Instability Problems of Implicit FEM Solution Procedures for Fast Rotating Structures – Instability Sources and Solutions

WCCM 2018, New York

Chair of Structural Mechanics and Vehicle Vibrational Technology
Prof. Dr.-Ing. Arnold Kühhorn | Dr.-Ing. Markus Kober

Rolls-Royce plc.
Dr.-Ing. Akin Keskin
• Motivation
• Description of problem
  • Spinning plate
• Stability considerations of time-integration algorithms
• Simplified model and reasons for instability
• Possible Solutions
• Complex FEM example
• Summary
Motivation

Objective

• In aerospace industry more and more detailed FEM models are used for prediction of engine behavior
• Goal is the thermo-mechanical simulation of a running engine with almost no idealizations or simplifications over a time-span of a few seconds

  Dynamic models with millions of DOF (including contact, non-linear material behavior and huge displacements)

• But since the explicit analysis of even 40ms of engine model takes a few weeks on thousands of cores, the explicit analysis is not an option for the simulation of a running engine over a few seconds

  Implicit time-integration could be a solution
Description of Problem

Implicit Simulation of Spinning Plate with Newmark algorithm

Model: Load curve: Simulation:

- Newmark algorithm becomes instable with standard parameters
- Change of parameters improves situation but new parameters are only valid for particular problem
Description of Problem

- Literature suggests more advanced time-integration methods like Newmark-Euler:

![Graph showing velocity vs time for different integration methods]

- Newmark-Euler works better than classical Newmark algorithm but also becomes unstable in certain situations (automatic time-step control is used):

![Graph showing rotational velocity vs time for Newmark and Newmark-Euler]
Stability Considerations of Time-integration Algorithms

- Stability analysis is useful to discover possible weak points of an integration algorithm and to show the borders of its applicability in terms of stability.
- Many time integration methods (e.g. Newmark, Newmark-Euler) can be written in the form

\[
\begin{bmatrix}
\dot{x}_{n+1} \\
\ddot{x}_{n+1} \\
x_{n+1}
\end{bmatrix} =
\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}
\begin{bmatrix}
\dot{x}_n \\
\ddot{x}_n \\
x_n
\end{bmatrix} +
\begin{bmatrix}
L_{n+1} \\
r
\end{bmatrix}
\]

- Matrix A depends on the time integration method (and the mechanical problem), that is used.
- An integration method is stable if the spectral radius of the matrix A (depending on \(\Delta t/T\)) is always smaller or equal than 1.

Spectral radius of A: \(\rho(A) = \max|\lambda_i|, \quad i = 1, 2, 3\)

Stability criterion: \(\rho(A) \leq 1\)

- For stability analysis it is sufficient to consider the simple undamped free vibration problem:

\[\ddot{x} + \omega^2 x = 0 \quad \Rightarrow \quad r = 0\]
Stability Considerations of Time-integration Algorithms

Stability Map of Newmark algorithm

- With $T = \frac{2\pi}{\omega} = 1$ it is possible to compute a stability map (plot of spectral radius over $\Delta t/T$):

Area of conditional stability (depending on the time step size)

Area of unconditional stability

Spectral radius $\rho(A)$

$\gamma = 0.4, \beta = 0.25$

$\gamma = 0.5, \beta = 0.25$ (classical Newmark)

$\gamma = 0.55, \beta = 0.3$
Stability Considerations of Time-integration Algorithms

Stability Map of Newmark-Euler algorithm

- With $T = \frac{2\pi}{\omega} = 1$ it is possible to compute a stability map (plot of spectral radius over $\Delta t/T$):

![Stability Map Diagram]

- Area of conditional stability (depending on the time step size)
- Area of unconditional stability
- Curve for $\eta=0.5$, $\gamma=0.5$, $\beta=0.25$ ("classical" Newmark-Euler)
Stability Considerations of Time-integration Algorithms

- Stability analysis shows that neither the Newmark algorithm nor the Newmark-Euler algorithm become unstable with their standard parameters for arbitrary big time-steps.
- But used method for stability analysis is actually only valid for linear problems.
  => Time-step size has to be small enough (computation of every time-step can be considered to be linear)
- Here, time-steps are small enough.
- For special cases (e.g. Newmark algorithm with standard parameters) methods from control theory can be used to show stability of algorithm also for nonlinear problems (large time steps).

