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1 Introduction 

Due to the availability of enormous computational power and decreasing CPU costs, finite 

element models are becoming more and more complex in all fields of engineering. In this 

context, also aero-engine manufacturers try to model the thermo-mechanical behavior of their 

engines as accurately as possible. In the past, this was done by simplified Whole Engine 

models (classical WEM’s), but nowadays high-fidelity Whole Engine Models are currently 

being developed. These models contain no simplifications or idealizations as used in classical 

WEM’s, which leads on the one hand to the possibility of getting more accurate results in 

terms of displacements and stresses, but on the other hand causes a bunch of challenges with 

respect to the modeling strategy and numerics. Some of these challenges and numerical 

problems will be addressed and possible solution strategies will be developed. 

In commercial finite element codes many different finite element formulations are available. 

Most of these standard elements work well for “normal” applications. But, for example, for 

poor aspect ratios the choice of the finite element formulation is essential to prevent unwanted 

phenomena like locking or hourglassing. 

Since there are almost no simplifications or idealizations in high fidelity WEM’s, all types of 

nonlinearity are present (material, geometrical and contact nonlinearities). Especially the 

contact behavior is a major challenge in models with high complexity such as aero engines. 

For this reason, it is important to understand the different algorithms and principles of contact 

mechanics. Also the time-step size of numerical integration is influenced significantly by the 

chosen contact algorithm which has a direct impact on the overall computational time. If there 

should be no simplifications or idealizations, special attention has to be given to parts like 

bearings of the engine rotor. Here, we will answer the question about the necessary mesh 

density for such parts depending on the used contact formulation. 

For the solution of the equations of motion of a thermo-mechanical system, numerical time-

integration schemes are necessary. There exist basically two different approaches for 

numerical integration, implicit and explicit schemes. The latter are suited in particular for 

highly dynamic processes, but could also be used for long term computations. This might be 

advantageous because of the simplicity and stability of explicit time-integration. On the other 

hand there is a need of extremely small time steps of these integration algorithms. Implicit 

time-integration is more complex, but allows for much bigger time-steps which, however, can 

cause difficulties with respect to contact problems. In this work both possibilities of time-

integration are discussed in detail with all advantages and disadvantages especially in the 

context of rotating flexible structures. 

Typical high-fidelity Whole Engine Models have millions of degrees of freedom, which leads 

to very high computational costs. There are different possibilities of “model reduction” 

techniques aiming at reducing the number of degrees of freedom while keeping the accuracy 

as high as possible. One of these techniques will be discussed and finally its capabilities for 
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academic examples as well as for the example of a Dummy Whole Engine Model will be 

investigated.  

1.1 Classical Whole Engine Models 

Classical Whole Engine Models mainly consist of shell and beam elements (Fig. 1.1, beam 

elements are not displayed). All components of the engine are simplified or idealized. There 

are also parts which are even not present in the model due to their minor impact on the 

structural behavior of the engine. Such models are typically used to compute eigenfrequencies 

and eigenmodes, the overall displacement behavior, but also details like tip clearances, which 

describe the gap size between rotor and casing. The latter has a big influence on the engine’s 

efficiency for example. 

 

Fig. 1.1    Cut through a classical Whole Engine Model 

Often model reduction concepts like static/dynamic condensation or super elements are used 

in classical Whole Engine Models [37]. The big advantage of such models is their low 

number of degrees of freedom (DOF) and, therefore, their low computational time. Linear 

static or dynamic computations can be performed within minutes or even seconds. Of course 

the accuracy of such models is not high and the results can only be used for general 

statements about displacements and eigenfrequencies. 

1.2 High-Fidelity Whole Engine Models 

In contrast to classical Whole Engine Models, a high-fidelity Whole Engine Model is defined 

as a model which requires almost no simplification or idealization. Every part of the engine, 

every bolt and every washer is modeled by solid elements to represent the geometry as 

accurately as possible (Fig. 1.2). The intention of such models is to compute the behavior of a 

running aero engine over a time-span of a few seconds by applying the correct transient 

pressure and temperature distributions. This strategy has many advantages but also some 
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drawbacks. The biggest advantage is that such a high-fidelity model offers the possibility of 

studying the transient behavior of an engine in detail. Another advantage is the higher 

accuracy that can be expected from such models because there are far less assumptions 

necessary than in a simplified model. Fewer assumptions and fewer idealizations mean also 

less possible errors and approximations of stiffness values, geometry and so on. It is also 

possible to take into account many nonlinear effects and phenomena which are just not visible 

in simplified models or do not appear. On the other hand the complexity of the model 

increases dramatically. The number of degrees of freedom is a few orders higher than in 

classical models, there exists nonlinear contact between hundreds or thousands of parts, 

nonlinear material behavior, and also nonlinear geometric effects are considered. By this, the 

computational time is much higher than for classical models, but with an increasing 

availability of CPU’s and computational power the tendency is towards more complex high-

fidelity models.  

 

Fig. 1.2    Section of a high-fidelity Whole Engine Model 

1.3  Focus and Outline of the Thesis 

The intention of this thesis is to discuss the kind of problems a user is faced when dealing 

with transient high-fidelity models. To take into account nonlinear effects like contact, it is 

important to understand contact modeling algorithms to be able to detect possible modeling 

errors or convergence problems (Chapter 2). Also unwanted stiffening or softening effects 

like locking or hourglassing may appear. It is important to recognize the origins of such 

effects for being able to avoid them with an appropriate strategy. The main goal is to give the 

reader an idea about the mentioned origins and strategies (Chapter 3). For special topics and 

more detailed discussions the reader is referred to further publications. Particular attention is 

paid here to the time-integration algorithms and their stability (Chapter 5 and 6). The latter is 

a very important aspect if elastic rotating structures with implicit time-integration are 

considered (Chapter 7). Also the necessary mesh density in bearings and for a developed 

solid-by-shell substitution strategy is investigated in detail (Chapter 4). For all topics under 

discussion simple examples are given which should illustrate the described effect or theory. 
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Finally, a complex aero-engine model is used for demonstrating the effectiveness of the 

derived procedures and approaches (Chapter 8). Material models and related questions are not 

part of the considerations here. 



 

 

2 Contact Modeling 

A typical turbo-fan aero engine consists of thousands of single parts which are in contact with 

each other. Some of these contacts may be simplified by defining a tie contact, for example 

between bolt and washer, but there are also many sliding contacts, where a relative motion 

between both contact surfaces may occur. The latter ones may also open and close which 

makes their treatment much more complex than for tie contacts. For this reason, the 

mechanical basics and different contact descriptions are discussed in this section. 

The intention of this chapter is to provide at least an idea about the different types of contact 

formulations and a general overview of algorithms, which are used in commercial FE codes. 

By this, a deeper understanding of contact problems should be gained that helps to solve 

possible convergence problems in contact computations. An extremely detailed discussion of 

contact descriptions between different types and dimensionality of surfaces (edge-to-beam, 

edge-to-surface, …) is given in special textbooks [79,80,148]. A historic overview of contact 

formulations used in the finite element method (FEM) may be found in [45]. 

At the end of this chapter special attention is paid to contact formulations that are suited for 

rotating contact surfaces. As it will be demonstrated, there may be a big influence of the used 

contact formulation onto the time-step size used in an implicit time-integration scheme. 

2.1 Mechanical Basics 

The foundation for the displacement-based finite element method [11,66] is the principle of 

virtual work. In the following, this principle is derived from the equilibrium conditions in the 

current configuration which hold for any point of a continuous body and read in index 

notation as 

 div i�6 + ��� = 0 (2.1) 

where i�6 is the Cauchy stress tensor and ��� is the vector of body forces [65]. These 

equilibrium conditions follow directly from the equilibrium of forces under static conditions. 

A body under consideration may be subjected to force boundary conditions on its surface 

according to 

 i�646 = ��� (2.2) 

with 46  being the normal unit vector on its surface and ��� surface tractions, and displacement 

constraints 

 N� = N�� (2.3) 

on the surface. Equation (2.1) is now multiplied by so-called virtual displacements [N� (or 

more generally spoken test functions), which have to be kinematically admissible. This means 

that the test functions have to be 
# continuous and vanish at displacement boundaries, which 

yields 
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 �div i�6 + ����[N� = 0. (2.4) 

If (2.4) is fulfilled also  

 ��div i�6 + ����[N� dD 
� = 0 (2.5) 

is satisfied. By applying the product rule of differentiation  

 
��i�6[N���N6 = �i�6�N6 [N� + i�6 �[N��N6  (2.6) 

Equation (2.5) can be written as 

 � ���i�6[N���N6 − i�6 �[N��N6 + ���[N�� dD 
� = 0. (2.7) 

Furthermore, Gauss’s theorem [21] 

 � ��i�6[N���N6 dD = 
� ��i�6[N��46 d� 


  (2.8) 

can be used to transform (2.7) into 

 � �−i�6 �[N��N6 + ���[N�� dD + ��i�6[N��46 d� 



 
� = 0. (2.9) 

With (2.2) and by taking (2.3) into account, this yields 

 � �−i�6 �[N��N6 + ���[N�� dD + � ���[N�� d� 



 
� = 0. (2.10) 

Due to the symmetry of the stress tensor, 

 i�6 �[N��N6 = i�6 �12 ��[N��N6 + �[N6�N� �� = i�6[\�6 (2.11) 

holds and we get the so-called principle of virtual work 

 � i�6[\�6 dD = � ���[N�dD 
� + � ���[N�� d� 



 

� . (2.12) 

On the left-hand side of this equation we have the virtual inner work of the body [F��� and 

on the right hand side the virtual work of the externally applied loads [F��� as sum of the 

work of body forces and surface tractions which finally results in 

 [F��� = [F���. (2.13) 

If we do not consider a static problem and high accelerations are present, the body forces also 

include the d’Alembert forces. Often it is useful to separate the virtual work of the d’Alembert 

forces [FK�� from the virtual work of the other body forces and the principle of virtual work 

becomes 
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 [F�[., .! ≡ [F��� − [F��� + [FK�� = 0. (2.14) 

In the finite element world, the displacements . O �  between the nodal displacements . are 

interpolated with the help of interpolation functions y �  as 

 . O � = y � ., (2.15) 

where the upper index ( indicates the (-th element and . is the nodal displacement vector of 

all node points. The strain matrix of the (-th element is defined as 

 u = q � � ., (2.16) 

with q �  as the strain-displacement matrix (calculated with the help of the displacement 

interpolation functions). The stresses { �  in an element (neglecting initial stresses) are related 

to the strains via the elasticity matrix t � : 
 { = t � � u � . (2.17) 

Also the virtual quantities are calculated in a similar fashion according to 

 [ . O � = y � [. (2.18) 

and  

 [ u = q � � [.. (2.19) 

The principle of virtual work is now applied by computing the integrals of (2.12) for each 

element and summing up these quantities over all elements which leads to 

 � � [ u� { � �
 

� �� dV = � � [ . O� � � �  �dD 
� �� + � � [ . O� � � �  �d� 


 �� . (2.20) 

Using (2.18) and (2.19) finally yields together with (2.17) and (2.16)  

[.�

¡
¢¢
¢£� � q� t q � � dD �

 
� �¤¥¥¥¦¥¥¥§w �

�¤¥¥¥¥¦¥¥¥¥§w ¨
©©
©ª . = [.�

¡
¢¢¢
¢£� � y � � � �  �dD 

� �¤¥¥¥¦¥¥¥§� � «�¤¥¥¥¥¦¥¥¥¥§�«

+ � � y � � � �  �d� 

 �¤¥¥¥¦¥¥¥§� � ¬�¤¥¥¥¥¦¥¥¥¥§�¬ ¨

©©©
©ª. (2.21) 

Since the coordinates of [. can be chosen arbitrarily and the load vector on the right-hand 

side of (2.33) can be summarized as � = �� + �� the well-known finite element equation 

 w. = � (2.22) 

remains with the global stiffness matrix w, the global displacement vector . and the global 

load vector �.  

If the considered body is accelerated, the body forces are extended by the d’Alembert forces 

according to 

 �� = � � y � �� � �  � − ρ y � .® � �dD 
� ��  (2.23) 
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with the acceleration vector .®  and the element density ρ � . As mentioned before, it is useful for 

many applications to separate the d’Alembert forces from other body forces which can be 

done by extracting the mass matrix x from (2.23) for an element-wise constant density ρ �  as 

 x = � ρ � � y � � y � d D � 
� �� . (2.24) 

Analogously the damping matrix s can be computed in case that the damping is proportional 

to the velocity vector .� , which yields after separation from the body forces 

 s = � μ � � y � � y � d D � 
� ��  (2.25) 

with the damping constant μ �  of the (-th element. Taking into account d’Alembert forces and 

damping forces, the equations of motion for a finite element system become 

 x.® + s.� + w. = �. (2.26) 

2.2 Consideration of Contact 

If contact has to be considered in the model, an extra term for the contact energy [FH has to 

be added to Equation (2.14). Depending on this energy expression, four different contact 

formulations, that are often used, are briefly discussed: 

1. Lagrange multiplier method, 

2. Penalty method, 

3. Augmented Lagrangian method, and 

4. Perturbed Lagrangian method. 

In the following, the basic ideas of these concepts are outlined and explained in a few words. 

For the sake of simplicity, we restrict all further explanations to static conservative systems 

(no energy dissipation). By this, the principle of the minimum of the potential energy is 

applicable, which can be directly derived from the principle of virtual work [11,21], and 

postulates that out of all possible deformations .� the one that minimizes the energy 

functional Π�.! defined as  

 Π�.! =  F��� − F��� (2.27) 

with the internal work F��� and the external work F��� fulfills the equilibrium conditions. In 

case of a contact problem, also the contact energy [FH  has to be taken into account in 

Equation (2.27), similar as in the principle of virtual work, as soon as the normal distance "$ 

of both contact surfaces becomes smaller or equal to zero ("$ ≤ 0). The methods mentioned 

above differ especially with regard to this particular contact energy term. All methods need as 

an input variable the normal distance "$ between two arbitrary points �
 and �� of the 

surfaces of the two bodies � and � in contact. This distance is defined according to Fig. 2.1 as 

 "$ = ��� − �
!�5
, (2.28) 
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which is positive or equal to zero in case of no penetration with 5
 being the normal unit 

vector on the surface of body A. In a FEM computation monitoring a single pair of contact 

points only is not sufficient, but a whole set of FEM nodes defining the contact surfaces need 

to be considered. Through this, there is a vector �$ containing all necessary normal distances 

of the contact surfaces. 

 

Fig. 2.1    Definition of gap size "$ between two contact surfaces 

2.2.1 Lagrange Multiplier Method 

Avoiding a penetration of the surfaces of two bodies in a FEM problem requires  

 �$ ≥ ², (2.29) 

which is a constraint for the minimization problem (2.27). In this sense, condition (2.29) is 

introduced as an inequality condition into the minimization problem 

 min. Π�.!  s. t.  �$ ≥ ². (2.30) 

The Lagrange function for such a constrained optimization problem reads as 

 -�., 0! =  Π�.! − 0��$ (2.31) 

and its solution must fulfill the Karush-Kuhn-Tucker conditions [73,88,51] as necessary 

conditions of first order: 

 ∇�-�., 0! = ∂Π�.!∂. − 0� ∂�$∂. = ², (2.32a) 

 ∇·-�., 0! = −�$ ≤ ², (2.32b) 

 `�"�,$ = 0   ∀ (, (2.32c) 

 0 ≥ ². (2.32d) 

By this, the term 0��$ in (2.31) can be interpreted as the contact energy 

 FGH =  −0��$ (2.33) 

where the vector of the Lagrange multipliers 0 represents contact forces resulting in the total 

potential energy functional 
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 Πf�., 0! =  Π�.! + FGH = Π�.! − 0��$ . (2.34) 

For a better understanding, the Lagrange multiplier method is demonstrated for a very simple 

example. Fig. 2.2 shows a linear spring with stiffness * elongated by a force �. On the right-

hand side of the mechanical system a rigid wall limits the displacement N of the spring by the 

distance � between the rigid wall and the non-elongated position of the spring. 

 

Fig. 2.2    Linear spring elongated by force � 

Application of the energy functional (2.27) yields 

 Π�N! =  12 *NR − �N. (2.35) 

The contact condition (2.29) avoids penetration of the spring with the rigid wall  

 "$ = � − N ≥ 0. (2.36) 

Finally, we get for the Lagrange function (2.31) 

 -�N, `! =  12 *NR − �N − `�� − N!. (2.37) 

The corresponding Karush-Kuhn-Tucker (KKT) condition (2.32a) yields 

 *N − � + ` = 0 (2.38) 

and therefore 

 N = � − `* . (2.39) 

For the determination of the unknown Lagrange multiplier `, KKT condition (2.32c) is used. 

Together with (2.39) we get 

 ` ¸� − � − `* ¹ = 0 (2.40) 

with the two solutions  

 `? = 0, (2.41) 

 `R = � − �*. (2.42) 

According to (2.32c), solution (2.41) is valid in case of no contact because of "$ > 0, 

whereas solution (2.42) is correct for an active contact "$ = 0. The corresponding 

displacements (2.39) are 

 N = »� − `?* = �*    for "$ > 0,� − `R* = �   for "$ ≤ 0. ¿ (2.43) 
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For the necessary determination of the gap size "$, there exist different procedures which are 

explained in Section 2.3. 

A simple FEM example, computed with the Lagrange multiplier method, is shown in Fig. 2.3. 

Body B (with size 133 ×  133) is pressed against body A (same size) with 1 Á 33⁄ , both 

meshed with just one solid element made of steel (� = 210000 Á 33R⁄ , b = 0.3). This leads 

to the displacement distribution plotted in Fig. 2.3b. The contact penetration of this nonlinear 

static computation is in the order of 10Ä?Å33 which is zero with respect to numerical 

precision, and thus shows the exact fulfillment of the contact constraint. 

a) b)  

Fig. 2.3    Simple FEM contact problem (a) and resulting displacements (b) computed with 

Lagrange multiplier method 

2.2.2 Penalty Method 

By introducing a penalty term, a constraint optimization problem like (2.30) can be 

transformed into an unconstrained optimization problem [51]. In the penalty method, this term 

is defined as 

 FIH = U � V�,$Æ"�,$ÆÇ
�  (2.44) 

and added to the energy functional (2.27) in case of penetration, which gives 

 Πg�.! =  Π�.! + FIH = Π�.! + U � V�,$Æ"�,$ÆÇ
� . (2.45) 

The parameters V�,$ are the penalty parameters penalizing any penetration "�,$ < 0 of 

contacting surfaces. Theoretically, for every (-th contact point there may be a different 

penalty parameter V�,$, but in practical applications mostly the same parameter, depending on 

the material stiffness, is used for all contact pairs. The other two parameters U and \ are often 

chosen as U = 1 2⁄  and \ = 2. By this, the contact energy term becomes 

 FIH = � 12 V�,$"�,$R
�   (2.46) 

and can be interpreted as the potential energy stored in a linear spring, where V�,$ definines 

the stiffness of the (-th contact point. Fig. 2.4 shows the interpretation of the penalty contact 

formulation (2.46) for two meshed bodies in contact. The springs, which are introduced 

between the contact surfaces determine the penetration of the two bodies. The stiffness values 

of these springs can be adjusted to the gap size. The more penetration, the higher is the spring 

ÉN [mm] 
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stiffness. As a result the penetration should be reduced in the next time-step. 

  

Fig. 2.4    Interpretation of penalty method as introduction of springs between the contact 

surfaces of body A and body B 

Returning to the simple contact spring example of Fig. 2.2 and assuming U = 1 2⁄  and \ = 2, 

we get for the energy functional (2.45) for the penetration case N > � 

 Πg�N! =  12 *NR − �N + 12 V$"$R  where "$ = � − N. (2.47) 

Since we do not introduce constraints as in the Lagrange multiplier method, it is not necessary 

to apply KKT conditions but it is sufficient to compute the first derivative of (2.47) with 

respect to N and set the result to zero:  

 
∂Πg�N!∂N =  *N − � + V$�N − �! = 0. (2.48) 

Solving (2.48) for the unknown displacement N yields 

 N = � + �V$* + V$  . (2.49) 

It is obvious that the solution becomes N = � *⁄  for V$ = 0 and goes to N = � for V$ → ∞. 

In the former case the contact is just ignored, the latter is the exact solution. 

The diagram of Fig. 2.5 shows the energy term (2.47) for different values of the contact 

stiffness V$. In this example, � = 2Á, � = 0.13 and * = 10 Á 3⁄  are chosen. Since N = � ⁄ * = 2Á/�10 Á 3⁄ ! = 0.23, the correct solution is N = � = 0.13. As one can 

observe, the penalty stiffness always allows a certain penetration, and therefore a violation of 

the contact constraint. Only for V$ → ∞ the correct solution is obtained. This may lead to the 

conclusion that better solutions are achieved by higher contact stiffness values, which is of 

course correct at a first glance. But in computational mechanics, the contact stiffness 

shouldn’t be chosen too high, otherwise this may lead to numerical problems due too ill-

conditioned stiffness matrices. Choosing the right contact stiffness is an art for the penalty 

method. For practical applications, a value in the order of the representative underlying 

element stiffness of the contact surfaces is often a good choice. 

