is an improved time-step control algorithm 

 Successfully tested in Python script 

 as well as in commercial FE codes 
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