Time-integration algorithm cannot be the source of instability
Simplified Model and Reasons for Instability

Rotating pendulum with spring (gravity neglected)

Model and equation of motion in Cartesian coordinates

Equations of motion:

\[ m\ddot{x} + F \cdot \frac{y}{\sqrt{x^2 + y^2}} + kx \frac{\sqrt{x^2 + y^2} - l_0}{\sqrt{x^2 + y^2}} = 0 \]

\[ m\ddot{y} - F \cdot \frac{x}{\sqrt{x^2 + y^2}} + ky \frac{\sqrt{x^2 + y^2} - l_0}{\sqrt{x^2 + y^2}} = 0 \]

with \( l_0 = \) non-elongated length of spring and \( k = \) stiffness of spring

Equations of motion with NEWMARK time-integration (for \( m=1kg \) and \( F=0N \)):

\[ f_x = \frac{-2x_n + 2x_{n+1} + \Delta t(-2\dot{x}_n + (2\beta - 1)\Delta t\ddot{x}_n)}{2\beta \Delta t^2} + kx_{n+1} \frac{\sqrt{x_{n+1}^2 + y_{n+1}^2} - l_0}{\sqrt{x_{n+1}^2 + y_{n+1}^2}} = 0 \]

\[ f_y = \frac{-2y_n + 2y_{n+1} + \Delta t(-2\dot{y}_n + (2\beta - 1)\Delta t\ddot{y}_n)}{2\beta \Delta t^2} + ky_{n+1} \frac{\sqrt{x_{n+1}^2 + y_{n+1}^2} - l_0}{\sqrt{x_{n+1}^2 + y_{n+1}^2}} = 0 \]

Solution by Newton iteration:

\[
\begin{bmatrix}
  x_{n+1}^{k+1} \\
y_{n+1}^{k+1}
\end{bmatrix}
= \begin{bmatrix}
x_{n+1}^k \\
y_{n+1}^k
\end{bmatrix} - J^{-1}(x_{n+1}^k, y_{n+1}^k) \begin{bmatrix}
f_x(x_{n+1}^k, y_{n+1}^k) \\
f_y(x_{n+1}^k, y_{n+1}^k)
\end{bmatrix}
\]

with

\[
J = 
\begin{bmatrix}
\frac{\partial f_x}{\partial x_{n+1}} & \frac{\partial f_x}{\partial y_{n+1}} \\
\frac{\partial f_y}{\partial x_{n+1}} & \frac{\partial f_y}{\partial y_{n+1}}
\end{bmatrix}
\]
Simplified Model and Reasons for Instability

Results for $\Delta t=0.001s$ and $t_{\text{max}}=1s$ ($\gamma=0.5$, $\beta=0.25$) with $l(0)=1.09161m$, $k=1000N/m$, $l_0=1m$, $v_0=10m/s$:

What happens if stiffness $k$ and time-step size $\Delta t$ are increased?
Simplified Model and Reasons for Instability

Increase of stiffness from $k=1000\text{N/m}$ to $k=10^7\text{N/m}$ and increase of time-step size from $\Delta t=0.001\text{s}$ to $\Delta t=0.01\text{s}$

For $\Delta t=0.01\text{s}$ and $k=10^7\text{N/m}$ instability appears!
Simplified Model and Reasons for Instability

- Consideration of situation of rotating pendulum with spring at the time step before instability ($\Delta t=0.01$ s and $k=10^7$ N/m):

Before instability ($t=0.45$ s)  
After instability ($t=0.46$ s)
Simplified Model and Reasons for Instability

What is the numerical situation right before instability?

- NEWMARK equations that have to be solved for \( x_{n+1} \) and \( y_{n+1} \) by Newton’s algorithm:

\[
\begin{align*}
    f_x &= -2x_n + 2x_{n+1} + \Delta t(-2\ddot{x}_n + (2\beta - 1)\Delta t\dddot{x}_n) + k\dddot{x}_{n+1}\sqrt{x_{n+1}^2 + y_{n+1}^2} - l_0 = 0 \\
    f_y &= -2y_n + 2y_{n+1} + \Delta t(-2\ddot{y}_n + (2\beta - 1)\Delta t\dddot{y}_n) + k\dddot{y}_{n+1}\sqrt{x_{n+1}^2 + y_{n+1}^2} - l_0 = 0
\end{align*}
\]

- At \( t=0.45\)s:

\[
\begin{align*}
    \beta &= 0.25, \quad \Delta t = 0.01 \text{ s}, \quad k = 10^7 \text{ N/m}, \\
    x_n &= -0.9717077973201222 \text{ m}, \\
    y_n &= 0.23614647740490619 \text{ m}, \\
    \dot{x}_n &= -2.3517560831270767 \text{ m/s}, \\
    \ddot{x}_n &= -91.33130927254165 \text{ m/s}^2
\end{align*}
\]
Simplified Model and Reasons for Instability