Also for the FEM example in Fig. 2.3, the difference between the penalty method and the 

Lagrange multiplier method is optically visible in terms of a small penetration for the penalty 

method, which is in the order of 10ÄÌ33 in this example for a typical contact stiffness value 

of V$ = 1.1 ∙ 10Ì Á 33⁄  (Fig. 2.6). 
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Fig. 2.5    Correct solution for the N displacement and solutions of the penalty method for 

different values of the contact stiffness parameter V$  

 

 

  

Fig. 2.6    Resulting displacement of simple contact problem computed with penalty method 

Besides the disadvantage of the penalty method that the contact constraint is only fulfilled 

approximately, there is also an advantage. In comparison to the Lagrange multiplier method, 

no additional equations for the contact constraints are necessary which means that the 

computational effort is not increased and the system of equations does not grow. 

2.2.3 Augmented Lagrange Method 

The augmented Lagrange method combines Lagrange multiplier and penalty method. The 

contact energy is defined as 

 F
GH =  � 12 V�,$"�,$R
� − 0��$ , (2.50) 

which leads in case of penetration to the energy functional  

 Πef�., 0! =  Π�.! + F
GH = Π�.! + � 12 V�,$"�,$R
� − 0��$ . (2.51) 

For the augmented Lagrange method two different interpretations exist. The first one applies 

the KKT conditions to Equation (2.51). This procedure is described for example in [21] or 

[38] and leads again to additional equations similar as for the Lagrange multiplier method in 

ÉN [mm] 

V$ = 0 Á 3⁄  

V$ = 20 Á 3⁄  

V$ = 100 Á 3⁄  N = � = 0.13  

(correct solution) N = 0.1093  N = 0.1333  N = 0.23  
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Section 2.2.1, which increases the computational effort. The second interpretation is of more 

practical relevance and is also known as method of multipliers, which in the field of 

optimization was firstly discussed by Hestenes [61] and Powell [119]. In this sense, the 

minimization of (2.51) is treated as an unconstrained optimization problem. As such, the 

iterative optimization process starts with a sensible guess for the unknown 0 (even 0 = ² is 

possible). The contact stiffnesses V�,$ have to be chosen too, but their values may be smaller 

than within the pure penalty method which therefore leads to a better numerical conditioning 

of the problem. After the first iteration, the contact stiffnesses V�,$ may be updated, but this is 

not necessary. More important is the update of 0 following the rule 

 `�KÑ? = `� − V�,$ K "�,$ K . (2.52) 

By this, the contact pressure is increased in every iteration, which leads to a decrease of the 

penetration. The iterative process may be stopped if a certain penetration tolerance \ (e.g. 

0.1% of the characteristic interface length) is reached. 

For the spring problem in Fig. 2.2, the augmented Lagrange method yields for N > � the 

energy functional  

 Πef�N, `! =  12 *NR − �N + 12 V$"$R − `"$ . (2.53) 

Consequently, its derivative with respect to N yields with the substitution "$ = � − N 

 
∂Πef�N, `!∂x =  *N − � + V$�N − �! + `. (2.54) 

Setting this derivative to zero and solving for the unknown displacement N leads to 

 N = � − ` + V$�* + V$  . (2.55) 

In contrast to the Lagrange multiplier and penalty method now some contact iterations have to 

be performed. Table 2.1 shows the results of these iterations for V$ = 100 Á 3⁄ = �Ó4;>. All 

other values are chosen as in the section before for this problem. Obviously convergence to 

the correct solution N = 0.13 is reached rather fast. 

For the FEM example in Fig. 2.3 a contact penetration in the order of 10ÄÌ33 is computed 

Table 2.1 Displacements of simple spring contact problem computed with augmented 

Lagrange method 

Iteration  ` [Á] Displacement N [3] 

0 0 0.10909091 

1 0.90909091 0.10082645 

2 0.99173554 0.10007513 

3 0.99924869 0.10000683 

4 0.9999317 0.10000062 

5 0.99999379 0.10000006 

6 0.99999944 0.10000001 
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with a commercial FE tool using a penetration tolerance of 0.1% of the characteristic element 

length of 1mm, which gives \ = 10ÄS33 (0.1% of 1mm). This result was achieved in just 

one iteration because the penalty stiffness V$ was chosen identically as for the penalty 

method, which finally leads to the same result as for the penalty method. 

2.2.4 Perturbed Lagrange Method 

The perturbed Lagrange formulation [131] is a regularization of the Lagrange multiplier 

method, which remedies some unfavorable numerical properties of the Lagrange multiplier 

method (e.g. discontinuity of displacements at time of impact). The contact energy is defined 

as 

 FIGH = − 12V$ 0�0 − 0��$ , (2.56) 

where the first term is the regularization term containing a constant V$ with typically very 

high values similar as in the penalty method. The energy functional of the principle of the 

minimum of the potential energy for a mechanical system with contact conditions then 

becomes 

 Πgf�., 0! =  Π�.! + FIGH = Π�.! − 12V$ 0�0 − 0��$. (2.57) 

If the KKT conditions  

 ∇�-�., 0! = ∂Π�.!∂. − ∂�$∂. � 0 =  ², (2.58a) 

and 

 ∇·-�., 0! = − 1V$ 0−�$ ≤ ² (2.58b) 

are applied, we get equations for the determination of the unknowns . and 0.  

To illustrate the perturbed Lagrange method, the simple spring example (2.35), (2.36) is used 

again. The Lagrange function reads as 

 -�N, `! =  12 *NR − �N − 12V$ `R − `�� − N!. (2.59) 

Conditions (2.58a) and (2.58b) give 

 
�-�N, `!�N =  *N − � + ` = 0, (2.60) 

 
�-�N, `!�` =  − V̀$ + N − � ≤ 0. (2.61) 

Supposing equality in the last equation, ` can be determined as  

 ` =  V$�N − �!. (2.62) 

Substituting this in (2.60) results in 
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 N =  � + V$�* + V$ . (2.63) 

For the values used before (� = 2Á, � = 0.13 and * = 10 Á 3⁄ ) and a penalty parameter of V$ = 100 Á 3⁄  a displacement of N ≈ 0.109m is calculated. For V$ → ∞ the exact solution N = � = 0.1m is obtained. Obviously (2.63) is identical to the result of the penalty method 

(2.49). Therefore the perturbed Lagrange method is more of theoretical interest and not 

implemented in widely used commercial FE codes. 

2.3 Determination of Gap Size 

In all the strategies and algorithms discussed above the gap size "$ is an important quantity. 

In a FEM computation, the determination of this parameter is not as trivial as it seems to be at 

a first glance. Therefore, the most important methods for the calculation of the gap size 

between two bodies or surfaces in contact are presented in the following. For reasons of 

simplicity all considerations are restricted to the two-dimensional case. 

2.3.1 Node-to-Node Approach 

The node-to-node contact approach is the simplest possibility for determining the gap size. 

However, it is only applicable if identical meshes with coincident nodes are used at both 

contact pairs (see Fig. 2.7) and, therefore, has limited application. Since a large tangential 

movement is not allowed in this formulation, it can only be applied to geometrically linear 

problems. According to Fig. 2.7 the gap size between two nodes is computed as 

 "�,$ = �.�� − .�
��5�
 + "�# (2.64) 

with "�# being the initial normal distance of the i-th node pair, displacement vectors .�
 and .�� of the associated nodes and unit normal vector 5�
 on body A at node i. Due to the 

mentioned limitations of the node-to-node approach, it is not used anymore in commercial 

tools nowadays. 

 

Fig. 2.7    Computation of gap-size "$ with node-to-node approach 
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2.3.2 Node-to-Surface Approach 

In the node-to-surface approach it is necessary to classify the two surfaces of the bodies 

getting into contact as master and slave surfaces. The distance "� between the two surfaces is 

then computed as the normal distance of a node of the slave surface to a segment of the 

master surface (Fig. 2.8). The master segment is defined by two master nodes (in the two-

dimensional case). By this procedure, only penetrations of the slave surface into the master 

surface are checked. It is not noticed by the algorithm if a master node penetrates the slave 

surface. For this reason, better results are typically obtained by choosing the surface with the 

finer mesh to be the slave surface. 

 

Fig. 2.8    Computation of gap-size "$ with node-to-surface approach 

If the vector � is defined as the vector pointing from master node 1 to the slave node S, the 

gap size "$ can be calculated with the help of the unit normal vector 5 on the master surface 

as  

 "$ = ��5. (2.65) 

For some configurations this algorithm may fail or cause problems [151] as shown in Fig. 2.9. 

In Fig. 2.9a no projection of the slave node onto a specific master segment is possible, which 

means that the slave node is a kind of blind spot. If the master surface moves towards the 

slave surface within the dashed cone there will be a penetration without detection. Another 

difficult situation is shown in Fig. 2.9b where the gap size is not unique and can oscillate, 

which means an oscillation of the contact stiffness. By this, convergence problems may be 

caused. In case of Fig. 2.9c the gap size cannot be determined because the normal from the 

slave node to the master surface lies outside the master segment. 

The last effect can be demonstrated for a very simple FE example where the Lagrange 

multiplier method is used as contact algorithm. The upper two elements in Fig. 2.10a (body 

a) b) c) 

Fig. 2.9    Difficult situations for node-to-surface approach [151] 



36          2   Contact Modeling 

 

Body A 

Body B 

Master surface 

Slave surface 

B) are pressed against the lower element (body A) by load 7, which is fixed at the ground. At 

first the slave surface is the contact surface of the upper two elements. As it can be seen in 

Fig. 2.10b, this leads to a penetration of body B into body A due to the fact that no gap size 

can be determined for the two outer slave nodes. Also a change of master and slave surface 

(Fig. 2.10c) does not completely resolve the problem since the master surface has now a finer 

mesh and may penetrate the slave surface. Only a finer mesh of body B leads to a 

qualitatively better solution (Fig. 2.10d). The deformation scale factor, which is a constant 

multiplied to all nodal displacement values, is the same for all figures.  

a)  

 

 

 

 

 

b) 

c) 

 

 

 

 

 

d) 

Fig. 2.10    Simple contact problem of two bodies pressed against each other (a) with 

solutions of node-to-surface approach with b) body A as master and body B as 

slave, c) body B as master and body A as slave, and d) with finer mesh (d) 

Instead of using a finer mesh for the contact surfaces, also the application of a so-called two-

pass-contact strategy can improve the result [131,136]. In such a formulation master and slave 

surfaces are exchanged and the contact situation is checked again. Of course, this has the 

disadvantage of an increased computational effort. 

Another problem of the node-to-surface approach is related to the correct load distribution in 

the contact interface which appears in combination with the penalty algorithm. Let us 

consider the simple contact problem of Fig. 2.11a consisting of three finite elements. The two 

upper elements are pressed against the lower element with an equally distributed pressure 7 = �Ó4;>. The correct load distribution for the contact forces, which would lead to the 

expected deformation and penetration, is shown in Fig. 2.11b. However, by applying the 

penalty method we obtain the uniform load distribution of Fig. 2.11c since the contact 

stiffness of the penalty method is distributed equally to all slave nodes. Such a distribution of 

the contact forces results in the deformation of Fig. 2.11d which is physically not correct 

because the middle node penetrates the master surface deeper than the outer nodes. 

Of course, the described effects become much smaller for finer meshes. Nevertheless, these 

disadvantages of the node-to-surface approach led to the development of the surface-to-

Slave surface 

Master surface 

7 
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surface approach (sometimes also called segment-to-segment approach). On the other hand, 

the simplicity and computational effectiveness of the node-to-surface algorithm gave rise to 

the development of remedies for the described difficulties of the node-to-surface approach. 

Some of these are presented for example in [151] and [152].  

a) 

 

 

 

 

 

 

 

 

b) 

c) 

 

 

 

 

 

 

d) 

Fig. 2.11    Simple contact problem (a) with correct distribution of contact forces (b) and 

contact force distribution of classical node-to-surface approach in combination 

with penalty algorithm (c) leading to a deformed configuration (d) 

2.3.3 Surface-to-Surface Approach 

This approach was developed due to the disadvantages and inaccuracies of the simpler node-

to-surface approach. First ideas about the surface-to-surface strategy, which is sometimes also 

called segment-to-segment strategy, can be found in [131,117,116] with further developments 

in [153] and [48]. The basic idea is to use a piecewise constant approximation of the contact 

pressure which is discontinuous at the borders between so-called contact segments. By this 

the contact constraints are enforced over a contact segment in an average sense. A contact 

segment is defined by the normal projections of two nodes onto the surface of the other 

contact partner (see Fig. 2.12). 

For the definition of a contact segment it is important to determine the projections of the 

nodes of each surface onto the opposite surface, which can be done according to Fig. 2.12a 

and Fig. 2.12b by 

 U ∙ | � 
 R − � 
 ?| = � � � R − � 
 ?!= < � 
  (2.66) 
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with the tangential unit vector < = � � 
 R − � 
 ?! | � 
 R − � 
 ?|⁄ 
  and 

 U ∙ | � � R − � � ?| = � � 
 R − � � ?!= < � �  (2.67) 

with the tangential unit vector < = � � � R − � � ?! | � � R − � � ?|⁄ � . From this, the coordinates of 

the artificial or virtual nodes, resulting from the projection, become 

 �× = � 
 ? + 
 U ∙ | � 
 R − � 
 ?| < � = 
 U � 
 R + �1 − U 
 ! � 
 ? 
 , (2.68) 

 �× = � � ? + � U ∙ | � � R − � � ?| <  � = � U � � R + �1 − U � ! � � ? �  (2.69) 

with parameters U 
  and U �  computed from (2.66) and (2.67), respectively. Similarly, the 

displacement vectors of the artificial nodes are computed as 

 .× = 
 U . 
 R + �1 − U 
 ! . 
 ? 
 , (2.70) 

 .× = � U . � R + �1 − U � ! . � ? �  (2.71) 

from the displacements . � 1, . � 2, . � 2 and . � 1 of the adjacent FE nodes. Finally, it is possible 

to determine the gap sizes "?$ and "R$ as 

 "?$ = � . � R − .× 
 != 5 
 + "?$# , (2.72) 

 "R$ = � . 
 R − .× � != 5 + "R$# �  (2.73) 

with the initial gap sizes "?$# = Æ �× − � � R 
 Æ and "R$# = Æ � 
 R − �× � Æ under the assumption that 

the gap is open initially and the initial gap size positive therefore. For the contact computation 

the average gap size  

 "̅$ = 12 �"?$ + "R$! (2.74) 

is used. 

a) 

b) 

Fig. 2.12    Construction of contact segments (a) and geometry of contact segment (b) 
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Applying the surface-to-surface approach for the example problem in Fig. 2.10a yields the 

result in Fig. 2.13a. Here, the lower surface is defined as master and the upper surface as slave 

surface (analogously to Fig. 2.10b) and the Lagrange multiplier algorithm is used. Obviously 

the result is very good (same deformation scale factor as in Fig. 2.10). 

Also for the example problem in Fig. 2.11a the results are now correct in combination with 

the penalty algorithm, since the gap-size averaging of the surface-to-surface approach over the 

contact segments automatically leads to the correct load distribution in this case (Fig. 2.13b). 

a)  

 

 

 

b) 

Fig. 2.13    Result of surface-to-surface approach in combination with Lagrange multiplier 

contact algorithm for example problem in Fig. 2.10a (a) and contact force 

distribution of surface-to-surface approach in combination with penalty algorithm 

for example problem in Fig. 2.11a (b) 

Although the surface-to-surface approach has many advantages in comparison to the node-to-

surface approach and generally leads to better results, there are also some cases where the 

surface-to-surface approach has difficulties and may fail without special extensions [148,150].  

2.3.4 Mortar Approach 

So-called mortar methods originate from domain decomposition problems. The contact 

constraints are enforced in a weak sense which shows some parallels to the surface-to-surface 

approach. Nevertheless, there is a strong mathematical background, which is derived for 

example in [18,64] and [103]. In the latter paper also a review about the development of 

mortar methods is given. 

The basic idea of mortar methods is to use an intermediate contact interface which can be 

constructed from contact segments like the ones used in the surface-to-surface approach (Fig. 

2.14). It can be also useful to use directly one of the contact surfaces as intermediate surface 

as shown in [147]. For the interpolation of the gap function "$�]! along the intermediate 

surface, the interpolation functions of the contact surfaces have to be used, but for the 

interpolation of the Lagrange multipliers `�]! the functions can be chosen freely. However, 

this does not mean that the mortar approach is restricted to the Lagrange multiplier method. 

The penalty algorithm can also be applied, as in [120] for example. 

An advantage of the mortar approach is observable in the simulation of rotating contact 

surfaces (Fig. 2.15a). In this example a simple sliding contact bearing is modeled where the 

outer ring of the bearing is fixed at its outer nodes in all directions and the inner shaft is fixed 
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at its front in axial direction. Between the inner shaft and the outer ring a frictionless sliding 

contact is defined. By this, the shaft rotates due to a pressure load applied to the “blades”. For 

the contact computation the penalty algorithm in combination with different methods for the 

gap determination is used. The diagram in Fig. 2.15b shows the time-step size for a simulation 

with an implicit time-integration scheme over simulation time. The plotted time-step size per 

time-step is adjusted for all computations by the same algorithm of a commercial FEM tool, 

which is similar to the one presented in Section 7.4. The biggest time steps, and therefore the 

lowest overall computational time is achieved by the simulation using the mortar approach. 

a)  b)  

Fig. 2.15    Example problem with sliding contact (a) and comparison of time-step sizes for 

different contact approaches (b) 

 

Fig. 2.14    Intermediate contact surface of mortar method 
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3 Choice of Proper Finite Element Formulations and Numerical 
Problems 

At the beginning of the solution process of arbitrary boundary value problems by the finite 

element method the computational engineer has to choose a proper finite element formulation 

for the discretization of the structural domain. During more than 60 years of FEM history, 

many different finite element formulations have been developed. The first simple and straight 

forward approaches led to numerical problems like the locking phenomenon, which means 

that the element behaves far too stiff than actually intended. As a reaction, the concept of 

under-integrated elements has been developed, which leads to locking-free elements. On the 

other hand, these types of elements may behave too soft in certain situations and suffer from 

so called zero-energy modes, also called hourglass modes, since several elements in a mesh 

may form an hourglass-like shape in these modes. 

The described problems can be demonstrated by the very simple example of a plane cantilever 

beam (Fig. 3.1). For small deformations and slender beams the linearized Euler-Bernoulli 

beam theory is applicable and the maximum beam deflection is computed as  

 N � Ø�� = � ∙ 1S3� ∙ ' (3.1) 

with � as Young’s modulus of the used material and ' = 	ℎS 12⁄  as area moment of inertia 

for a rectangular cross section. By choosing � = 210000 Á 33R⁄ , � = 100Á, 1 = 10033, 	 = 133 and ℎ = 1033, a maximum bending displacement of N � Ø�� ≈ 1.90533 is 

calculated according to Equation (3.1). Since the shear force is not zero for this problem, we 

also can take into account the shear displacement to get a more accurate solution. According 

to Timoshenko’s beam theory [137,85] the maximum shear displacement is given by 

 N � Ø�� = � ∙ 1� ∙ �� (3.2) 

with shear modulus � = � [2�1 + b!]⁄  and the shear area �� = � *+⁄ . The shear correction 

parameter *+ depends on the cross section geometry and equals 6 5⁄  for a rectangular cross 

section. For a Poisson’s ratio of b = 0.3 and � = 	ℎ we obtain a shear displacement of N � Ø�� ≈ 0.01533. By using the principle of superposition, the overall deflection for the 

beam is NØ�� = N � Ø�� + N � Ø�� ≈ 1.9233. 

 

Fig. 3.1    Cantilever beam with rectangular cross section 
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For solving the same problem with the help of the finite element method, the beam geometry 

has to be meshed and a proper mesh density and finite element formulation have to be chosen. 

Let’s assume that we use two-dimensional solid elements for the meshing of the structure. 

Although the boundary conditions are identical for all computations in Fig. 3.2, the resulting 

maximum displacements are very diverse for the different models and used standard finite 

element formulations. With linear fully-integrated elements (Fig. 3.2a-c) the displacement is 

underestimated, but with increasing mesh density a convergence towards the correct result is 

recognizable. The under-integrated elements in Fig. 3.2d-f overestimate the displacement 

without converging to the correct result for a finer mesh. The worst result is obtained by using 

triangular elements (Fig. 3.2g-i). The most accurate and fast converging result is produced by 

elements with quadratic interpolation functions (Fig. 3.2j-l). It is interesting to note that the 

number of degrees of freedom (DOF) and thus the computational time is about the same for 

every column of Fig. 3.2 except for the last row.  

a)   NØ�� = 0.1833 
  ÜÝ� = 18 

 

b)   NØ�� = 0.5633 
  ÜÝ� = 30 

 

c) NØ�� = 1.7133 
 ÜÝ� = 126 

 
d)   NØ�� = 2.3733 
  ÜÝ� = 18 

 

e)   NØ�� = 2.5333 
  ÜÝ� = 30 

 

f)  NØ�� = 2.5633 
 ÜÝ� = 126 

 
g)   NØ�� = 0.07233 
  ÜÝ� = 18 

 

h)   NØ�� = 0.23 
  ÜÝ� = 30 

 

i)  NØ�� = 1.133 
 ÜÝ� = 126 

 
j)  NØ�� = 1.49733 
  ÜÝ� = 26 

 

k)  NØ�� = 1.9233 
  ÜÝ� = 42 

 

l)  NØ�� = 1.9233 
  ÜÝ� = 106 

 

Fig. 3.2    Simulation results with different mesh densities and finite element formulations: 

linear fully-integrated elements (a-c), linear underintegrated elements (d-f), linear 

triangular elements (g-i) and quadratic elements (j-l) 

In the following the reasons for the mentioned phenomena locking and hourglassing as well 

as for the differences in the computations of the introductory beam example are explained and 

successful strategies for avoiding these unwanted numerical problems are described. By this, 

the reader should gain a deeper understanding of possible numerical problems and the 

solution concepts, which is very important for the assessment of the computational results and 

their quality. Finally, three-point bending tests with different element types and anti-

hourglassing formulations are presented to give some examples for the mentioned phenomena 

and possible solutions. 
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3.1 Locking of Continuum Elements 

Continuum elements are the simplest formulations for finite elements because they do not 

contain any assumptions or simplifications about deformations or stress/strain behavior as it is 

done for shell elements or plane strain elements, for example. Typical continuum elements are 

three- or two-dimensional solid elements, which have only displacement degrees of freedom 

at their nodes. Such standard element formulations are the basis of every finite element code 

and consequently widely used. The locking phenomena of such elements can be separated 

into three groups and are explained in the following. 

3.1.1 Shear Locking 

Shear locking may appear for two- and three dimensional continuum elements as well as in 

the membrane part of shell-like elements. The effect can be illustrated for the example of two-

dimensional pure bending under the assumption of plane stress. Let us first derive the 

analytical solution for such a problem. We consider a rectangular plate with size 	 × ℎ and 

thickness > which is subjected to a constant bending moment 2 (Fig. 3.3a). To derive an 

analytical solution with regard to stresses and displacements, the classical theory of elasticity 

and an Airy stress function (named after George Biddell Airy (1801-1892) [1]) of the form 

 � = 22>ℎS QS (3.3) 

can be used [57]. The stresses are then calculated as  

i� = �R��QR = 122>ℎS Q, (3.4a) 

iX = �R��NR = 0, (3.4b) 

j�X = − �R��N�Q = 0 (3.4c) 

(see also Fig. 3.3b). Following from this, the strains  

 \� = 1� �i� − biX� = 122�>ℎS Q, (3.5a) 

 \X = 1� �iX − bi�� = − 122b�>ℎS Q, (3.5b) 

 \�X = 12� j�X = 0 (3.5c) 

are obtained by applying the equations of linear elasticity with Young’s modulus �, shear 

modulus � and Poisson’s ratio b. The displacements N� and  NX result from the integration of 

Equations (3.5) as 

 N� = � \� �N = 1� �122>ℎS NQ + Φ�Q!� (3.6a) 
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and 

 NX = � \X �Q = 1� �− 62b>ℎS QR + Ψ�N!�. (3.6b) 

From N��N = 0! = 0 follows immediately Φ�Q! = 0. Furthermore, the shear stresses (3.4c) 

vanish in a pure bending state, which means according to (3.5c) 

 W�X = 2\�X = �N��Q + �NX�N = 1� �122>ℎS N + �Ψ�N!�N � = 0. (3.7) 

By integrating Equation (3.7) w.r.t. N we get 

 Ψ�N! = − 62>ℎS NR + 
. (3.8) 

The still unknown integration constant 
 can be determined from the boundary condition NX�N = 0, Q = 0! = 0 as 
 = 0 and we finally get the resulting displacement field 

 N� = 122�>ℎS NQ, (3.9a) 

 NX = 1� ¸− 62b>ℎS QR − 62>ℎS NR¹. (3.9b) 

By treating 122 �>ℎS⁄  as a constant value we can simply write  

 N�~NQ, (3.10a) 

 NX~ �− bQR2 − NR2 � (3.10b) 

for a displacement field describing pure bending.  

a) 
 

 

 

 

b) 

Fig. 3.3    Pure bending situation of rectangular plate (a) and resulting stress distribution (b) 

Let us now address the question what happens if the derived displacement field for pure 

bending is applied to different types of finite elements. In other words, how does a finite 

element behave if the space around it is bended according to Equations (3.10)? To answer this 

question for a finite element type in general, it is useful to consider the deformations in the 

natural c, ^ element coordinate system. For this reason we introduce a simple transformation 

from an arbitrary rectangular finite element to the basic finite element according to Fig. 3.4 
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and get 

 c = 2N	  (3.11) 

and 

 ^ = 2Qℎ  , (3.12) 

respectively. 

 

Fig. 3.4    Transformation from N, Q coordinate system into natural c, ^ element coordinate 

system 

Before proceeding with applying the deformation field to the finite element we have to think 

about the so-called aliasing problem [102]. This term is borrowed from sample data theory 

and describes in our case the incorrect interpolation between nodal values. For example, a 

linear element cannot correctly map a quadratic deformation state. This effect is called 

aliasing and shown in Fig. 3.5, which shows the mapping of higher order functions in case of 

a linear element. The nodal values (circles) are transferred correctly but in between there is 

only a linear interpolation in the linear element. This knowledge is important for our further 

considerations. 

a) 

b) 

Fig. 3.5    Aliasing of quadratic (a) and cubic (b) functions 
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In the next step we apply the bending deformation field (3.10) to a bilinear two-dimensional 

continuum element. This is for example possible by using a pair of forces � at two opposite 

edges of the element (Fig. 3.6). We assume the bending deformation field causes the 

displacements  

 N� = NQ = c	2 ∙ ^ℎ2  (3.13a) 

and 

 NX = − bQR2 − NR2 = − b^RℎR8 − cR	R8  (3.13b) 

in the continuum. In the finite element these are mapped to the alias displacements 

 N � � = c	^ℎ4  (3.14a) 

and 

 N � X = − bℎR8 − 	R8  (3.14b) 

by using the substitutions cR → 1 and ^R → 1 because of the linear interpolation functions of 

the element. To clarify the situation again: the linear finite element undergoes the alias 

displacements of Equations (3.14) although a quadratic displacement field is applied to the 

surrounding continuum. From these alias displacements we can compute the resulting strains 

in the element as 

\� = � N � ��N = � N � ��c �c�N + � N � ��^ �^�N = 	^ℎ4 2	 + c	ℎ4 ∙ 0 = ^ℎ2 = Q, (3.15a) 

\X = � N � X�Q = � N � X�c �c�Q + � N � X�^ �^�Q = 0, (3.15b) 

\�X = 12 �� N � ��Q + � N � X�N � 

(3.15c)  = 12 �� N � ��c �c�Q + � N � ��^ �^�Q + � N � X�c �c�N + � N � X�^ �^�N� 

 = 12 ¸	^ℎ4 ∙ 0 + c	ℎ4 2ℎ + 0 ∙ 2	 + 0 ∙ 0¹ = c	4 = N2 . 
With Hooke’s law [138] for the plane stress state 

  i� = �1 − bR �\� + b\X�,   iX = �1 − bR �\X + b\��,   j�X = �1 + b \�X (3.16) 

we get the stresses 

i� = �1 − bR Q, (3.17a) 

iX = �b1 − bR Q, (3.17b) 
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j�X = �2�1 + b! N. (3.17c) 

Comparing these results with the analytical results from Equations (3.4) we have to 

experience that in contrast to the analytical solution the stresses iX and j�X are not zero in the 

finite element (compare also Fig. 3.3b and Fig. 3.6). These additional stresses, which are 

called parasitic stresses, do also contribute to the strain energy  

  F��� = 12 i�6\�6 (3.18) 

if the associated strains are non-zero. This is obviously the case for j�X. By this, the strain 

energy stored in the element is higher than it actually should be, which on the other hand must 

result in smaller bending deformations, i.e. the element locks. In other words, the bending 

deformations are smaller due to the presence of parasitic shear strains and stresses. 

 

Fig. 3.6    Deformation behavior and stresses of a bilinear finite element under pure bending 

The derived behavior of the bilinear finite element can also be observed in real finite element 

computations. Fig. 3.7 shows a simple beam model subjected to a bending load case. The 

bending moment is applied by a pair of forces (� = 1Á) at the right end of the model and the 

reaction forces at the left end create the second moment. The structure is meshed with five 

quadratic bilinear finite elements of equal size and form and a linear elastic material model 

with � = 210000Á/33R and b = 0.3 is used.  

 

Fig. 3.7    Beam under pure bending 

The computed strains in Fig. 3.8 confirm the results of the hand computation. The strain 

coordinate \� varies linearly in Q-direction, \X equals zero from a numerical point of view and 

the parasitic strain \�X is distributed linearly in N-direction in every element as predicted by 

Equations (3.15a-c).  
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Also the stresses in Fig. 3.9 confirm the theoretical results of Equations (3.17a-c). The 

stresses i� and iX vary linearly over the beam thickness in Q-direction, where the difference 

between these two stress coordinates is just the factor b. The parasitic stress j�X is linearly 

distributed in N-direction in every element. It is interesting to observe that the parasitic 

stresses j�X as well as the parasitic strains \�X become zero for c = 0. This means the 

computed stresses and strains are correct only in this region of the finite element. Stresses and 

strains are also evaluated at discrete points in an element, the so-called integration points [11]. 

These integration or Gauss points have fixed positions in the element. Their number depends 

on the dimensionality of the element and the shape functions. The used two-dimensional 

bilinear elements of the example above need four integration points for an exact integration of 

the functions which are necessary for the computation of the element stiffness matrix. The 

positions of the integration points for the bilinear element are at c = ± 1 √3⁄  and ^ =± 1 √3⁄  with respect to Fig. 3.4b. Hence, the computed stresses j�X and strains \�X are not 

zero. But this knowledge gives us a first idea for the construction of a shear locking free finite 

element. If the numerical integration for the element stiffness matrix and therefore the stress 

and strain evaluation would be done at c = 0 and ^ = 0 the computed stresses would be 

correct. We keep this in mind and will discuss this so-called principle of underintegrated 

elements in later sections. 

Next, we take a look at the behavior of other two-dimensional finite element formulations 

with respect to parasitic strains and stresses. It is also possible to mesh the beam problem with 

a) 

 

  

b) 

 

  

c) 

  

Fig. 3.8    Computed strains for beam subjected to bending with bilinear finite elements 

\� 

\X 

\�X 
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linear triangular elements. In this case each bilinear rectangular element is divided into two 

triangular elements. Fig. 3.10 shows two such linear triangular elements subjected to the 

quadratic deformation field (3.10). These triangular elements are exactly integrated by just 

one integration point per element [102] although also other integration rules with more 

integration points are possible but more costly and therefore rarely used [35]. Basically the 

deformation behavior is the same as for rectangular elements since the same linear 

interpolation functions are used. This leads to a constant stress state in the element for all 

stress coordinates (Fig. 3.10), and thus not even the linear behavior of the bending stress i� is 

correctly captured within the element. Consequently the locking effect is even stronger than 

for rectangular elements, which explains the stiffer behavior of the beam model with 

a) 

   

b) 

  

 

c) 

  

 

Fig. 3.9    Computed stresses for beam subjected to bending with bilinear finite elements 

 

Fig. 3.10    Deformation behavior and stresses of two linear triangular finite elements under 

pure bending 

i� 

iX 

j�X 
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triangular elements in Fig. 3.2. For this reason linear triangular elements (in the two-

dimensional case) and linear tetrahedral elements (in the three-dimensional case) should be 

avoided for bending problems. 

Finally, we want to consider a biquadratic rectangular element (Fig. 3.11) and apply again the 

displacement field (3.13) to the surrounding continuum. In this case of a finite element with 

quadratic interpolation functions, these displacements can be captured by the element without 

any aliasing. Consequently, the strains can be computed directly and become 

\� = �N��N = Q, (3.19a) 

\X = �NX�Q = −bQ, (3.19b) 

\�X = 12 ��N��Q + �NX�N � = 12 �N − N! = 0 (3.19c) 

and by using Hooke’s law (3.16) the stresses i� = �Q, (3.20a) iX = 0, (3.20b) j�X = 0. (3.20c) 

This strain and stress distribution, resulting from a prescribed displacement, corresponds 

qualitatively to the analytical results of Equations (3.4), resulting from a prescribed bending 

load, which shows that biquadratic finite elements are able to compute bending strains and 

stresses correctly because of their higher-order shape functions (compare Fig. 3.11 and Fig. 

3.3b). Because there are no parasitic strains or stresses, locking will not appear for such 

bending load cases. 

 

Fig. 3.11    Deformation behavior and stresses of a biquadratic finite element under pure 

bending 

Also the FEM computation of the beam example in Fig. 3.12 confirms these results. The 

strain coordinate \� varies linearly in Q-direction, \X differs from \� by a factor of �– b� and \�X equals zero. The corresponding stresses are displayed in Fig. 3.13. The only non-zero 

stress coordinate is i� as predicted in Equations (3.20a-c). 
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a) 

 

 
  

b) 

 

  

c) 

 

  

Fig. 3.12    Computed strains for beam subjected to bending with biquadratic finite elements 

a) 

 

  

b) 

 

  

c) 

 

  

Fig. 3.13    Computed stresses for beam subjected to bending with biquadratic finite elements 
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3.1.2 Trapezoidal Locking 

Trapezoidal locking appears for example if a curved structure is subjected to bending loads or 

if non-regular meshes are used. In both cases the mesh contains trapezoidal shaped finite 

elements (Fig. 3.14). 

a) b) 

Fig. 3.14    Non-regular mesh (a) and mesh of a curved structure (b) 

To recognize the effect of the trapezoidal element shape onto parasitic stresses it is again 

necessary to perform a transformation from the N, Q coordinate system into the natural c, ^ 

element coordinate system. According to Fig. 3.15 we get for small angles U  

 ^ = 2Qℎ  (3.21) 

and 

 c = 2N	�Q! ≈ 2N	 − 2UQ    ⇒    N = c�	 − U^ℎ!2 . (3.22) 

 
 

Fig. 3.15    Transformation from N, Q coordinate system into natural c, ^ element coordinate 

system for trapezoidal element 

If we assume a pure bending deformation of the continuum according to (3.13) like for the 

rectangular element before, the displacements 
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N� = NQ = c�	 − U^ℎ!2 ∙ ^ℎ2 = c4 �	ℎ^ − UℎR^R! (3.23a) 

and 

NX 

 
 

= − bQR2 − NR2 = − b^RℎR8 − cR�	 − U^ℎ!R8  

= − bℎR8 ^R − cR8 �	R − 2	U^ℎ + URℎR^R! 

(3.23b) 

should follow in the element. But due to the linear shape functions we get with the 

substitutions cR → 1 and ^R → 1 according to Fig. 3.5 the alias displacements 

 N � � = c	^ℎ − UcℎR4  (3.24a) 

and 

 N � X = − bℎR8 − 	R − 2	U^ℎ + URℎR8 . (3.24b) 

in the element. Following from this, the strains 

\� 

 
 

= � N � ��N = � N � ��c �c�N + � N � ��^ �^�N = 	^ℎ − UℎR4 ∙ 2	 − 2UQ + c	ℎ4 ∙ 0 

= 	^ℎ − UℎR2�	 − 2UQ! = 2Q	 − UℎR2�	 − 2UQ!, (3.25a) 

\X = � N � X�Q = � N � X�c �c�Q + � N � X�^ �^�Q = 0 + 	Uℎ4 ∙ 2ℎ = 	U2 , (3.25b) 

\�X = 12 �� N � ��Q + � N � X�N � = 12 �� N � ��c �c�Q + � N � ��^ �^�Q + � N � X�c �c�N + � N � X�^ �^�N� 

= 12 �	^ℎ − UℎR4 ∙ 4UN�	 − 2UQ!R + c	ℎ4 2ℎ + 0 + 0� = N�	R − URℎR!2�	 − 2UQ!R  

(3.25c) 

are obtained. The corresponding stresses can be computed with (3.16) as 

i� = �2�1 − bR! �2Q	 − UℎR	 − 2UQ + b	U�,  (3.26a) 

iX = �2�1 − bR! �	U + b ∙ 2Q	 − UℎR	 − 2UQ �, (3.26b) 

j�X = �2�1 − bR! �N�	R − URℎR!�	 − 2UQ!R �. (3.26c) 

Obviously, the angle U describing the initial trapezoidal element distortion influences the 

amount of the parasitic stresses. With respect to the strains one can notice that in contrast to a 

rectangular finite element the strain component \X is not zero anymore, but takes a constant 

value for U ≠ 0. 
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For the visualization of these results we use again the FEM example of Fig. 3.7, but in 

opposite to the regular meshes used for example in Fig. 3.8, the middle element is initially 

distorted such that it takes a trapezoidal shape with U = 0.1æ�� as shown in Fig. 3.16. The 

computed strains Fig. 3.17 show the non-zero strain coordinate \X in the trapezoidal shaped 

middle element. The behavior of the other strain coordinates is similar as in Fig. 3.8 since the 

angle U is small. The stress distribution is also similar to the one of the structured mesh 

(compare Fig. 3.18 and Fig. 3.9). Since the strain coordinate \X is non-zero for the trapezoidal 

shaped element(s), there is a contribution to the strain energy according to Equation (3.18) 

and the locking phenomenon is increased, which leads to a smaller maximum deflection of 

the model (Fig. 3.19). 

 

Fig. 3.16    Beam under pure bending with non-regular mesh 

 

a) 

 

  

b) 

 

  

c) 

 

 

Fig. 3.17    Computed strains for beam subjected to bending with bilinear finite elements in a 

non-regular mesh 
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a) 

 

  

b) 

 

  

Fig. 3.19    Displacements of beam for regular (a) and non-regular mesh (b) 

3.1.3 Volumetric Locking 

Volumetric locking is sometimes also called dilatation locking and is caused by the Poisson’s 

ratio of the used material. It appears for example in bending problems. For b = 0 no 

a) 

 

  

b) 

 

  

c) 

 

  

Fig. 3.18    Computed stresses for beam subjected to bending with bilinear finite elements in 

a non-regular mesh 
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volumetric locking is visible, but the stronger the materials incompressibility becomes the 

stronger becomes the stiffening effect and reaches its maximum for an incompressible 

material with b = 0.5.  

An illustrative explanation for the stiffening effect can be given by Fig. 3.20. The bending 

moment applied to the bilinear element causes a thickening of the fibers in the compression 

zone and a thinning in the tension zone due to the Poisson effect. Following from this, the 

middle line of the element should move upwards, but since the nodes don’t undergo any 

vertical movement (see Fig. 3.8b), a linear shape function is not able to capture this behavior. 

The middle line is therefore fixed (locked) at its middle position which causes the locking. 

 

Fig. 3.20    Poisson effect under bending moment [81] 

The biggest effect of the Poisson’s ratio with respect to locking is observable if a plane strain 

state (\+ = 0) is assumed. In this case Hooke’s law [138] becomes 

i� = ��1 + b!�1 − 2b! ç�1 − b!\� + b\Xè, (3.27a) 

iX = ��1 + b!�1 − 2b! ç�1 − b!\X + b\�è, (3.27b) 

i+ = b�i� + iX�, (3.27c) 

j�X = �1 + b \�X (3.27d) 

or in strain explicit form 

\� = 1 − bR� çi� − b1 − b iXè, (3.28a) 

\X = 1 − bR� çiX − b1 − b i�è, (3.28b) 

\+ = 0, (3.28c) 

\�X = 1 + b� j�X. (3.28d) 

Similar as in Section 3.1.1, a displacement field describing pure bending can be derived by 

applying (3.4) in (3.28) and subsequent integration as 

 N� = NQ, (3.29a) 

 NX = − NR2 − bQR2�1 − b! . (3.29b) 
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From this we obtain the correct strains  

\� = �N��N = Q, (3.30a) 

\X = �NX�Q = − b1 − b Q, (3.30b) 

\+ = 0 (3.30c) 

\�X = 12 ��N��Q + �NX�N � = 0, (3.30d) 

and with (3.27) the stresses 

i� = �1 − bR Q, (3.31a) 

iX = 0, (3.31b) 

i+ = �b1 − bR Q (3.31c) 

j�X = 0. (3.31d) 

For a bilinear rectangular element, we firstly have to transform the displacement field (3.29) 

to the natural element coordinate system according to (3.11) and (3.12) as  

 N� = c	2 ∙ ^ℎ2 , (3.32a) 

 NX = − cR	R8 − b^RℎR8�1 − b! . (3.32b) 

Following from this the alias displacements for a bilinear element, which are the 

displacements the element can actually describe, are again obtained by the substitutions cR → 1 and ^R → 1 according to Fig. 3.5 as 

 N � � = c	^ℎ4 , (3.33a) 

 N � X = − 	R8 − bℎR8�1 − b! . (3.33b) 

Computing the strains from these alias displacements yields 

\� = � N � ��N = � N � ��c �c�N + � N � ��^ �^�N = 	^ℎ4 ∙ 2	 + c	ℎ4 ∙ 0 = ^ℎ2 = Q, (3.34a) 

\X = � N � X�Q = � N � X�c �c�Q + � N � X�^ �^�Q = 0, (3.34b) 

\+ = 0, (3.34c) 
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\�X 

 
 
 
 
 

= 12 �� N � ��Q + � N � X�N � 

= 12 �� N � ��c �c�Q + � N � ��^ �^�Q + � N � X�c �c�N + � N � X�^ �^�N� 

= 12 ¸	^ℎ4 ∙ 0 + c	ℎ4 2ℎ + 0 + 0¹ = c	4 = N2 . 
(3.34d) 

Consequently, with (3.27) we get for the stresses in the element 

i� = ��1 − b!�1 + b!�1 − 2b! Q, (3.35a) 

iX = �b�1 + b!�1 − 2b! Q, (3.35b) 

i+ = b�i� + iX� = �b�1 + b!�1 − 2b! Q, (3.35c) 

j�X = �2�1 + b! N. (3.35d) 

Especially the shear stress coordinate j�X is a parasitic stress since it contributes to the strain 

energy due to \�X ≠ 0. Also i� is not computed correctly in comparison to the analytical 

solution (3.31a). This becomes even clearer if the analytically computed strain energy 

 F ���é �é��� P�ê������  

 
 

= 12 i�6\�6 = 12 ¸ �1 − bR QR + 0 + 0 + 0¹ 

= �QR2�1 − bR! 
(3.36) 

and the numerically computed strain energy of the bilinear element 

 F�é��� P�ê������ �CØ  
 

 
 

= 12 � ��1 − b!�1 + b!�1 − 2b! QR + 0 + 0 + 2 ∙ �2�1 + b! NR2 � 

= �2�1 + b! � 1 − b1 − 2b QR + NR2 � 

(3.37) 

are compared. Now both sources of errors are visible: the NR term results from spurious shear 

stresses/strains and is responsible for the shear locking and the term in front of QR is 

responsible for volumetric locking. 