Cut through 3D diagram at \( y_{n+1} = y_n = 0.23614647740490619 \ m \):

\[
\begin{align*}
\text{Correct solution} & \quad f_x \\
\text{Converged solution} & \quad x_{n+1}
\end{align*}
\]

- Obviously problem has 3 zeros
- Newton iteration converges into wrong equilibrium as solution for Newmark equation
- “Instability” is just a problem of the Newton iteration
- Between \(-1 < x_{n+1} < 1\) the slope of the function \(f_x\) is very big, which probably causes numerical problems when finding the zero at \(x_{n+1} = -1\)
Simplified Model and Reasons for Instability

Influence of parameters $k$ and $\Delta t$ to number of zeros of function $f_x$

- No parameters changed except $k$
- $k$ decreased from $10^7$ N/m to $10^5$ N/m

$k = 10^5$ N/m

Only one zero

No “instability” even after 50s of simulation time!
Simplified Model and Reasons for Instability

FEM Example

- By changing the stiffness of the model or the time-step size, stability can be reached in combination with the Newmark algorithm.
- This can also be shown at the spinning plate example:

In analogy to explicit dynamics a "stiffness scaling" is possible!

Velocity vs. time plots:

Result with $E=1.15 \times 10^5$ N/mm²

Result with $E=1.15 \times 10^4$ N/mm²
Possible Solution

Number of iterations per time step (for k=10^7 N/m and Δt=0.01s)

- Number of time steps per iteration is very high
- Actually the Newton algorithm converges fast or something is wrong

Solution: Improved time-step control

- If the Newton algorithm needs more than xx iterations per time-step, the time-step size should be reduced
- If the number of iterations per time-step is lower than a certain value, the time-step size should be increased
Possible Solution

Results with simple algorithm for time-step control

- Implementation: If number of iterations is bigger than 9, time-step size is reduced by

  \[ \Delta t = \Delta t - 0.5 \cdot \Delta t \]

  and (very important!) result of last time increment (which needed more than 9 iterations) is deleted and Newton algorithm is repeated with smaller time-step. If number of iterations per time step is smaller than 4, time-step size is increased by

  \[ \Delta t = \Delta t + 0.5 \cdot \Delta t \]

Results for \( k=10^7 \text{ N/m} \), simulation time = 50s, time-step control as above:

- x-coordinate in m
- y-coordinate in m
- Time-step size in s
- Number of iterations
- Time in s
Possible Solution

• Also other tests for convergence for Newton algorithm are possible:

  Check for monotonicity of iterated results:
  - Error may not increase during an equilibrium iteration
  - If error of previous Newton iteration is smaller than the current one, last result is deleted and time-step is decreased by
    \[ \Delta t = \Delta t - 0.5 \cdot \Delta t \]
  - If number of iterations per time-step is smaller than 5 the time-step is increased by
    \[ \Delta t = \Delta t + 0.5 \cdot \Delta t \]

• This strategy has also been implemented and tested successfully but seems to be slower (10046 function evaluations for 1s of simulation time compared to 1332 function evaluations with the previous strategy, 750 function evaluations for constant time-step size of 0.01s with instability)
Complex FEM example

Solution with standard time-step control but changed parameters

- Differences between “analytical” solution and FEM simulation are caused by deformations due to centrifugal loads which are not considered in the “analytical “solution.
Summary

- Instability issues of implicit simulation of flexible rotating structures can now be explained.
- Issues are not caused by time-integration scheme (e.g. Newmark time-integration) but by numerical problems of the Newton iteration.
- Also improved time-integration schemes like Newmark-Euler and HHT suffer from the same instability problems of the Newton iteration.
- Correctness of findings has also been demonstrated for simple and more complex FEM simulations.
- Solution for instability problems is an improved time-step control algorithm:
  - Successfully tested in Python script.
  - As well as in commercial FE codes.
Dr. Markus Kober
Chair of Structural Mechanics and Vehicle Vibrational Technology
Prof. Dr.-Ing. Arnold Kühhorn
Brandenburg University of Technology
Cottbus-Senftenberg

b-tu.de/fg-strukturmechanik

Dr. Akin Keskin
Rolls-Royce plc.

Acknowledgment

This research was funded within the support program ProFIT by the “Investitionsbank des Landes Brandenburg” with financial resources of the European Regional Development Fund and supported by Rolls-Royce plc.