For the plane stress state (3.16) the situation is not that critical. The displacement field (3.13) 

leads to the analytically computed strains 

\� = �N��N = Q, (3.38a) 

\X = �NX�Q = −bQ, (3.38b) 

\�X = 12 ��N��Q + �NX�N � = 0, (3.38c) 
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and with (3.16) to the plane stresses 

i� = �1 − bR �\� + b\X� = �Q, (3.39a) 

iX = �1 − bR �\X + b\�� = 0, (3.39b) 

j�X = �1 + b \�X = 0 (3.39c) 

and finally to the strain energy F ���é �é��� P�ê�PP���  = �QR + 0 + 0 + 0 = �QR. (3.40) 

If a bilinear element is subjected to the same displacement field we get the strains and stresses 

of Equations (3.15) and (3.17) and consequently the strain energy stored in the bilinear 

element 

F �CØ �é��� P�ê�PP���  
 
 
 

= 12 ¸ �Q1 − bR Q + 0 + 0 + 2 ∙ �N2�1 + b! N2¹ 

= �2 � QR1 − bR + NR2�1 + b!�. (3.41) 

Fig. 3.21 shows the strain energy dependence of the Poisson’s ratio b for the plane stress state 

and the plane strain state for constant values � = 1 and N = Q = 5. As it can be seen, the 

strain energy in the bilinear plane strain element (“Numerical plane strain”) increases 

dramatically for b → 0.5. It should also be noted that volumetric locking does not only appear 

for bending problems [102]. 

 

Fig. 3.21    Strain energy under pure bending in dependence of Poisson’s ratio 

3.2 Locking of Structural Elements 

In contrast to continuum elements, structural elements are based on certain assumptions about 

the stress state or the kinematics and properties of a structure. This leads on the one hand to 

(3.41) 

(3.40) 

(3.37) 

(3.36) 
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efficient element formulations and faster computations, but on the other hand the 

computational results are only accurate if the assumptions used in the element formulation are 

at least approximately fulfilled also for the real structure. Well-known examples for structural 

elements are beam and shell elements. Both incorporate assumptions about the governing 

stress state as well as for the kinematic behavior, which are approximately fulfilled for slender 

beams and thin shell structures without loading in thickness direction and moderate curvature. 

Especially for shell elements there is an enormous number of different formulations that has 

been developed during the last decades. One of the first systematizations of the “zoo” of shell 

element formulations can be found in [106]. Due to the huge number of publications in this 

field a review about shell element formulations and their history would by far go beyond the 

scope of this section. More information can be found in some special textbooks, e.g. [29]. 

Nevertheless, a brief overview about different shell element formulations is given in Table 

3.1, which is an attempt of grouping the diverse formulations with regard to their number of 

Table 3.1 Categories of shell element formulations 

3-parameter models 

(Kirchhoff-Love) 

• Cross sections stay 
plane and 
undeformed 

• No shear 
deformation 

i+ = 0, W�+ = WX+ = 0 

Plane stress state 

 

5-parameter models 

(Reissner-Mindlin) 

• Cross sections stay 
plane and 
undeformed 

• Constant shear 
distribution 

i+ = 0, W�+ ≠ 0, WX+ ≠ 0 

 

6- or 7-parameter  

models 

• Cross sections stay 
plane but may 
deform 

i+ ≠ 0, \+ ≠ 0, W�+ ≠ 0, WX+ ≠ 0 

Unmodified 3D 

constitutive laws 

 

Higher order models 

(multi layer or director) 

• Cross sections need 
not stay plane and 
may deform 

i+ ≠ 0, \+ ≠ 0, W�+ ≠ 0, WX+ ≠ 0 
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� R  �?  �?  �R  

N 

  

parameters following [60]. Typically, 5-parameter models based on the Reissner-Mindlin 

shear deformation theory [123,105] are used in commercial FE codes. The simpler Kirchhoff-

Love formulations [76,99] are also implemented sometimes. It might be surprising, but from a 

numerical point of view the implementation of the shear deformation-free Kirchhoff-Love 

theory for shells or Euler-Bernoulli theory for beams [91] is more elaborate than for the 

constant shear Reissner-Mindlin shells or Timoshenko beams [137]. This is grounded in the 

demand for constant shear force distributions. In the Euler-Bernoulli beam the shear force is 

proportional to the third derivative of the deflection 8�N!~J′′′�N! which is why at least a 

third-order interpolation polynomial for the displacement function J�N! is necessary. For a 

shear flexible theory, a first-order polynomial is sufficient. The same applies to shell 

elements: Kirchhoff-Love elements request 
? continuity of the interpolation function 

(compatibility of displacements and rotations), whereas Reissner-Mindlin formulations need 

just 
# continuity (compatibility of displacements). 

3.2.1 Curvature-Thickness Locking 

Curvature-thickness locking is a special case of trapezoidal locking. It is limited to three-

dimensional shell elements with 7-parameter formulations and thickness flexibility if applied 

in the mesh of curved structures (Fig. 3.22). The described elements are derived from 

degenerated continuum elements and the same kinematics are used. By this, the locking 

behavior is very similar as described in Section 0. The parasitic strains and stresses in 

thickness direction lead to a stiffening of the element, which does not appear for initially 

plane structures and can be minimized by a finer mesh. A more detailed description of this 

effect can be found in [122] and [23]. 

 

Fig. 3.22    Curved structure meshed with shell elements and directors of undeformed state 

(�) and deformed state (�) under bending 

3.2.2 Poisson Locking 

Poisson locking is a similar effect like the volumetric locking for continuum elements. In 5-

parameter formulations (Reissner-Mindlin formulations) there is no thickness flexibility 

which makes it impossible for the element to capture the thickness strain distribution 

according to  

 \+ = 1� ìi+ − b�i� + iX�í (3.42) 

for example in bending situations, caused by the Poisson effect, correctly.  The obstruction of 

the thickness strain would actually cause parasitic stresses in thickness direction but due to the 
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premise i+ = 0, which holds for Reissner-Mindlin formulations, locking is avoided. 

For shell element formulations with thickness flexibility (6 or more parameters), which are 

using a linear displacement interpolation function in thickness direction and thus are able to 

produce constant shear distributions, locking will appear. The reason for this behavior is that 

these elements are able to compute stresses in thickness direction (similar as described in 

Section 3.1.1) which finally results in a contribution to the strain energy. Only for membrane 

stress states the constant strain distribution fits to the constant stress distribution in thickness 

direction. A remedy for the described phenomenon is the introduction of a quadratic 

displacement interpolation function in thickness direction allowing linear strain distributions. 

3.2.3 Transverse Shear Locking 

One of the most important stiffening effects for structural elements is the transverse shear 

locking. In contrast to the shear locking of continuum elements, the phrase “transverse” 

indicates the direction of the effect for structural elements having a particular thickness 

direction which is not the case for continuum elements. Affected are structural elements based 

on Reissner-Mindlin kinematics (5-parameter shells or Timoshenko beams). The phenomenon 

does not appear for shear deformation free elements like Kirchhoff-Love shells or Euler-

Bernoulli beams. 

In order to describe the locking effect, the example of a Timoshenko beam element is used. 

According to Fig. 3.23a, the interpolation functions for the transverse displacement J and 

rotations n for a linear plane element are 

 J�N! = ç1 − N1 è J? + N1 JR O  (3.43) 

and  

 n�N! = ç1 − N1 è n? + N1 nR O  (3.44) 

using the kinematics 

 W = \�+ + \+� = �J�N + n,   _ = − �n�N  (3.45) 

with the shear strain W and the curvature _. By introducing the shear deformation area �P, the 

constitutive law becomes 

 8+ = ��PW,   2 = �'_. (3.46) 

The shear deformation area �P = � *+⁄  is defined as the cross section area � of the element 

divided by a shear correction parameter *+ which depends on the shape of the cross section. It 

takes into account and corrects the simplified shear deformation assumption of the Reissner-

Mindlin or Timoshenko theory, and can be calculated as 

 *+ = �8+R � j�+R d� 

  (3.47) 
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N   J? JR 

1 nR n? N   

1 W�N!O  

with 8+ being the shearing force [11]. Equation (3.47) is based on the assumption about the 

equality of shear deformation energies. Other possibilities for the computation of shear 

correction parameters are given in [36]. 

For a pure bending state (J? = JR = 0, −n? = nR = n) we get for the shear strain 

distribution  

 W�N! = � J O�N + n O = çN1 − 1è n + N1 n = n ¸2N1 − 1¹ O  (3.48) 

in the element and thus a linear distribution of the shear strains (Fig. 3.23b) which actually 

should be zero for a pure bending state. The reason for the non-zero and therefore parasitic 

shear distribution is again the used linear interpolation function for the displacements and 

rotations. According to (3.48) the shear distribution equals zero for all N only for n = 0 

which means that no deformation is present at all. 

a) b) 

Fig. 3.23    Plane Timoshenko beam element with bending degrees of freedom (a) and 

distribution of shear strain for pure bending load case (b) 

The parasitic shear strain W O  and the resulting parasitic shear stress j�+�N! = � W�N! O  can be 

eliminated by using a quadratic interpolation function  

 J�N! = ¸1 − 3 N1 + 2 çN1 èR¹ J? + ¸4 N1 − 4 çN1 èR¹ JR + O ¸− N1 + 2 çN1 èR¹ JS (3.49) 

for the transverse displacement combined with a linear rotation interpolation (3.44) which 

results in a quadratic element (Fig. 3.24). For the same boundary conditions as before 

(J? = JS = 0, −n? = nS = n) this leads to the shear strain distribution 

W O �N! 
 = 

 = 

 

 = 

� J O�N + n O  

¸− 31 + 4 N1R¹ J? + ¸41 − 8 N1R¹ JR + ¸− 11 + 4 N1R¹ JS 

+ ç1 − N1 è n? + N1 nS 

¸41 − 8 N1R¹ JR − ç1 − 2 N1 è n. 
(3.50) 

Obviously, it is now possible to fulfill the condition W O �N! = 0 also for N = 0 and N = 1 since 

 W�N = 0! = 41 JR − n O  (3.51) 

and 
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1 nS n? 

JR 
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N 2 ∙ >S 
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8R 

 W�N = 1! = − 41 JR + n O  (3.52) 

by  

 n = 41 JR, (3.53) 

which is a nonzero pure bending and shear-free deformation. 

 

Fig. 3.24    Plane Timoshenko beam element with quadratic interpolation function and 

bending degrees of freedom  

3.2.4 Membrane Locking 

Unfortunately, using second order shell or beam elements does not solve all locking 

problems. Especially for curved structures, membrane locking may appear. The effect is 

limited to a certain type of elements. Exposed to this phenomenon are beam and shell 

elements with quadratic interpolation functions. Linear beam elements or linear triangular 

shell elements are membrane locking free. As described in detail in [133,81,118], the reason 

for locking is the appearance of parasitic membrane strains and stresses due to the curvature 

of the structure, although the deformation should be free of these (Fig. 3.25). Affected are 

shear deformation free element formulations as well as elements including shear deformation, 

because the parasitic membrane strains do not depend on assumptions about the shear 

deformation behavior. As visible in Fig. 3.25, the membrane locking effect is much stronger 

for quadratic element formulations than for linear ones, although the bilinear element is 

initially distorted to achieve the curvature in the element, which is necessary for the locking. 

Additionally, the bilinear element is already modified such that transverse shear locking is 

avoided. 

 

Fig. 3.25    Curved structure meshed with a) linear and b) quadratic shell elements and c) 

resulting stiffness behavior (from [81]) 

a) b) c) 
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3.3 Concepts to Avoid Locking 

As demonstrated, the different types of locking can produce big errors in terms of 

displacements, stresses and strains. Thus, it is necessary to develop concepts for avoiding 

these unwanted effects. Probably the most important of these concepts is the concept of 

underintegration. As we will see, this strategy is quite simple and leads to very good results in 

many cases, but sometimes causes another unwanted effect, the so-called “Hourglassing”. 

Further approaches to circumvent locking are the Assumed Natural Strain method (ANS 

method), the Discrete Strain Gap method (DSG method) and the Enhanced Assumed Strain 

method (EAS method) which are also briefly discussed. 

3.3.1 Numerical Integration 

To understand the important concept of underintegration (or reduced integration) we start 

with a brief introduction to numerical integration, which is very important in the field of FEM 

to calculate stiffness matrices, mass matrices and element load vectors for example. Often the 

term quadrature is also used for numerical integration. This has some historical reasons and is 

based on the fact that ancient Greek mathematicians understood by quadrature the 

construction of a square having the same area as a figure. In dynamic computations, an 

additional numerical time-integration is necessary to solve the equations of motion, which is 

discussed in Chapter 5. Although for many simple problems analytical solutions are available, 

the numerical integration is often more effective and faster. 

The basic idea of many numerical integration procedures is to approximate the integral of a 

function ��N! in an interval [�, 	] by a summation of a number of function values ��NK! at 

certain support points NK multiplied by weighting factors JK according to 

 � ��N!dN ≈ �	 − �! � JK��NK!�
Kî#

ï
� . (3.54) 

In Fig. 3.26a the integral of the function ��N! between 	 and � can be approximated for 

instance by ð ��N!dN ≈ �	 − �! ∙ ñò���N#! + ��N?!�ï� . The accuracy of this result can be 

improved in two ways. The first possibility is to divide the interval [�, 	] into more segments 3 > 1 of width ℎ = �	 − �! 3⁄  (Fig. 3.26b) and summing up the integration results of all 

segments. The second possibility is to use more support points NK within the interval. 

With respect to the number and position of the support points within an interval, different 

integration or quadrature rules can be derived. If the support points NK are equally distributed 

across the interval and also the interval limits are used (N# = �, N� = 	), the integration rule 

belongs to the group of closed Newton-Cotes formulas. Within this group a number of 

different algorithms, depending on the number of necessary support points, described by the 

parameter 4, exist [30]. Table 3.2 shows some integration rules with the necessary weighting 

factors JK and the expected errors for the integration of a polynomial of order 4 (with cϵ[�, 	]). 
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� 	 N 

��N! ��N#! ��N?! ��NØ! 

ℎ ℎ 
� 	 N 

��N! ��N#! ��N?! a) b) 

Fig. 3.26    Numerical integration of a function in interval [�, 	] divided into one segment (a) 

and many segments (b) 

 

Table 3.2 Newton-Cotes quadrature rules 

4 Formula/weighting factors Error Name 

1 �	 − �! ��N#! + ��N?!2  
112 ℎS�′′�c! Trapezoid rule 

2 �	 − �! ��N#! + 4��N?! + ��NR!6  
190 ℎô��T!�c! Simpson’s rule 

3 �	 − �! ��N#! + 3��N?! + 3��NR! + ��NS!8  
380 ℎô��T!�c! 

Simpson’s 3/8 
rule 

4 

�	 − �! �7��N#! + 32��N?! + 12��NR!90 ¿ 
¿+ 32��NS! + 7��NT!90 � 

8945 ℎõ��Ì!�c! 
Milne’s/Boole’s 

rule 

5 

�	 − �! �19��N#! + 75��N?! + 50��NR!90 ¿ 
¿+ 50��NS! + 75��NT! + 19��Nô!90 � 

27512096 ℎõ��Ì!�c! 6-point rule 

6 

�	 − �! �41��N#! + 216��N?! + 27��NR!840 ¿ 
¿+ 272��NS! + 27��NT! + 216��Nô! + 41��NÌ!840 � 

91400 ℎÅ��ö!�c! Weddle’s rule 

 

1 2 ⋯ 3 
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� = N# N 

��N! 

	 = N? 

Trapezoid rule 

� N 

��N! 

	 

Gauss quadrature 

N# N? 

One can show that the Newton-Cotes formulas are exact for the integration of polynomials of 

order 4 + 1 for even 4 and of order 4 for uneven 4 [30]. For this reason Newton-Cotes 

formulas with an even number of 4 (e.g. Simpson rule) are preferable to formulas with 

uneven 4 (e.g. 3/8 rule). 

To demonstrate the application of the Newton-Cotes formulas we want to numerically 

integrate a third order polynomial where the analytical solution is known: ð NSdN = 1 4⁄?# . By 

using Simpson’s rule for this problem one gets ð NSdN = �1 − 0! ∙ ñø ∙ �0S + 4 ∙ 0. 5S +?#1S! = 1 4⁄ , which is the exact solution. The integration of a fourth order polynomial, e.g. ð NTdN = 1 5 = 0.2⁄?# , by Simpson’s rule gives ð NTdN ≈ �1 − 0! ∙ ñø ∙ �0T + 4 ∙ 0. 5T +?#1T! = 5 24 ≈ 0.208⁄ , which is not the exact solution anymore. To reduce the error, an 

integration rule using more support points has to be used (e.g. Milne’s/Boole’s rule) or the 

interval [�, 	] has to be divided into segments, which are separately integrated by Simpson’s 

rule. The first strategy leads e.g. by applying Milne’s/Boole’s rule to the exact result, the 

latter for two segments to ð NTdN = ð NTdN + ð NTdN?#.ô#.ô# ≈ �0.5! ∙ ñø ∙ �0T + 4 ∙ 0. 25T +?#0.5T! + �0.5! ∙ ñø ∙ �0.5T + 4 ∙ 0. 75T + 1T! ≈ 0.201. 

Another improvement of the integration accuracy is possible by not using equally distributed 

support points but particular ones. This leads to the idea of Gauss integration, where support 

points are determined such that the error of the algorithm is minimized. By this, the 

integration rule has more “degrees of freedom” and leads to more accurate results. The 

integration Equation (3.54) is still the same, but the points NK of the function evaluation and 

the weighting factors JK are different (Fig. 3.27). 

a) b) 

Fig. 3.27    Numerical integration of a function in interval [�, 	] with trapezoid rule (a) and 

two-point Gauss quadrature (b) 

The weighting factors and positions of function evaluations can be determined analytically 

from the exact solutions of the integration of polynomials of order 4 + 2 and lower [30]. 

Table 3.3 lists the necessary weighting factors and support point positions, i.e. Gauss points, 

for different numbers of evaluation points 4 + 1 within the interval [−1,1].  
The Gauss quadrature is exact for polynomials up to an order of 24 + 1. It should be noted 

that the values in Table 3.3 apply to the interval [−1,1]. To use these data for an arbitrary 
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interval [�, 	], a transformation of the Gauss points according to 

 � ��N!dN ≈ 	 − �2 � JK� ¸	 − �2 NK + � + 	2 ¹�
Kî#

ï
�  (3.55) 

is necessary. 

For demonstration of the Gauss quadrature, the same examples as for the Newton-Cotes 

integration are used. We start with the numerical integration of the simple cubic function. For 4 = 1 we get 

 � NSdN ≈ 12 �¸12 ∙ −1√3 + 12¹S + ¸12 ∙ 1√3 + 12¹S� = 14
?

#  (3.56) 

which is the exact solution obtained by evaluating the function ��N! at only two points 

instead of three as necessary for Simpson’s rule. For integrating the fourth-order polynomial 

exactly, three Gauss points are necessary which yields 

 � NTdN ≈ 12 ù59 ∙ ú− 12 ∙ û35 + 12üT + 89 ∙ ¸12¹T + 59 ∙ ú12 ∙ û35 + 12üTý = 15
?

# . (3.57) 

To achieve the same result with the help of Newton-Cotes integration (Milne’s/Boole’s rule), 

five function evaluations are required. 

Due to the higher accuracy of Gauss quadrature this integration scheme is preferred in FE 

systems for the computation of stiffness matrices, load vectors and so on. The necessary order 

of the integration depends on the used interpolation function of the integrand. If the used 

Table 3.3 Position of Gauss points and weighting factors  

4 Support points NK Weighting factors JK 

0 N# = 0 J# = 2 

1 N? = −N# = 1√3 J# = J? = 1 

2 NR = −N# = û35,   N? = 0 J# = JR = 59,   J? = 89 

3 
NS = −N# = 0.8611363116 NR = −N? = 0.3399810436 

J# = JS = 0.3478548451 J? = JR = 0.6521451549 

4 
NT = −N# = 0.9061798459 NS = −N? = 0.5384693102 NR = 0 

J# = JT = 0.2369268851 J? = JS = 0.4786286705 JR = 0.5688888889 
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number of Gauss points leads to an exact integration the procedure is called “full integration”. 

But strictly speaking, this full integration is only exact for perfectly shaped undeformed finite 

elements. The stronger the element deformation, the more inaccurate becomes the numerical 

integration, which is why a good element quality is important for an accurate result of FE 

computations. 

3.3.2 Reduced Integration 

As mentioned briefly, many locking phenomena can be avoided by the “trick” of 

underintegration, which means to use a lower integration order (less Gauss points) than 

actually necessary for an exact integration. For example, a plane bilinear solid element is not 

integrated with four but only with one Gauss point. This Gauss point is placed according to 

Table 3.3 in the middle of the element. Thus, an exact integration of the respective matrices is 

not possible anymore, which leads to small errors in the computation of the element’s 

stiffness matrix, and following from this the elimination of higher-order terms in the 

computed strain distribution. By this, for the bilinear element only constant strain 

distributions can be computed. As we have seen, the parasitic shear stresses in case of shear 

locking have a linear distribution across the element with a zero in the elements midpoint 

(Section 3.1.1). In the reduced integration process, the strains are now evaluated at this point 

and the computed shear stress \�X will be zero for a pure bending load which is correct. 

Unfortunately, also the bending strain \� will be evaluated at the same point and becomes 

zero too, which is not correct. This means that the strain energy in the element is zero and the 

applied loads lead to arbitrarily high displacements due to the principle of virtual work which 

postulates equality of internal and external work. As a consequence, at least two 

underintegrated solid elements have to be used in bending direction (thickness direction) to 

avoid infinitely high displacements (as done in Fig. 3.2). On the other hand, there are two 

important advantages in the concept of underintegration. The first one is that the computed 

displacements are not influenced by the shear locking phenomenon anymore, and the second 

one is an increased computational speed due to the reduced number of necessary function 

evaluations in the integration process. The latter one is especially important for nonlinear 

computations where the elements stiffness matrix is recalculated after every iteration or time-

step. 

For demonstration this principle is applied to the example of a linear Timoshenko beam 

element with length 1. Starting from the principle of virtual work [11], the weak form of the 

virtual inner work for a beam with Timoshenko kinematics [27] is 

 [F��� = � ����N![J� + n][[J� + n]dN + � �'�N!n′[n′dNé
#

é
# . (3.58) 

On the finite element basis this becomes 

 [ F O ��� = � [[ J� O + n O ]����N![ J O � + n O ]dN + � [ n′ O �'�N! n′ O dNé
#

é
#  (3.59) 
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where all functions with index ℎ are interpolated functions in the element. By using the linear 

interpolation functions (3.43) and (3.44) between displacements J� and rotations n� at the two 

element nodes we introduce the strain-displacement matrix q� for shear such that 

 q�. = q� ùJ?n?JRnR
ý = J O � + n O = − 11 J? + ç1 − N1 è n? + 11 JR + N1 nR (3.60) 

which yields by comparison 

 q� = þ− 11 1 − N1 11 N1 �. (3.61) 

For the bending term in Equation (3.59) we get  

 q�. = q� ùJ?n?JRnR
ý = n O ′ = − 11 n? + 11 nR (3.62) 

which gives 

 q� = þ0 − 11 0 11 �. (3.63) 

 Now we are able to write the inner virtual work of the element as 

 [ F O ��� = [.� � q������N!q�dN . + [.� � q�� �'�N!q�dN .é
#

é
# , (3.64) 

which can be reformulated by introducing elasticity matrices (1x1 matrices for homogenous, 

isotropic material) 

 t� = [����N!], (3.65) 

 t� = [�'�N!] (3.66) 

as 

 [ F O ��� = [.� � q��t�q�dN . + [.� � q�� t�q�dN .é
#

é
# = [.�w�. (3.67) 

where 

 w� = w� + w� = � q��t�q�dN + � q�� t�q�dNé
#

é
#  (3.68) 

is the element stiffness matrix. For reasons of simplicity we assume that the elasticity 

matrices t� and t� are constant (cross section does not change along the beam element in 

longitudinal direction). The bending part of the strain-displacement matrix q� contains 

constant derivatives of the linear interpolation functions, which means that just one Gauss 

point is necessary for exact integration. The shear part of the strain-displacement matrix q� 

includes linear functions which leads to quadratic integrals due to the multiplication in 
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Equation (3.68). Thus, for an exact integration at least two Gauss points are needed. For the 

simple integration of the bending part one gets 

 w� = � q�� t�q�dN = �'é
# � q�� q�dN =é

# �'q�� q�1 = �'1 ù0 0 0 00 1 0 −10 0 0 00 −1 0 1 ý. (3.69) 

The integration of the shear part is a bit more complex and starts with 

w� = � q��t�q�dNé
#  = ��� � q��q�dNé

#  

= ��� �
���
���
���

11R − 11 + N1R − 11R − N1R
− 11 + N1R ç1 − N1 èR 11 − N1R N1 − NR1R− 11R 11 − N1R 11R N1R

− N1R N1 − NR1R N1R NR1R ���
���
���dNé

# . (3.70) 

In the following we want to perform the Gauss integration exemplarily for the coordinate 

(2,4). According to Equation (3.55) and Table 3.3 we get 

 ��ò	 = ��� � �N1 − NR1R � dN =é
#

���1 � �N − NR1 � dN =é
#

���1 � ��N!dNé
#  

(3.71) 

 

= ���1 ���
�� 12 ¡

¢£ 1
�� ∙ �
 12 ∙ −1√3 + 12¤¥¥¦¥¥§��CPP �B��� #
� + 1
�ñ ∙ �
 12 ∙ 1√3 + 12¤¥¥¦¥¥§��CPP �B��� ?

�
¨
©ª���
��
 

 = ���2 ���
�� 12 ∙ −1√3 + 12 − ¸12 ∙ −1√3 + 12¹R

1 + 12 ∙ 1√3 + 12 − ¸12 ∙ 1√3 + 12¹R
1 ���

�� 
 = ���6 1. 
With the same procedure the other coordinates are integrated which finally yields the stiffness 

matrix for the shear part 

 w� = ���1
���
���
��� 1 − 12 −1 − 12− 12 1R3 12 1R6−1 12 1 12− 12 1R6 12 1R3 ���

���
���
 (3.72) 
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by “full” integration. 

Now we want to apply the reduced integration for the same matrix, which means that we use 

only a single Gauss point. Thus, we get exemplarily for coordinate (2,4) 

 ��ò	ê�� = ��� � �N1 − NR1R � dN =é
#

���1 � �N − NR1 � dN =é
#

���1 � ��N!dNé
#  

(3.73) 

 = ���1 ù12 ∙ 2
�� ∙ �
 12 ∙ 0 + 12¤¥¦¥§��CPP �B��� #
�ý 

 = ���2 ù2 ∙ 
 12 − ç12èR
1 �ý 

 = ���4 1 
and finally for the whole matrix 

 w�ê�� = ���1
���
���
��� 1 − 12 −1 − 12− 12 ��� 12 ���−1 12 1 12− 12 ��� 12 ��� ���

���
���. (3.74) 

By comparing (3.74) with (3.72) one can see that some of the integration results differ 

(boldfaced in Equation (3.74)), which is due to the integration error of the reduced 

integration. But this error is accepted because the much bigger problem of the shear locking is 

avoided on the other hand. 

In the presented example the shear part of the stiffness matrix was reduced integrated and the 

bending part fully integrated. This approach is called “selectively reduced integration”. For 

other element formulations it is also possible to integrate both parts of the stiffness matrix 

reduced. A further closer look to the stiffness matrix w�ê�� in Equation (3.74) reveals that the 

matrix is singular since the second and last line are identical. Such a rank deficient stiffness 

matrix is very typical for reduced integration. In our case of the Timoshenko beam this is not 

a problem because the overall stiffness matrix of the element w� is computed as the sum of w� and w�ê�� and has therefore full rank. But in general, also the overall stiffness matrix may 

be rank deficient which leads to so-called zero-energy modes. These are displacements of the 

element not causing any strains in the element although rigid body motions are absent. This 

phenomenon is discussed in detail in Section 3.3.6. 
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3.3.3 Assumed Natural Strain Method 

The idea of the assumed natural strain method (ANS method) is to evaluate strains in a finite 

element not at the integration points of the element, but at so-called collocation points. These 

are points where the computed strains and stresses are correct and contain no parasitic 

portions. For the plate bending element in Fig. 3.28 the parasitic shear strain should be 

evaluated somewhere on the line �
����. This is practically done by constructing the strain-

displacement matrix q� of the element with the help of displacements interpolated for 

example at points A, B, C and D and not directly with nodal displacement values. This leads 

to a strain field based on the collocation points and a more complex q� matrix, but the full 

Gauss integration can be used for computation of the stiffness matrix. 

a) b) 

Fig. 3.28    Plate element subjected to pure bending (a) and parasitic shear strain W with 

collocation points (b), from [81] 

The choice of the collocation points is done with the help of suitable example problems and 

has to be performed separately for each element type, interpolation function order and strain 

portion that should be modified. Examples for ANS elements are the MITC elements 

described in [15,14]. A disadvantage of the ANS method is that volumetric locking cannot be 

avoided. 

3.3.4 Discrete Strain Gap Method 

The discrete strain gap method (DSG method) has some similarities to the ANS method. The 

method is applicable to all finite element types, but here it will be explained using the 

example of the Timoshenko beam. The first step is the identification of the shear deflection 

fraction in comparison to the overall deflection, which can be done by calculating the 

difference between overall and bending displacements according to 

 JL = J − JM. (3.75) 

The fraction of the pure bending displacement JM can be determined from the Bernoulli 

condition �J �N⁄ = −n as 

 JM�N! = − � n�N!dN. (3.76) 

The value of the integration constant does not play any role in this context because it has no 

contribution to the strains. Since the interpolation function for n�N! is linear, a quadratic 
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JL�N! 
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function results from Equation (3.76). Summarizing, we obtain for the so-called “shear gap” 

 JL = J − JM = J�N! + � n�N!dN = � ��J�N!�N + n�N!� dN = � W�N!dN�
#

�
#  (3.77) 

describing the difference between overall and bending displacements (see Fig. 3.29). 

Evaluation of the integral at the nodal positions by using the interpolation functions (3.43) 

and (3.44) yields 

 JL = � �� J O �N!�N + n O �N!� dN = − N1 J? + N1 JR + �N − NR21� n? + NR21 nR
�

#  (3.78) 

and for the nodal positions we get 

 
JL�N = 0! = 0 + 0¤¦§� � ���î#! + 0 + 0¤¦§� � ���î#!, (3.79) 

 JL�N = 1! = JR − J?¤¥¦¥§� � ���îé! + 12 �n? + nR!¤¥¥¥¦¥¥¥§� � ���îé!
. (3.80) 

These discrete shear gaps have correct values at the element nodes and contain no parasitic 

portions, which is why they may be used for the computation of the modified shear stress. The 

interpolation between the nodes is done with the same functions as for the displacements, 

which are summarized in the matrix of shape functions 

 y = �1 − N1 1 − N1 N1 N1 �. (3.81) 

The shear strain distribution can then be calculated by multiplying the derivative of the matrix 

of shape functions with respect to N by the vector of nodal displacements consisting of the 

shear gap values resulting from the overall displacements J � L and the rotations J M L as 

W����N! = �y�N ∙ ���
�� JL�N = 0! �JL�N = 0! M JL�N = 1! �JL�N = 1! M ���

�� = þ− 11 − 11 11 11 � ���
�� 00JR − J?12 �n? + nR!���

��
 

(3.82) 

 = 11 �JR − J?! + 12 �n? + nR! 

which gives for pure bending with J? = JR = 0 and n? = −nR the correct shear distribution  W����N! = 0. The strain-displacement matrix q���  can directly be derived from (3.82).  

 

Fig. 3.29    Shear gap in beam element 
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An extension of the DSG method for continuum elements and other locking phenomena is 

possible by performing the following steps: 

1. Integration of the kinematic equation and evaluation of this integral at the nodal 

positions of the element; 

2. Interpolation of the computed discrete strain gaps to a field without parasitic portions; 

3. Differentiation of the modified strain gap field to obtain the modified strain 

distribution and derivation of the q matrix. 

As an advantage to the ANS method no collocation points have to be determined but on the 

other hand only geometric locking effects can be suppressed by the DSG method. Further 

details and explanations about this approach are given in [24,81,82]. 

3.3.5 Enhanced Assumed Strain Method 

As described in [81], the basic idea of the enhanced assumed strain method (EAS method) is 

the extension of the displacement-based strains with the goal to balance the parasitic portions 

[128]. This is a contrast to the ANS and DSG method, where the parasitic strains are tried to 

be eliminated. The additional degrees of freedom resulting from the extension of strains 

appear only on the elemental basis and are eliminated for the overall stiffness matrix by static 

condensation. 

A special case and famous example of EAS elements are the so-called incompatible mode 

elements [146,135]. The additional quadratic shape functions in these elements, used for an 

improved strain interpolation, need not be compatible to neighboring elements. 

With the EAS method it is possible to suppress material-caused locking effects (volumetric 

locking, Poisson locking) as well as geometric locking effects like shear locking or membrane 

locking. A disadvantage is that this method is not very efficient for distorted elements and the 

computational effort is higher than for the other methods presented above. 

3.3.6 Problems of Reduced Integration and the Hourglassing Phenomenon 

As described in Section 3.3.2 the concept of underintegration is widespread within the finite 

element world due to its efficiency, simplicity and low computational costs. But the rank-

deficient stiffness matrix typically resulting from this scheme can lead to so-called “Hourglass  

modes”. This name comes from the hourglass-like shape a group of elements is forming due 

to this effect. An example is given in Fig. 3.30 where a cantilever beam is meshed with linear 

a)  b)  

Fig. 3.30    Cantilever beam with single load (a) and hourglassing phenomenon (b) 
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underintegrated shell elements and subjected to a single force �. The implicit FEM 

computation shows typical hourglassing. 

The explanation for this unwanted behavior is the concept of underintegration. Due to the 

rank-deficient stiffness matrix and the single integration point in the middle of a linear 

element the computed strains are constant for the whole element and equal zero for certain 

deformation states. These deformation modes are called zero-energy modes (also spurious 

modes or hourglass modes), because no strain energy is generated although a deformation 

appears. Examples of zero-energy modes, which depend on the element type, are given in Fig. 

3.31 for 2D and 3D elements. Each of the 3D modes may appear three times. 

a) 

b) 

  

 

Fig. 3.31    Zero-energy modes of a linear 2D (a) and linear 3D solid element (b) 

The effect of zero-energy modes can also be observed in an eigenvalue analysis and does also 

appear for higher order elements. Fig. 3.32a shows the first eigenmode, which is a zero-

energy mode, of a single solid element with quadratic shape functions and reduced integration 

(material = steel). The first eigenmode with a non-zero strain energy is the 13th one. For the 

same cube meshed with 8 elements, the zero-energy modes do not appear because with this 

finer mesh and the resulting element connectivity such modes are not possible anymore (Fig. 

3.32b). Thus, a first option to reduce hourglassing is to increase the mesh density. But this 

option is not always applicable in practical applications and does not solve all hourglassing 

problems. For this reason other strategies have to be developed. 

a)  

 

b)  

 

Fig. 3.32    First eigenmode and associated strain energy of a steel cube meshed with one (a) 

and eight (b) quadratic solid element(s) with reduced integration  

F��� F��� 
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The number of zero-energy modes an underintegrated element can evolve depends on the 

element’s dimensionality, type and the used shape function as illustrated in Table 3.4. The 

disadvantage of Lagrange elements in comparison to Serendipity elements is the higher 

number of degrees of freedom due to the extra nodes as exemplarily shown for a quadratic 3D 

solid element in Fig. 3.33. For this reason most commercial FE codes are using Serendipity 

elements. The interpolation functions of both element types are constructed slightly different 

but are compatible at the element edges, which means that even a mix of both element types is 

possible within a mesh. 

 
a)  b)  

Fig. 3.33    3D quadratic Lagrange element (a) and quadratic Serendipity element (b) 

3.3.7  Concepts to Avoid Hourglassing 

The evaluation of all strain coordinates at just one integration point in the middle of an 

element can lead to zero-energy modes and the hourglassing problem described in the 

previous section. For this reason it is necessary to use certain strategies which yield to both 

hourglassing free and locking free finite elements. The first strategy discussed here is the 

concept of selectively underintegrated elements. Within this concept only particular strain 

components (e.g. shear strains) are evaluated at the Gauss point in the middle of the element 

as demonstrated for the Timoshenko beam in Section 3.3.2. All other strain coordinates are 

evaluated at the Gauss points used for the full integration. Fig. 3.34 shows a selectively 

integrated bilinear rectangular element for the plane strain or plane stress state. Since the 

shear and normal strains are not coupled, the stiffness matrices can be computed separately 

Table 3.4 Number of zero-energy modes for different element formulations (values in 

brackets remain to be established), from [102] 

Dimension: 2 2 3 3 
Element 
type: 

Serendipity Lagrange Serendipity Lagrange 

Polynomial 
degree 

Minimum number of zero-energy modes 

1 2 2 12 12 

2 1 3 6 27 

3 (6) 2 (72) 24 

4 (19) (1) (258) (15) 
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and summed up afterwards. By this procedure, shear locking and a rank-deficient stiffness 

matrix are avoided. For plane strain elements the volumetric locking can be suppressed by 

evaluating the hydrostatic strain fractions in the middle of the element. 

  

Fig. 3.34    Selectively underintegrated element  

For 8-node brick elements the selective underintegration has to be modified. A single Gauss 

point in the middle of the element for the computation of shear strains would still lead to 

torsional zero-energy modes. For this reason the shear strain coordinates are evaluated at the 

projections of the element’s midpoint onto the surfaces of the hexahedron defined by the eight 

Gauss points c, ^, ] = ± 1 √3⁄  where the normal strains are evaluated (see Fig. 3.32). 

  

Fig. 3.35    Selectively underintegrated 8-noded brick element  

Due to the additional integration points for the evaluation of shear strains the computational 

time for the computation of the stiffness matrix of selectively underintegrated elements is 

higher than for underintegrated elements, which is in particular important for non-linear 

computations where the stiffness-matrix is recomputed frequently. Another disadvantage of 

these elements is that not all of them pass the patch test [72,102,11] and trapezoidal locking is 

not prevented. Moreover, it can be shown that strains, computed at “reduced” Gauss points, 

converge faster than those computed at normal Gauss points [134,154]. The reason for this 

unexpected behavior is that the error of averaged strains converges faster to zero than the 

error at separate Gauss points. These optimal points for the strain and stress evaluation are 

sometimes called Barlow points [8,7]. 

The second strategy that should be discussed here, as a remedy for hourglassing, is the 

stabilization of the zero-energy modes. Typically, the stiffness matrix resulting from reduced 

integration is singular with respect to the zero-energy modes (shown for example in Fig. 

3.31). This means, the product of the stiffness matrix and the displacement vector of an 
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hourglass mode equals the zero vector. In [83] it is suggested to add to the rank-deficient 

stiffness matrix of an underintegrated element an hourglass matrix that is singular with 

respect to rigid body modes and constant strains, but not singular with respect to zero-energy 

modes. The hourglass matrix is obtained by a kind of backward computation from the forces 

and displacements producing the hourglass modes. However, this technique is very expensive 

for non-rectilinear elements [83,50]. The foundations for a widely used technique, the 

perturbation hourglass stabilization, can be found in [50], where a mean strain approach is 

used to calculate generalized strains YZ which are added to the q matrix (strain-displacement 

matrix) of an element, which yields for a 4-node bilinear plane element  

 qr =
���
���
���
�y�N ²
² �y�Q�y�NYZ�²

�y�Q²YZ� ���
���
���
 (3.83) 

and should restore the correct rank of the stiffness matrix, which is five for the mentioned 

element type (2 DOF per node – 3 rigid body modes). The YZ vector has to fulfill certain 

orthogonality conditions as described in [50]. Additionally, the elasticity matrix has to be 

modified according to 

 tr =
���
���?? �?R �?S 0 0�R? �RR �RS 0 0�S? �SR �SS 0 00 0 0 � � 00 0 0 0 � � ���

��
 (3.84) 

where � �  is a fictive material parameter relating the generalized hourglass strains to the 

generalized hourglass stresses. A suggestion for the choice of � �  can be found in [20]. The 

internal force vector ���� is computed as 

 ���� = �qr{Z = �q�{ + � þ8�YZ8XYZ� (3.85) 

with � as area of the element and {Z = [i� iX j�X 8� 8X]� as stress tensor in Voigt 

notation and can be separated into the vector of internal forces resulting from reduced 

integration and a stabilization force vector  

 �P��ï��� = � þ8�YZ8XYZ�. (3.86) 

The stabilization may be of stiffness or viscous type depending on whether the stabilization 

forces are proportional to nodal displacements or velocities. Also a combination of both types 

of stabilization can be very effective [42]. 
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Another possibility for hourglass stabilization is physical stabilization. In this approach a 

vector of stabilization forces, which can be determined analytically from an assumed strain 

field a priori, is added to the internal force vector [20,19]. 

3.4 Three-Point-Bending Test Problem 

To demonstrate the importance of the considerations of the previous sections with regard to 

the choice of the finite element formulation and if necessary the anti-hourglassing approach, a 

three-point bending test with different finite-element types is performed. The used FEM 

model is illustrated in Fig. 3.36 with measures > = 0.133, � = 1533, 1 = 2333, : =1.533 and a beam width of 533. The cylinders are rigid and the beam is made of a linear 

elastic material with � = 210000 Á 33R⁄  and b = 0.3. Two load cases are applied to this 

model. In the first load case the lower two cylinders are fixed and the upper cylinder is 

pressed downwards by a prescribed displacement of 0.533. In the second load case the 

lower cylinders are fixed too but the upper cylinder is pressed downwards by a constant force � = 0.1Á. Between beams and cylinders a surface-to-surface penalty contact formulation is 

used. 

 

Fig. 3.36    Model for three-point bending test with different finite element types 

The beam is meshed with eleven elements in the longitudinal direction and three solid 

elements in thickness direction. By this an aspect ratio for the solid elements of 150:63:1 is 

achieved. This extreme aspect ratio is used here to clearly observe the described numerical 

effects. Under consideration are four different finite element formulations:  

• Formulation A is an underintegrated element with one integration point and therefore 

a constant stress/strain element;  
• Element formulation B is a fully integrated element with an extra approach to avoid 

volumetric locking;  
• Formulation C is fully integrated too but uses a heuristic approach to modify the q 

matrix such that the shear locking behavior is improved for poor aspect ratios; 
• Formulation D is similar to C but more accurate and therefore a little bit slower. 

More details about these element formulations are given in [25]. Since element formulations 

B-D are fully integrated, no anti-hourglassing algorithm is needed. For element formulation A 

three different anti-hourglassing algorithms are tested, which are 

• approach 0 using no anti-hourglassing algorithm, 
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• approach 1 using the Flanagan-Belytschko stiffness form according to [50], 
• approach 2 similar to approach 1, but using exact volume integration and 
• approach 3 utilizing the Belytschko-Bindeman formulation described in [19].  

Although the presented three-point bending test is a static problem, a dynamic computation 

with explicit time-integration is performed for being able to monitor possible problems in the 

dynamic behavior of the elements. To reach a quasi-static solution after an acceptable time, 

the load curve of Fig. 3.37a is used (for both displacement- and forced-based loading), a 

global velocity proportional damping constant is defined and the computation is only 

terminated when no changes with respect to the results are observable (see Fig. 3.37b). 

a)  b)  

Fig. 3.37    Applied load curve for displacement- and force-based loading (a) and definition 

of quasi-static solution (b) 

3.4.1 Results of Displacement-Based Loading 

The diagram in Fig. 3.38 shows the computed bending stresses i�� in the beam evaluated at 

the lowest integration point(s) in the middle of the beam. Starting with the underintegrated 

element formulation A, one can see that the anti-hourglassing approaches 1 and 2 add too 

much stiffness to the element resulting in a higher bending stress. Obviously, anti-

hourglassing formulation 3 works much better with element A since the stress value of this 

combination is very close to the result without any anti-hourglassing formulation (A0). The 

fully-integrated element B computes a higher maximum stress since the position of the 
 

Fig. 3.38    Computed bending stress i�� for displacement-based loading 
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integration points is different in comparison to element A. The stresses of element 

formulations C and D are slightly lower than for formulation B due to the modified q matrix 

and small resulting errors/inaccuracies.   

In meshes of real components the shape of finite elements is in most cases not like a perfect 

brick where all edges are perpendicular to each other. Often there are trapezoidal-like element 

shapes as it can be seen in Fig. 3.39a. For this reason the tests performed so far are repeated 

with initially deformed middle elements of the beam where the so-called taper angle U (see 

Fig. 3.39b) is varied between zero and twenty degrees. 

a)  b)  

Fig. 3.39    Trapezoidal-shaped elements in mesh of a component (a) and definition of taper 

angle (b) 

The outcome of the investigations with initially deformed elements is visible in Fig. 3.40 in 

combination with different anti-hourglassing formulations for the underintegrated element A. 

For a taper angle of zero degrees the results are identical to those of Fig. 3.38. However, for 

bigger taper angles some remarkable results are obtained. The underintegrated element A is 

very robust with respect to the taper angle if no anti-hourglassing formulation is present. 

Unfortunately, this will only work if no hourglassing appears, which is the case for this 

example but not in general and in most practical applications. Moreover, there is a tendency 
 

Fig. 3.40    Dependence of computed bending stress i�� on taper angle for different 

combinations of finite element formulations and anti-hourglassing algorithms 

i�� 
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for all tested elements and anti-hourglassing formulations of decreasing stresses by increasing 

the taper angle, except for the combination A2. The anti-hourglassing algorithm 2 works very 

well and achieves the most accurate results compared to the other formulations. Element 

formulation C achieves the best results of all hourglassing-free formulations since even for 

bigger taper angles of U = 20°  the difference with regard to the computed stress for  U = 0° 
is small. 

Another notable result is the fact that for the combinations A1, A3 and the element 

formulations B and D the stresses at the bottom side of the beam turn from tension into 

compression for bigger taper angles. An explanation for this curious behavior can be derived 

from Equation (3.26a) which describes the stress distribution i�� in trapezoidal shaped solid 

elements. For this purpose the same material parameters as for the beam model are used. The 

stress coordinate i�� is evaluated at Q = ℎ 2⁄   with 	 = 23 1133⁄  and ℎ = 1 30⁄ 33 

according to the proportions of the elements in the beam model. Fig. 3.41 shows the 

computed stress in dependency of the taper angle U for the case 	 ℎ⁄ = 690 11⁄  as in the 

beam model and for the case  	 ℎ⁄ = 1, which represents the best possible aspect ratio. As one 

can see, extreme aspect ratios of 	 ℎ⁄   lead to a strong dependency of the computed stress 

coordinate i�� on the taper angle, which may even result in a reversion of the sign. For more 

moderate aspect ratios the influence of the taper angle on the stresses is much smaller and 

almost not present for 	 ℎ⁄ = 1. 
 

Fig. 3.41    Bending stress for fully integrated element under pure bending for different aspect 

ratios 	 ℎ⁄  in dependency on the taper angle U 

3.4.2 Results of Forced-Based Loading 

For load case two, where a single force � = 0.1Á is applied to the upper cylinder, the 

displacements of the lowest nodes in the middle of the beam (max. deflection) are evaluated 

in z-direction and presented in Fig. 3.42. Additionally, the solution of the beam meshed with 

eleven shell elements, is shown as reference solution (dashed line). The shell element 

formulation is based on a standard 5 parameter-model and uses reduced integration. Again, 

element formulation C is the most robust one and provides the most accurate results even for 

	ℎ = 1 

	ℎ = 69011  
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excessive hourglassing can be observed for element formulation A, leading to a dramatic 

stiffness decrease and huge deformations (

Fig. 3.42. Another extreme case can be observed for the 
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Fig. 3.42    Dependence of computed 

combinations of finite element formulations and anti

It should be finally noted that the discussed results are obtained for the example of elements 
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and real models. As already shown in 

much better for better aspect ratios. Nevertheless, the presented tests show some tendencies 

and should animate the reader to implement own test computations 
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Fig. 3.43    Dramatic stiffness decrease due to excessive hourglassing
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4 Modeling of Bearings in High Fidelity Engine Models 

Typically bearings are modeled with a lot of simplifications and idealizations in ordinary 

finite element models. For example, modeling them by joints would be a very simple 

possibility. However, there are also more advanced modeling techniques which take into 

account the stiffness and damping characteristics of the oil film and the bearing itself 

[40,47,49,86,121,132,143].  

In an aero-engine, there exist journal bearings as well as ball bearings. In high-fidelity models 

both types of bearings should be modeled without any simplifications from a structural point 

of view, which means for example for a ball bearing that every ball is meshed by solid 

elements (Fig. 1.2). This leads to the question, which mesh density is necessary for a 

kinematically correct behavior of the bearing model. If the mesh in the discretized bearing 

model is too coarse, rotation of the inner part of the bearing against the outer part is not 

possible due to the faceting as exemplarily shown for the pendulum in Fig. 4.1. In the 

following, the necessary relationships between mesh density and bearing parameters are 

derived for classical contact formulations as well as for so-called smooth contact 

formulations.  

 

Fig. 4.1    Impossible rotation due to coarsely meshed bearing region of a pendulum 

4.1 Necessary Mesh Density for Classical Contact Formulations 

The following considerations are made with regard to planar problems (two-dimensional 

problems). Although the results are actually only applicable for such situations, the derived 

equations may give at least an idea about the necessary mesh density and thus are also useful 

for three-dimensional problems. 
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A simple journal bearing shown in Fig. 4.2a is determined by radius : of the inner ring and  

gap size >@�� between inner and outer ring. If such a bearing is discretized by linear finite 

elements, the circles become polygons with edge length � at the inner ring. For reasons of 

simplicity, we assume that all nodes are equally spaced around the circumference which leads 

to regular polygons as shown in Fig. 4.2b. 

a) b) 

Fig. 4.2    Original journal bearing (a) and discretized bearing with faceted surface (b) [78] 

The inner angle V of the polygon depends on the number of nodes 4 around the circumference 

as 

 V = � − 2�4 = 4 − 24 ∙ �,   4 > 2, (4.1) 

and the edge length � results from simple geometrical considerations as 

 � = 2: ∙ ;(4�4 . (4.2) 

According to Fig. 4.3 it is clear that the limit state between rotation or no rotation of the inner 

ring against the outer ring or vice versa is given for the situation where � equals 	. In this 

situation we get from Fig. 4.3b 

 � = 	 = �: + >@��� ∙ ;(4 �4 . (4.3) 

In this case, the angle U becomes 

 U = �2 − V2 = �2 ¸1 − 4 − 24 ¹ = �4 . (4.4) 

Additionally, we know that for � = 	  

 cos U = � 2⁄	 = :: + >@�� . (4.5) 

By using (4.4) in (4.5), we finally get the necessary relationship between radius of the 

bearing, gap size and mesh density in terms of the number of nodes 4 in circumferential 

direction as 
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 cos�4 = :: + >@�� (4.6) 

describing the limit state between rotation and no rotation. 

a) b) 

Fig. 4.3    Kinematics of bearing rotation (a) and limit situation (b) 

Based on Equation (4.6), the question about the necessary mesh density for the pendulum in 

Fig. 4.1 for an admissible rotation can be answered rather easily. If we assume a bearing 

radius of : = 1033 and a gap size >@�� = 0.0533, we obtain for the minimum number of 

equally spaced nodes around the circumference  

 
4 = �arccos ¸ :: + >@��¹ = �arccos ç 10331033 + 0.0533è ≈ 31.5 (4.7) 

rounded up to 4 = 32. This result can be validated by performing a numerical FEM 

simulation. For this purpose the inner part of the pendulum’s bearing is fixed and gravity in 

negative y-direction is applied as the only load. All parts are made of mild steel (� =210000 Á 33R⁄ , b = 0.3, h = 7.9 ∙ 10ÄÅ  > 33S⁄ ). Three different mesh densities (4 = 28, 4 = 32, and 4 = 40) are compared, and the displacements of the node marked in Fig. 4.4 are 

evaluated. The initial position of the pendulum is shown in Fig. 4.4a. 

The simulation results with an explicit time-integration scheme are plotted in Fig. 4.5. For 28 

nodes, obviously no rotation is possible. For 32 nodes the pendulum swings as expected, but 

 

 

 

 

 

 

 

 

Fig. 4.4    Finite element models of pendulum with different mesh densities of bearing 

region: a) 28, b) 32 and c) 40 nodes in circumferential direction 

a) b) c) 
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apparently an amplitude decay is observable although no friction or damping was used in the 

computation. The explanation for this decay is the coarse mesh in the contact region. 

Although it allows for a rotation, the contact forces of the used penalty algorithm (in 

combination with a node-to-surface approach) also have a tangential component due to the 

coarse mesh resulting in a small deceleration of the pendulum. If the mesh density is 

increased (here to 40 nodes in circumferential direction), the amplitude decay becomes much 

smaller. But there is a second effect also described in [21], which plays an important role with 

respect to the amplitude decay. If two continuous bodies are impacting each other, the contact 

condition �$ = ², and therefore equality of the displacements and velocities of the impacting 

surfaces, is only fulfilled for the contact surfaces which have no thickness and thus no mass. 

In the case of non-continuous, discretized bodies, the mass is concentrated in the nodes of the 

finite elements. By this, more material and more mass is enforced to fulfill the contact 

condition than in the continuous case. 

 

Fig. 4.5    History of y-coordinate of outermost node of pendulum for different mesh 

densities in the contact region 

This effect is more clearly observable in an example of two cubes impacting each other (Fig. 

4.6a). The lower cube is fixed at its bottom side and the upper cube may only move 

downwards. A gravitational load � is applied to the whole system (Fig. 4.6a). The simulation 

of this problem is performed with explicit and implicit time-integration schemes and different 

mesh densities for the cubes (1 quadrilateral element per cube and 2x2 quadrilateral elements 

per cube, respectively). The computed displacements evaluated at the upper left node S of the 

upper cube (body B) show clearly the influence of the mesh density (Fig. 4.6b). The finer the 

mesh, the less energy dissipation is observable. It can be also seen that the contact condition is 

responsible for the different solutions because up to approximately > = 0.45; (time of impact) 

all curves are identical. These considerations demonstrate that the number of nodes calculated 

with Equation (4.6) should be considered only as a lower bound for the mesh density. It may 

be used to determine either  

- the required number of nodes 4 = π arccos⁄ �: : + >@��⁄ � for a given radius : and 

gap size >@�� or 
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- the required radius : = >@�� cos�� 4⁄ ! �1 − cos�� 4⁄ !!⁄  for a given number of nodes 4 and gap size >@�� or 

- the required gap size >@�� = :�1 − cos�� 4⁄ !! cos�� 4⁄ !⁄  for a given radius : and 

number of nodes 4. 

Especially in explicit computations, where the time-step size (and therefore the overall 

computational time) depends on the size of the finite elements (see Section 6.1), the second 

and third options are of greater interest. 

a) b)  

Fig. 4.6    Model of two cubes impacting each other due to gravity (a) and displacement of 

upper left corner of body B computed with different models (b) 

Besides the rotation also the radial displacements of the bearing should be as accurate as 

possible. This means for an ideal bearing with zero gap size, which cannot exist in the finite 

element world, that there is no radial displacement. For measuring the radial displacement, a 

cylindrical coordinate system placed at the center of the bearing is defined. Three different 

cases are investigated: In the first case, a very coarse mesh with only 4 = 8 is used. By this, 

the necessary gap size is calculated for : = 1033 as >@�� = [: cos�� 4⁄ !⁄ ] − : ≈0.82433. In the second case, the radial displacement of the pendulum with 4 = 32 is 

measured, and in the third case the coarse mesh with 4 = 8 is used again, but an additional 

contact smoothing option is applied. By this smoothing option, an artificial contact surface 

defined by polynomial functions is constructed (see Fig. 4.7a). 

For all three cases the pendulum swings as expected, but the differences with respect to the 

radial displacement are remarkable (Fig. 4.7b). The pendulum with the finest mesh (case 2) is 

closest to the ideal solution of zero radial displacement. The solution for the pendulum with 

only 8 nodes in circumferential direction and a bigger gap size (case 1) shows the biggest 

peaks in terms of radial displacements. But this undesired behavior can be improved by 

applying the smoothing option (case 3), where there is only a big radial displacement at the 

beginning of the simulation when the pendulum “falls” into the bearing. Afterwards, the 

relative displacements are similar to the model with the much finer mesh. Obviously the 

smoothing option is a good possibility to keep a coarse mesh without changing the gap size or 

Explicit, 
1 element 

Explicit, 
4 elements 

Implicit, 
1 element 
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other parameters of the bearing while receiving accurate results. Of course, the derived 

equation for the necessary mesh density is not valid anymore if the smoothing option is 

activated. For this reason we have to reconsider the problem in the next section. 

a)  

Fig. 4.7    Original surface and artificially smoothed contact surface (a) and radial 

displacements of simple pendulum with different mesh configurations (b) [78] 

4.2 Mesh Density for Artificially Smoothed Contact Formulations 

As demonstrated in the section before, an artificial smoothing of the contact surfaces can 

improve simulation results. Deriving the necessary relationship between radius of the bearing, 

gap size and mesh density is a bit more elaborate than for classical contact formulations 

without smoothing. As before, we restrict the considerations to the two-dimensional space and 

assume that the nodes of the finite elements are equally spaced in circumferential direction. 

All other bearing properties are defined according to Fig. 4.2. The smoothing functions can be 

constructed by different types of functions, for example NURBS, B-Splines or polynomials. 

Here, we will restrict ourselves to quadratic polynomials as smoothing functions which offer 

the important feature of G1-continuity at the nodes being the transition points between two 

functions. Geometric G-continuity is a relaxed form of C-continuity [9,10]. The task is to 

construct a closed G1-continous line with quadratic polynomials using the nodes of the 

polygon as grid points (Fig. 4.8). For the 4 edges of the polygon 4 quadratic polynomials are 

used. 

 

Fig. 4.8    Construction of quadratic polynomials through FE nodes [78] 

Original surface 

Smoothed surface 

b) 
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4.2.1 Construction of Quadratic Polynomials 

We start with an arbitrary quadratic polynomial  

 ;�>! = �>R + �> + 
 (4.8) 

as visible in Fig. 4.9a. For the determination of the unknown constants �, � and 
 some 

geometrical considerations are necessary. Since the edge length of a regular 4-sided polygon 

is given by Equation (4.2) we need to fulfill the two boundary conditions   

 ;�0! = ;��! = 0 (4.9) 

where the first yields 
 = 0. The derivative of (4.8) with respect to > is  

 ;��>! = 2�> + �. (4.10) 

From the G1-continouity and symmetry condition follows n = " according to Fig. 4.9b. 

Since the inner angle of a regular polygon is given by Equation (4.1) as V = [�4 − 2! 4⁄ ]�, it 

follows that  

 n = " = 12 �� − V! = �2 ¸1 − 4 − 24 ¹ = �4 . (4.11) 

Together with (4.10) this determines the unknown variable  

 � = ;��> = 0! = tan n = tan�4 . (4.12) 

Finally, the last unknown � can be calculated from the right boundary (4.9) as 

 ; ç> = 2: sin�4è = � ∙ ç2: sin�4èR + çtan�4è ∙ ç2: sin�4è = 0 (4.13) 

and yields � = −1 [2: cos�� 4⁄ !]⁄ . The desired function (4.8) for the smoothing thus reads  

 ;�>! = − 12: cos�4 ∙ >R + tan ç�4è ∙ >. (4.14) 

 

a) b) 

Fig. 4.9    Quadratic polynomial (a) and angles at arbitrary vertex of regular polygon (b) 

[78] 

4.2.2 Transformation of Polynomial to the i-th Edge of the Polygon 

The derived quadratic function has to be transferred to each edge of the polygon for covering 

the whole contact surface. Firstly we perform this for the inner contact surface, whose 
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components have the superscript “(4”. For this purpose it is necessary to transform the 

quadratic polynomial (4.14) into a parameterized form ì N �� �>!, Q �� �>!í where 

 N �� �>! = >, (4.15a) 

 Q �� �>! = − 12: cos�4 ∙ >R + tan ç�4è ∙ >,   > ∈ [0, 2: sin�� 4⁄ !]. (4.15b) 

Further, we assume without loss of generality that the polygon is constructed such that the 

slope of the first edge (( = 1) is zero and the bearing coordinate system is placed at the center 

of the polygon (Fig. 4.10a). 

The transformation process of the smoothing function consists of a rotation and a translation, 

which has to be performed separately for every i-th edge of the polygon. Starting with the 

rotation, the rotation angle for the i-th edge is 

 W �� � = ¸2�4 ¹ ∙ �( − 1!. (4.16) 

The parameterized smoothing function (4.15) has to be multiplied by a corresponding rotation 

matrix which gives 

� N# �� ��>!Q# �� ��>!� = � cos W� �� sin W� ��− sin W� �� cos W� �� � ∙ � N �� �>!Q �� �>!� 

= � > ∙ cos W� �� + Q �� �>! ∙ sin W� ��−> ∙ sin W� �� + Q �� �>! ∙ cos W� �� �. (4.17) 

In a second step the rotated smoothing functions have to be translated to their polygon edges. 

This is done by adding a translation vector A �� � to every smoothing function. The coordinates 

of the i-th translation vector with respect to Fig. 4.10b are 

 A �� � = � É �� �É �� X�� = ù: sin ç W �� � − �4è
: cos ç W �� � − �4èý = ���

��: sin ��4 ∙ �2( − 3!�
: cos ��4 ∙ �2( − 3!����

��. (4.18) 

This finally leads to the smoothing functions of the i-th edge  

� N �� ��>!Q �� ��>!� = � N# �� ��>!Q# �� ��>!� + � É �� �É �� X�� 

= ���
�� > ∙ cos W� �� + Q �� �>! ∙ sin W� �� + : sin ��4 ∙ �2( − 3!�
−> ∙ sin W� �� + Q �� �>! ∙ cos W� �� + : cos ��4 ∙ �2( − 3!����

��
 

(4.19) 

with the substitutions (4.16) and (4.15b) for W� ��  and Q �� �>!. With Equation (4.19) we have 

derived a possibility to build smoothed surfaces for arbitrary polygons as shown in Fig. 4.11. 
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a) b) 

Fig. 4.10    Position of polygon and numbering of edges (a) as well as translation vectors for 

smoothing functions (b) [78] 

 

a)  

 

 

 

 

 

 

b)  

c)  d)  

Fig. 4.11    Regular polygons with three (a), four (b), five (c) and six (d) edges with surfaces 

smoothed by quadratic polynomials [78] 
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4.2.3 Smoothing of Second Contact Surface 

The construction of the smoothed contact surface for the outer bearing ring is very similar to 

the first one (red surface in Fig. 4.12b.). The first of the two major differences is that the 

radius is now �: + >@���. The second difference is that in contrast to the first smoothed 

contact surface we now assume that the polygon is constructed such that the first node A BC� ? 

of the first edge (( = 1) is situated at the Q-axis of the bearing coordinate system (Fig. 4.12a). 

All components belonging to this outer contact surface have the superscript “ÓÉ>”. 

a) b) 

Fig. 4.12    Assumed position of outer polygon and numbering of edges and translation 

vectors (a) and radius of outer contact surface (b) [78] 

Changing the radius : in Equation (4.15) to �: + >@��� yields the basic parameterized 

quadratic polynomial 

 N BC� �>! = >, (4.20a) 

 Q BC� �>! = − 12�: + >@��� cos ç�4è ∙ >R + tan ç�4è ∙ >,   
> ∈ ì0, 2�: + >@��� sin�� 4⁄ !í. (4.20b) 

The rotation angle for the i-th smoothed function of the outer contact surface is now 

 W BC� � = ¸2�4 ¹ ∙ ¸( − 12¹ (4.21) 

and used in the rotation matrix for the computation of the rotated functions similar to 

Equation (4.17) which gives 

þ N# BC� ��>!Q# BC� ��>!� = þ cos W� BC� sin W� BC�− sin W� BC� cos W� BC� � ∙ þ N BC� �>!Q BC� �>!� 
= þ > ∙ cos W� BC� + Q BC� �>! ∙ sin W� BC�−> ∙ sin W� BC� + Q BC� �>! ∙ cos W� BC� �. (4.22) 

According to Fig. 4.12, the translation vector for the outer smoothing functions reads as 
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 A BC� � = � É BC� �É BC� X�� = ���
���: + >@��� sin �2�4 ∙ �( − 1!�
�: + >@��� cos �2�4 ∙ �( − 1!����

��. (4.23) 

Superposing this translation to Equation (4.22) finally gives the smoothing function for the i-

th edge  

þ N BC� ��>!Q BC� ��>!� = þ N# BC� ��>!Q# BC� ��>!� + � É BC� �É �� X �� 

= ���
�� > ∙ cos W� BC� + Q BC� �>! ∙ sin W� BC� + �: + >@��� sin �2�4 ∙ �( − 1!�
−> ∙ sin W� BC� + Q BC� �>! ∙ cos W� BC� + �: + >@��� cos �2�4 ∙ �( − 1!����

��. (4.24) 

4.2.4 Condition for Rotation of Smoothed Surfaces 

The limit state between rotation and no rotation is reached if the outermost point of the inner 

smoothing surface (> = � 2⁄ ) is in contact with the nodes of the outer smoothing surface as 

shown in Fig. 4.13a. With Equation (4.2) this situation can be expressed as 

 N �� � ç> = : sin�4è = N BC� ��> = 0!, (4.25a) 

 Q �� � ç> = : sin�4è = Q BC� ��> = 0!. (4.25b) 

For further investigations it is sufficient to consider the case ( = 1, because if Equations 

(4.25) are fulfilled for this case they are also fulfilled for all other (’s (see Fig. 4.13a). 

Condition (4.25a) is automatically satisfied due to the way of constructing the smoothing 

functions and defining their positions. Condition (4.25b) reads for ( = 1 with W �� ? = 0, W BC� ? = � 4⁄  and Equations (4.19) and (4.24) 

 − ç: sin ç�4èèR
2: cos ç�4è + tan ç�4è ∙ : sin ç�4è + : cos ç−�4 è = : + >@�� (4.26) 

which can be simplified to 

 
2�: + >@���: = 1cos ç�4è + cos ç�4è. (4.27) 

Equation (4.27) finally describes the necessary relationship between radius :, gap size >@��, 

and number of nodes 4 in circumferential direction for the limit state between rotation and no 

rotation of smoothed surfaces.  

In Fig. 4.13b the advantage of using smoothed surfaces instead of a classical contact 

formulation for rotating surfaces is depicted for the example of a mesh with three nodes in 

circumferential direction. By using a classical contact formulation (bold lines) a rotation 
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would not be possible due to the penetration of the surfaces, but for the same mesh and 

geometry, a rotation is obviously possible if the surfaces are smoothed with quadratic 

polynomials. This means that coarser meshes may be used leading to smaller models with less 

degrees of freedom and bigger time-steps in explicit computations (see Section 6), both 

reducing the overall computational time. 

a)  b)  

Fig. 4.13    Limit state between rotation and no rotation of smoothed surfaces for mesh with 

three nodes (a) [78] and possible rotation for smoothed contact surfaces (thin 

lines) but impossible rotation for non-smoothed contact surfaces (thick lines, b) 

For demonstrating the application of Equation (4.27), we use the pendulum example in Fig. 

4.4 with radius : = 1033 and gap size >@�� = 0.0533. Equation (4.27) can be solved for 

the number of nodes 4 by multiplying it with cos�� 4⁄ ! and transforming it into the quadratic 

equation 

 cosR �4 − 2�: + >@���: ∙ cos�4 + 1 = 0, (4.28) 

which has the solutions 

 cos�4 = : + >@��: ± û¸: + >@��: ¹R − 1 . (4.29) 

The plus-sign of the solution is inapplicable because the right hand side would always be 

greater than one, whereas the cosine function is always smaller or equal to one. For the 

minus-sign we obtain 

 

4 = �
arccos ú: + >@��: − û¸: + >@��: ¹R − 1ü 

(4.30) 

which here yields a value of 4 ≈ 7.15 and is rounded up to the integer value 4 = 8. This 

means that at least eight nodes in circumferential direction are necessary in the bearing of the 

( = 1 
  (inner) 

( = 1  
    (outer) 
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pendulum model to guarantee a kinematically admissible rotation with smoothed bearing 

surfaces. 

Appropriate implementations similar to the described smoothing technology using the 

smoothed surfaces for the contact computation (gap size, contact forces, etc.) are available in 

commercial FE tools nowadays [43,98]. For proving the correctness of the result (4.30), three 

different simulations for the pendulum model with mesh densities 4 = 6, 4 = 7 and 4 = 8 

are performed. For these explicit computations the penalty algorithm is used and the 

smoothing option is activated. As visible in Fig. 4.14, the pendulums with 4 = 7 and 4 = 8 

swing correctly (curves are coincident), whereas for the the coarsest mesh (4 = 6) rotation is 

not possible. The pendulum correctly moves downward at the beginning, but a further 

displacement in this direction is inhibited and the pendulum swings back. Actually a correct 

rotation should not be possible for the model with 4 = 7 according to the result of Equation 

(4.30), but as described in Section 2.2.2 the penalty contact algorithm allows small 

penetrations of contact surfaces. By this, a rotation becomes possible, especially since the 

outcome of the calculation 4 ≈ 7.15 is very close to 4 = 7. 

 

Fig. 4.14    History of y-coordinate of outermost node of pendulum for different mesh 

densities in the contact region with activated smoothing option [78] 

Finally it should be noted that newer developments like the so-called Isogeometric Analysis 

[68,33] can be very useful especially for the modeling and simulation of bearings. In this 

approach higher-order functions like Non-Uniform Rational B-Splines (NURBS) are used as 

interpolation functions for finite elements, which has the advantage of an exact geometry 

description in the sense of Computer Aided Design (CAD). Meshing for example a circle or a 

ball with such elements provides also a circle or ball in the finite element world and not a 

polygon or polyhedron like for classical finite elements with linear geometric interpolation 

functions. By this, very good and realistic results are obtained also with regard to contact 

forces [107].  

 



 

 

 

 

 



 

 

5 Time Integration 

In this chapter an important aspect of nonlinear FEM, the time-integration is discussed. These 

procedures are necessary in transient FEM problems for solving the governing equations of 

motion. After a short introduction, different time-integration algorithms are presented and 

their effects are demonstrated using simple examples. Subsequently, very important aspects 

regarding stability and accuracy of the mentioned methods are considered in detail and special 

attention is drawn to the stability of time-integration algorithms used for the simulation of 

elastic rotating structures. Finally, a possibility for the optimization of  parameters of the 

different methods is shown which gives the opportunity of adjusting the properties of a time-

integration algorithm to particular applications.   

5.1 Introduction 

From a mechanical point of view, a dynamic system like an aero-engine can be described by 

an equation of motion of the form 

 x�.!.® + s�.!.� + w�.!. = ��., >! (5.1) 

with mass matrix x, damping matrix s, stiffness matrix w, vector of external loads ��., >!, 

and the time-dependent displacements ., velocities .�  and accelerations .®  (see also Section 

2.1). In general, such a nonlinear system of differential equations can only be solved 

numerically. For this, two steps are necessary:   

1. Time integration, 

2. Solving the resulting system of equations (not necessary for some methods under 

certain circumstances). 

For numerical time-integration there exist two different approaches which can be visualized 

with a simple example. Let us assume that we want to solve the differential equation 

 N� = ��N, >! (5.2) 

in the interval [>�, >�Ñ?] by numerical integration. This is typically done by dividing the time 

interval into an arbitrary number of subintervals. Starting from a given solution N� at time 

point >�, the integration between >� and >�Ñ? can be performed as  

 N�Ñ? = N� + � ��N, >! d> ≈ N� + ∆> ∙ ��N�, >�!�$%ñ
�$

 (5.3) 

with ∆> = >�Ñ? − >� according to Fig. 5.1a and resolves straightforwardly in the solution  

 N�Ñ? ≈ N� + ∆> ∙ ��N�, >�!  (5.4) 

at > = >�Ñ?. On the right-hand side of this equation only quantities known at the current time 

point >� are used. Therefore, this is an explicit approach for time-integration, especially the 

Euler-forward method. 
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��N, >! N�  N� 4+1 N� 4 

> >4+1 >4 

∆> ∙ ��N�, >�! 

a) ��N, >! N�  N� 4+1 N� 4 

> >4+1 >4 

∆> ∙ ��N�Ñ?, >�Ñ?!

b) 

A second possibility for time integration according to Fig. 5.1b is to evaluate ��N, >! at > = >�Ñ? resolving in  

 � ��N, >! d> ≈ ∆> ∙ ��N�Ñ?, >�Ñ?!�$%ñ
�$

 (5.5) 

and therefore  

 N�Ñ? ≈ N� + ∆> ∙ ��N�Ñ?, >�Ñ?!. (5.6) 

Since there are now also unknown quantities on the right-hand side as argument of ��N�Ñ?, >�Ñ?!, the approach is called implicit, especially Euler-backward method. 

 

Fig. 5.1    Simple example for explicit (a) and implicit (b) time-integration 

At a first glance the explicit approach seems to be more efficient, because both approaches 

produce a certain integration error (which decreases by using smaller time intervals ∆>), but 

the implicit approach needs a subsequent algorithm for solving Equation (5.6) which in 

general is nonlinear. The solution of such a nonlinear equation (or system of equations in the 

general case) can be obtained by using a Newton (often also called Newton-Raphson) or 

Quasi-Newton algorithm. This procedure is of course very time-consuming, but as we will see 

later, also implicit time-integration may be very efficient and useful and may have some 

advantages with respect to stability and the required time-step size. 

5.2 Explicit Time-Integration 

Explicit time-integration procedures are typically used for highly dynamic FEM problems like 

impact simulations, crash simulations or simulation of explosions. The explicit Euler-Forward 

time-integration scheme presented in Section 5.1 is very simple, but has several disadvantages 

with regard to its accuracy for example, and is therefore not used in practical applications. In 

general, time-integration algorithms may be classified in one-step and multi-step algorithms. 

The main difference between both approaches is that the latter do not only use information 

from the current time-point >�, but also take into account information from previous time-

steps >�Ä� with ( > 0.  
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5.2.1 One-Step Methods 

One-step time-integration algorithms are also known as Runge-Kutta methods and use the 

general approach  

 .�Ñ? = .� + ∆> ∙ k�.�, >�, ∆>!. (5.7) 

With specific definitions of the function k�.�, >�, ∆>! different integration algorithms can be 

constructed. In the simplest case k�.�, >�, ∆>! equals ��.�, >�! and one gets the Euler-

Forward method (5.4). More accurate higher-order methods can be obtained by developing .�>! = ð ��., >!�> as a Taylor series at > = >� as 

.�Ñ? = .� + ∆> ∙ �.� � + ∆>2 ∙ .® � + ∆>R6 .&� +  … � 

= .� + ∆> ∙ ���.�, >�! + ∆>2 ∙ �¿���.'.$,�$ ∙ ��.�, >�! + ¿���>'.$,�$�¿ 
¿+ ∆>R6 .&� +  … � 

(5.8) 

A truncation of this Taylor series after the second term ∆> ∙ .� � obviously leads to the already 

mentioned Euler-Forward method. Higher-order terms would need higher time-derivatives 

which, however, are not available from FEM computations. Therefore another and preferred 

way to obtain higher-order methods is to use the approach 

 k�.�, >�, ∆>! = �?(? + �R(R + … + �é(é (5.9) 

with 

 (? (R ⋮ (é 

= ��.�, >�! = .� � = ��.� + 9R?(?∆>, >� + 7R∆>! 

 = ��.� + 9é,?(?∆> + 9é,R(R∆> +  … + 9é,éÄ?(éÄ?∆>, >� + 7é∆>� 

(5.10) 

(5.11) 

 

(5.12) 

where the q’s and p’s are constants which have to be derived by making a Taylor series 

expansion of Equation (5.7) with respect to ∆> and comparing it to the Taylor series 

expansion (5.8). Again, for 1 = 1 we get the simple Euler-Forward method. Choosing 1 = 2 

leads to a second order Runge-Kutta scheme with the unknown constants �?, �R, 9R? and 7R. 

For the determination of these constants we start with the Taylor series expansion of (5.9) and 

thus with (5.11). This gives for such a two-variable function  

 ��.� + 9R?(?∆>, >� + 7R∆>! = ��.�, >�! 

+ ¿���.'.$,�$ ∙ 9R?(?∆> + ¿���>'.$,�$ ∙ 7R∆> +  … 
(5.13) 

which can be substituted together with (5.10) and (5.9) in (5.7) and leads to 



102          5   Time Integration 

 

.�Ñ? ≈ .� + ∆> ∙ ��?��.�, >�! ¿ 
¿+�R ���.�, >�! + ¿���.'.$,�$ ∙ 9R?(?∆> + ¿���>'.$,�$ ∙ 7R∆>�� 

= .� + ∆> ∙ ���? + �R!��.�, >�! + ∆> ��R9R? ¿���.'.$,�$ ∙ (? ¿¿ 
¿¿+�R7R ¿���>'.$,�$��. 

(5.14) 

Comparing this with Equation (5.8) yields the equivalence conditions 

 �? + �R = 1, 2�R9R? = 1, 2�R7R = 1. (5.15) 

These are three equations to determine four unknowns, which means that one of the 

unknowns may be chosen arbitrarily. On the other hand, this leads to an infinite variety of 

second-order Runge-Kutta methods. By using �? = 1 2⁄  and hence �R = 1 2⁄ , 9R? = 1, 7R = 1 gives the Heun method [62], for example, which is a one-step predictor-corrector 

scheme [30]. The midpoint method is obtained by choosing �? = 0, �R = 1, 9R? = 7R = 1 2⁄ .  

The most popular Runge-Kutta method [124,90] uses a fourth-order approach. It can be 

derived analogously to the presented procedure and finally leads to 

 .�Ñ? = .� + ∆>6 �(? + 2(R + 2(S + (T! (5.16) 

with  (? 
 (R 
 (S 
 (T 

= ��.�, >�!, 
= � ¸.� + ∆>2 (?, >� + ∆>2 ¹, 
= � ¸.� + ∆>2 (R, >� + ∆>2 ¹, 
= ��.� + ∆>(S, >� + ∆>!. 

(5.17) 

In particular, the presented higher-order one-step methods need more than one function 

evaluation per time-step, which is especially in the context of FEM methods computationally 

costly. Lower-order methods like the Euler-Forward scheme are cheap in this sense, but not 

very accurate (see example in Section 5.4.1). Multi-step methods promise a better 

performance, because additional information about prior time-steps is taken into account. 

5.2.2 Multi-Step Methods (The Central Difference Method) 

As an example for a multi-step method we will discuss here only the central difference 

method, which is widely used in the field of FEM and provides sufficient accuracy combined 

with reasonable computational costs. In contrast to the procedure used for the one-step 

methods, we will derive expressions for the current accelerations .® � and velocities .� � by 

using accelerations and velocities of the prior and next time-step. Using these expressions in 
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>4 >4+1 >4−1 > 
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N�×(,4−1 2⁄  
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N�×(,4+1 2⁄  

N(�>! 

the equations of motion (5.1) finally leads to a system of equations which can be easily solved 

for the displacements of the next time-step .�Ñ?. To derive the necessary expressions in the 

central difference method, firstly the mean slope .�× of the function .�>! between the time 

points >�Ä? and >�Ñ? is calculated as 

see Fig. 5.2. Then the second derivative of .�>! is determined with the help of the mean 

slopes .�×�Ä? R⁄ ∶= �.� − .�Ä?! ∆>⁄  and .�×�Ñ? R⁄ ∶= �.�Ñ? − .�! ∆>⁄  as 

The derived approximations for .� � and  .® � can be used now in Equation (5.1) for > = >� 

which leads to 

The displacement vector at the next time step >�Ñ? can be determined then from Equation 

(5.20) by multiplication with ∆>R and solving for .�Ñ? which yields 

With regard to the first part of Equation (5.21) it is obviously necessary to perform a matrix 

inversion, which in general can be computationally very costly. For this reason it is extremely 

useful to use a mass and damping matrix which have non-zero values only on their diagonal, 

in other words which are diagonal matrices. This is for example the case if the lumped mass 

approach [134,141] is used for modeling the mass distribution, which means that the mass of 

 .�×� ∶= 12∆> �.�Ñ? − .�Ä?!, (5.18) 

.®×� ∶= 1∆> �.�×�Ñ? R⁄ − .�×�Ä? R⁄ � = 1∆> ç.�Ñ? − .�∆> − .� − .�Ä?∆> è 
(5.19) 

 = 1∆>R �.�Ñ? − 2.� + .�Ä?!. 

 x� ∙ 1∆>R �.�Ñ? − 2.� + .�Ä?! + s� ∙ 12∆> �.�Ñ? − .�Ä?! + w� ∙ .� = ��. (5.20) 

 .�Ñ? = ¸x� + 12 ∆>s�¹Ä?
 

∙ þ∆>R�� − �∆>Rw� − 2x�!.� − ¸x� − 12 ∆>s�¹ .�Ä?�. (5.21) 

 

Fig. 5.2    Central difference method 
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an element is concentrated at its nodes. The damping matrix is a diagonal matrix if mass-

proportional damping is applied. In these cases, step two of the general solution procedure for 

nonlinear systems of differential equations mentioned in the introduction is not necessary, 

because the solution is directly obtained from Equation (5.21). But for wave propagation 

problems it can be useful to use a consistent mass matrix, for example. In such an approach 

the mass matrix is not diagonal and a specific solution procedure is required for (5.21) [66]. 

If necessary, the velocities .� � and accelerations .® � can be computed approximately from 

Equations (5.18) and (5.19) as .�×� and .®×� which finishes the actual time-integration step. 

Subsequently, the procedure continues with the next time step.  

As we will see later in Chapter 6, it can be necessary to change the time-step size during the 

computation for reasons of numerical stability. Especially in the simulation of highly dynamic 

processes like impact or crash simulations the time-step size may change from step to step. 

The derived Equations (5.18) and (5.19), however, require an equal time-step size for ∆>�Ä? = >� − >�Ä? and ∆>� = >�Ñ? − >�. If we assume different time-step sizes we get 

for the mean velocity and  

for the mean acceleration. 

5.3 Implicit Time-Integration 

Implicit time-integration methods are mostly used for static or quasi-static problems. But as 

we will see later they can be also very useful for dynamic applications. In contrast to explicit 

time-integration it is necessary to solve a system of in general non-linear equations for every 

time-step after substituting the unknown velocities and accelerations with the respective 

expressions. By this, the solution procedure for one time-step is computationally far more 

costly than an explicit solution procedure. On the other hand, the time-step size in an implicit 

time-integration can be a few orders bigger than that of an explicit time-integration method, 

which can lead to an overall smaller computational time depending on the particular problem. 

In this section, some of the most common algorithms are presented which are all used in 

commercial finite element codes.  

5.3.1 Newmark Algorithm 

The Newmark time-integration algorithm has been originally developed by Nathan M. 

Newmark [110]. Algorithms of the Newmark family or generalizations of it are implemented 

in almost every commercial finite element code. 

 .�×� = 1∆>�Ä? + ∆>� �.�Ñ? − .�Ä?! (5.22) 

 .®×� = ∆>�Ä?�.�Ñ? − .�! − ∆>��.� − .�Ä?!∆>� + ∆>�Ä?2 ∙ ∆>�∆>�Ä?  (5.23) 
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The basic concept of the Newmark algorithm is to use a linear approximation between two 

time-points >� and >�Ñ?. If we firstly consider the integration of N®�>! (Fig. 5.3) the Newmark 

approximation is 

 

 

Fig. 5.3    Linear approximation of the Newmark algorithm 

For the integration of (5.24) Newmark introduced the following equation: 

By varying the parameter W between 0 and 1 the accuracy of the integration for the linear 

approximation can be influenced. The meaning of different W-values is illustrated in Fig. 5.4. 

The areas highlighted in grey show the results of the integration for different W-values. 

Obviously, for the linear Newmark approximation the integration is exact for W = 1 2⁄ . For W > 1 2⁄  so-called numerical damping is introduced into the system and for W < 1 2⁄  the 

system is excited. 

   

Fig. 5.4    Influence of W-parameter on integration result 

 .® O�>! = .® �Ñ? − .® �>�Ñ? − >� ∙ > + .® �>�Ñ? − .® �Ñ?>�>�Ñ? − >�  . (5.24) 

.� O�>�Ñ?! = .� � + � .® O�>!d>�$%ñ
�$

 

=∶ .� � + �>�Ñ? − >�! ∙ [�1 − W!.® � + W.® �Ñ?],   0 ≤ W ≤ 1. 
(5.25) 
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tan U = ℎ>4+1 − >4 = N® (,4  ⇒ ℎ = N® (,4 ∙ �>4+1 − >4! 

� = 12 �>�Ñ? − >�! ∙ ℎ = 12 �>�Ñ? − >�!R ∙ N®�,�  

For the second integration of .� O�>!, the approximation  

is used. To understand the meaning of the parameter V, it is useful to have a closer look at the 

different terms in Equation (5.26). The term �>�Ñ? − >�!.� �  just describes the area of the 

rectangle highlighted in Fig. 5.5 (left). The third term for V = 0 describes the area of a 

triangle with slope .® � (see Fig. 5.5, right). The parameter V is used as a kind of weighting 

factor to adopt the slope of this triangle. For V = 0 the slope at > = >� is used, for V = 1 2⁄  

the slope at > = >�Ñ? is evaluated. For V = 1 4⁄  the mean value of both slopes is used for the 

computation of the triangular area. As it can be seen from these considerations a sensible 

choice for V should be 0 ≤ V ≤ 1 2⁄ . Nevertheless, there are some further important 

restrictions concerning the choice of V with respect to stability requirements as we will see 

later. 

 

Fig. 5.5    Meaning of second Newmark equation for V = 0 

If we substitute .� O�>�Ñ?! by .� �Ñ? in Equation (5.25) and .O�>�Ñ?! by .�Ñ? in Equation 

(5.26) in the sense of the Newmark approximation we can solve these equations for the next 

iterates .� �Ñ? and .® �Ñ? to get 

 .� �Ñ? = 2V∆>�.� � + ∆>.® �! − W�2.� − 2.�Ñ? + 2∆>.� � + ∆>R.® �!2V∆>  (5.27) 

and 

 .® �Ñ? = −2.� + 2.�Ñ? + ∆>�−2.� � + �2V − 1!∆>.® �!2V∆>R  . (5.28) 

where ∆> = >�Ñ? − >�. Equations (5.27) and (5.28) can now be used in Equation (5.1) by 

substituting .®  by Equation (5.28), .�  by Equation (5.27) and . by .�Ñ?, which finally can be 

solved for the next displacement iterate .�Ñ? as described in Section 5.3.4. 

.O�>�Ñ?! = .� + � .� O�>!d>�$%ñ
�$

 

=∶ .� + �>�Ñ? − >�!.� � + �>�Ñ? − >�!R þ¸12 − V¹ .® � + V.® �Ñ?� 
(5.26) 
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5.3.2 Hilber-Hughes-Taylor Algorithm 

The Hilber-Hughes-Taylor (HHT) algorithm is a kind of generalization of the classical 

Newmark method by introducing an additional variable U into the equation of motion [63] 

which then becomes 

 x�Ñ?.® �Ñ? + �1 + U!s�Ñ?.� �Ñ? − Us�.� � + �1 + U!w�Ñ?.�Ñ? − Uw�.� = ��Ñ?. (5.29) 

For the substitutions of .® �Ñ? and .� �Ñ? the same expressions (5.27) and (5.28) as in 

Newmark’s algorithm are used. By this, the Newmark algorithm and the HHT algorithm are 

identical for  U = 0. 

Hilber, Hughes and Taylor suggest the parameter coupling  

 W = 12 − U, (5.30) 

 V = �1 − U!R4  (5.31) 

for − 1 3⁄ ≤ U ≤ 0. Choosing U < 0 adds some numerical damping to the system as will be 

demonstrated later for an example problem. In contrast to the Newmark time-integration, the 

second order accuracy of the HHT algorithm is not affected by introducing numerical 

damping [56]. In addition, there exist some generalizations of this method as described in 

[32,41] for example. 

5.3.3 Newmark-Euler Algorithm 

The correct name of this integration scheme is actually Newmark-Three-Point-Euler-

Backward algorithm, but for reasons of simplicity it will be termed here as Newmark-Euler 

algorithm. The method was originally published in [6] and used for the numerical solution of 

coupled partial differential equations describing the transient behavior of silicon device 

structures. Bathe et al. [11,13,16,127] introduced the scheme for the implicit solution of 

dynamic FEM problems. 

The basic idea of the Newmark-Euler algorithm is to split the time step ∆> into two time-

steps. At the moment we may assume that the position of the split point is in the middle of ∆>. 

The unknown solution function .�>! is approximated at the time points  >� and >�+ ∆> 2⁄  by 

two second-order Taylor series derived at >�Ñ? which gives according to Fig. 5.6  

 .�Ñ? R⁄ ≈ .Z�Ñ? R⁄ = .�Ñ? − ∆>2 .� �Ñ? − ∆>R8 .® �Ñ? (5.32) 

(chain-dotted line) and 

 .� ≈ .Z� = .�Ñ? − ∆> ∙ .� �Ñ? − ∆>R2 .® �Ñ? (5.33) 

(dotted line). If Equation (5.32) is multiplied by �−4! and added to Equation (5.33) we get 

 .Z� − 4.Z�Ñ? R⁄ = −3.�Ñ? + ∆> ∙ .� �Ñ? (5.34) 
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which can be solved for .� �Ñ? and results in 

 .� �Ñ? = .Z� − 4.Z�Ñ? R⁄ + 3.�Ñ?∆> ≈ .� − 4.�Ñ? R⁄ + 3.�Ñ?∆> . (5.35) 

The same procedure for .� �>! leads to 

 .® �Ñ? = .�r� − 4.�r�Ñ? R⁄ + 3.� �Ñ?∆> ≈ .� � − 4.� �Ñ? R⁄ + 3.� �Ñ?∆> . (5.36) 

The unknown values for .�Ñ? R⁄  and .� �Ñ? R⁄  in Equations (5.35) and (5.36) are provided by a 

Newmark algorithm which is used for the integration from >� to >� + ∆> 2⁄ . This means that 

the Newmak-Euler scheme is a two-step time-integration scheme. In the first step the classical 

Newmark substitutions (5.27), (5.28) with ∆> → ∆> 2⁄ , 4 + 1 → 4 + 1 2⁄  are applied to the 

equations of motion and yield 

 x�Ñ? R⁄ ∙ −4.� + 4.�Ñ? R⁄ + ∆> ç−2.� � + �2V − 1! ∆>2 .® �èV∆>R  

+s�Ñ? R⁄ ∙ V∆> ç.� � + ∆>2 .® �è − W ¸2.� − 2.�Ñ? R⁄ + ∆>.� � + ∆>R4 .® �¹V∆>  

+w�Ñ? R⁄ ∙ .�Ñ? R⁄ = ��Ñ? R⁄ . 
(5.37) 

This generally nonlinear system of equations is solved for .�Ñ? R⁄  by a numerical solution 

scheme like a Newton or Quasi-Newton algorithm. The solution for .� �Ñ? R⁄  is obtained via 

Equation (5.27) by substitutions .�Ñ? → .�Ñ? R⁄ , .� �Ñ? → .� �Ñ? R⁄ , ∆> → ∆> 2⁄ . In the second 

step of the Newmark-Euler time-integration scheme, the right part of Equations (5.35) and 

(5.36) are applied to the equations of motions for the integration over the whole time step ∆> 

which leads to 

 x�Ñ? ∙ .� � − 4.� �Ñ? R⁄ + 3.� �Ñ?∆> + s�Ñ? ∙ .� − 4.�Ñ? R⁄ + 3.�Ñ?∆>  +w�Ñ? ∙ .�Ñ? = ��Ñ?. (5.38) 

Also Equation (5.38) is nonlinear in general due to the dependency of the stiffness matrix on .�Ñ? for example and has to be solved numerically for the next iterate .�Ñ?. 

 

Fig. 5.6    Time-step split in Newmark-Euler algorithm 



5.3   Implicit Time-Integration          109 

 

Alternatively, it is possible to split the time step ∆> not at ∆> 2⁄  but at any arbitrary point 

between >� and >�Ñ?. As we will see later, the time step split point has an influence on the 

numerical damping of the algorithm and therefore also on the stability. 

A more general implementation of the Newmark-Euler scheme uses alternating Newmark and 

Euler-Backward steps (Composite scheme). A Newmark step is always followed by an Euler 

step which uses the information of the previous Newmark step and the Euler step before. The 

substitutions for the Euler step are 

 .® �Ñ? = 1 + U∆>� �.� �Ñ? − .� �! − U∆>�Ä? �.� � − .� �Ä?! (5.39) 

and 

 .� �Ñ? = 1 + U∆>� �.�Ñ? − .�! − U∆>�Ä? �.� − .�Ä?!. (5.40) 

If the parameter U is interpreted as split point between the previous and current time step, in 

other words U = �>� − >�Ä?! �>�Ñ? − >�Ä?!⁄ , it can be easily demonstrated that e.g. Equation 

(5.40) becomes identical to Equation (5.35)  for  U = 0.5: The substitution of U =�>� − >�Ä?! �>�Ñ? − >�Ä?!⁄ = �∆>�Ä?! �∆>�Ä? + ∆>�!⁄  into Equation (5.40) leads to 

 .� �Ñ? = 1∆>�Ä? + ∆>� ¸2∆>�Ä? + ∆>�∆>� �.�Ñ? − .�! − .� + .�Ä?¹. (5.41) 

The choice of U = 0.5 means ∆>�Ä? = ∆>� and therefore ∆>�Ä? + ∆>� = 2∆>, which gives 

 .� �Ñ? = �.�Ä? − 4.� + 3.�Ñ?!2∆>  . (5.42) 

and is identical to Equation (5.35) if 2∆> is interpreted as ∆> and therefore .�Ä? as .� and .� 

as .�Ñ? R⁄ . But U can also be interpreted as a further independent parameter of this scheme. 

The latter approach has the advantage that the size of two subsequent time steps ∆>�Ä? and ∆>� is not directly coupled via U, which can be advantageous if convergence problems appear. 

For a strict coupling both the Newmark and the Euler-Backward step have to be repeated if 

convergence is not reached in the Euler-Backward step, which is not necessary if U is not 

coupled to the step-sizes. In this case it would be sufficient to repeat the last time-step only. 

5.3.4 Solution of Nonlinear Equations 

Using implicit time-integrators typically leads to nonlinear systems of equations such as 

(5.37) or (5.38), which have to be solved for the unknown values of the next time-step. But 

also explicit time-integration schemes may produce nonlinear systems of equations, for 

example if a non-diagonal damping matrix is required [70,71]. For the solution in FEM 

applications, the classical Newton method and Quasi-Newton methods are widely used. The 

roots of these methods date back to a work of Isaac Newton, called “Methodus fluxionum et 

serierum infinitarum”, authored between 1664 and 1671, where he introduces a new 

algorithm to solve a polynomial equation. In 1690, Joseph Raphson formalized and illustrated 
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this algorithm in his work “Analysis Aequationum universalis“. Therefore the method is often 

called “Newton-Raphson” method. The abstract form of the iteration rule 

 N KÑ? = N K − �� N K !�′� N K !  ,   * = 0, 1, 2, … (5.43) 

was probably derived by the English mathematician Thomas Simpson, who is also known for 

his work about numerical integration. Some more historical remarks with further literature 

references can be found in [46]. 

To derive Equation (5.43), we assume that we want to solve the nonlinear algebraic equation 

 ��N! = 0. (5.44) 

In Fig. 5.7 an example of such a function is plotted. The iteration starts at the initial value N = N # . At this point, the nonlinear function ��N! is linearized by computing the derivative �′� N # ! and constructing a linear function 

 �#�N! = �′� N # !N + 
. (5.45) 

The unknown variable 
 in Equation (5.45) can be determined from 

 �� N # ! = �′� N # ! N # + 
 (5.46) 

as 

 
 = �� N # ! − ��� N # ! N # . (5.47) 

The idea of the Newton algorithm is to compute the zero of this linear function which should 

be a better approximation of the zero of the nonlinear function than the initial guess N #  from 

 �#�N! = ��� N # !N + �� N # ! − ��� N # ! N # = 0 (5.48) 

resolving in  

 N = ��� N # ! N # − �� N # !��� N # ! = N # − �� N # !��� N # ! . (5.49) 

 Obviously this result is different from the zero of the nonlinear function ��N!, but the error is 

 

Fig. 5.7    Solving a nonlinear equation by applying a sequence of linear models (Newton 

algorithm) 
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smaller than for N = N #  and it can be used as a starting point N ?  for the next iteration. By this, 

the iteration rule (5.43) is applied until the resulting error �� N KÑ? ! is smaller than some 

tolerance \, i.e., �� N KÑ? ! < \. 

Let us now consider the case of a mechanical problem with more than just one unknown, 

where Newmark time-integration is applied. Substitution of (5.27), (5.28) into Equation (5.1) 

yields the function � at a certain time-point >�Ñ?  

 ��.�Ñ?! = x�Ñ? ∙ −2.� + 2.�Ñ? + ∆>�−2.� � + �2V − 1!∆>.® �!2V∆>R  

+s�Ñ? ∙ 2V∆>�.� � + ∆>.® �! − W�2.� − 2.�Ñ? + 2∆>.� � + ∆>R.® �!2V∆>  

+w�Ñ? ∙ .�Ñ? − ��Ñ?. 
(5.50) 

Please note that also the stiffness matrix w�Ñ?, the damping matrix s�Ñ? and the load vector ��Ñ? may depend on the unknown displacements .�Ñ?. It should be mentioned that Equation 

(5.50) is often formulated in terms of internal and external loads as 

 ��.�Ñ?! = x�.® �Ñ? + ��Ñ?��� − ��Ñ?���  (5.51) 

with ��Ñ?��� = s�.� �Ñ? + w�.�Ñ? and ��Ñ?��� = ��Ñ?. 

By using the iteration rule (5.43) for finding the zero of (5.50) we get 

 .�Ñ? KÑ? = .�Ñ? K − + ¿���.�Ñ?!�.�Ñ? , .$%ñ - .Ä? �� .�Ñ? K !. (5.52) 

With ∆. = .�Ñ? KÑ? − .�Ñ? K  this can also be written as 

 + ¿���.�Ñ?!�.�Ñ? , .$%ñ - .∆. = −�� .�Ñ? K ! (5.53) 

which is a linear system of equations. As initial value for the Newton iteration the equilibrium 

solution of the previous time-step .�Ñ? # = .� may be used. The derivative in Equation (5.53) 

is called the “effective tangent stiffness matrix” [21].  

In many cases the effectiveness of the Newton method can be increased by combining it with 

a line search algorithm. The idea behind this approach is that the ∆. found by the Newton 

method may be a good direction, but the step size could be too big, which is illustrated in Fig. 

5.8. It would be obviously advantageous to use a smaller step size, because the residuum \ is 

smaller when using ∆N = c ∙ � N − KÑ? N K ! with c = 0.6 instead of ∆N = N − KÑ? N K . The 

difficulty is to determine an optimal value for c, where a lot of different strategies exist for 

this purpose (see for example [51,111]). 

For more than one unknown, various vector norms are applicable for the convergence 

criterion of the Newton method [21]. One possibility is to use the Euclidean norm 

 ‖�‖� = + � ��R
$�/0

�î? .?R, (5.54) 
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which just describes the length of the vector �. This norm can then be applied to the residual �� . KÑ? �Ñ?! as 

 ‖�� . KÑ? �Ñ?!‖� ≤ \ ∙ max 1‖����‖R, 2����2R, ‖x.® ‖R3 (5.55) 

or to the displacement increment ∆. as 

 ‖ ∆. KÑ? ‖� ≤ \ ∙ ‖.‖R. (5.56) 

Another possibility would be to use the maximum norm  

 ‖�‖4 = max|��| (5.57) 

which describes the maximum error instead of the mean error over all degrees of freedom 

when using the Euclidean norm. Also energy convergence criteria may be useful [21,22]. 

The computation of the derivative ���.�Ñ?! �.�Ñ?⁄  at .�Ñ? = .�Ñ? K , which has to be 

performed at every k-th step during the Newton algorithm, is computationally very expensive. 

Hence, so-called Quasi-Newton algorithms have been developed using approximations of the 

effective tangent stiffness matrix. The simplest way to construct a Quasi-Newton algorithm is 

just to use the derivative �′� N # ! of the first iteration for all following iterations. This approach 

is illustrated in Fig. 5.9b. Obviously this simple idea also converges but needs more iterations 

than a classical Newton algorithm sometimes called Full-Newton algorithm (Fig. 5.9a). 

More advanced Quasi-Newton methods use secant approximations for the effective tangent 

stiffness matrix. This can be done by defining  

 [ = K N − N KÄ? K  (5.58) 

and 

 W = �� N K ! − K �� N KÄ? !. (5.59) 

The approximation for �′� N K ! or 1 �′� N K !⁄  can then be calculated as 

 1�′� N K ! ≈ [ KW K . (5.60) 

 

Fig. 5.8    Increasing the effectiveness of the Newton method by line search 
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As it can be seen in Fig. 5.10 the convergence of such an approach with updates of the 

derivative is faster than without any updates. 

a)  b) 

Fig. 5.9   Full-Newton algorithm (a) and Quasi-Newton algorithm (b) 

An even more effective and widely used algorithm is the Broyden-Fletcher-Goldfarb-Shanno 

method (BFGS method), which was developed by contributions from the four mathematicians 

Charles Broyden, Roger Fletcher, Donald Goldfarb and David Shanno. In their approach a 

line search algorithm is combined with the secant approximation procedure [26,52,58,125]. 

Another common Quasi-Newton algorithm is the Davidon-Fletcher-Powell scheme [44,53]. It 

is not possible to rate the presented methods in general in terms of effectiveness or 

computational speed. The performance of a method is always problem dependent and may 

change with the size of the problem, the smoothness and the behavior of the function ��N!. 

Experience with the FEM simulation of fast rotating elastic structures shows for instance that 

for these kinds of problems a classical Newton algorithm converges faster and provides more 

stability than a Quasi-Newton approach. 

Moreover, Quasi-Newton methods need more computer memory for the storage of additional 

vectors and matrices required for the approximation of the derivative. Test cases in 

 

Fig. 5.10    Quasi-Newton algorithm with secant approximations of the derivative 
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commercial FE tools showed that the memory allocation is about 30% higher if a Quasi-

Newton method is used instead of a Full-Newton method. If this additional memory 

requirement leads to a situation where the available memory is insufficient to perform the 

whole computation “in-core”, which means without using disk space for temporary swapping 

of data, the overall computational time may increase dramatically. 

5.4 Examples 

In this section, the presented algorithms and methods and especially their behavior will be 

demonstrated by some simple examples. By this, advantages and disadvantages of the 

algorithms should become more obvious. 

5.4.1 Time Integration of Equation of Motion for Moving Plate 

Let us first consider a very simple example which actually can be solved analytically. A 

rectangular plate is meshed with just one solid element. It is assumed to be rigid and the mass 

is 3 = 4 ∙ 10ô*". The plate is loaded at every node with the same constant force which sum 

up to � = 8 ∙ 10õÁ (Fig. 5.11). At > = 0; the plate is at rest and we are looking for the 

displacement of the plate after 1;. For the solution of this problem we will compare the 

implicit Newmark time-integration and the explicit Euler-Forward method. 
 

Fig. 5.11   Moving plate 

The equation of motion for the described problem is just 

 3N® = � (5.61) 

with initial conditions N# = 0, N�# = 0. If we firstly apply the Newmark time-integration 

(5.28), Equation (5.61) becomes  

 3 ∙ −2N� + 2N�Ñ? + ∆>�−2N�� + �2V − 1!∆>N®�!2V∆>R = � (5.62) 

which is a linear equation in N�Ñ?. Therefore, it can be directly solved without Newton 

iteration to get  

 N�Ñ? = �V∆>R3 + N� − ∆> ¸−N�� + ¸V − 12¹ ∆>N®�¹. (5.63) 

Table 5.1 shows the values for the recursive procedure from > = 0; to > = 1; with constant 

time-step size ∆> = 0.1; and standard Newmark parameters W = 0.5 and V = 0.25. In Fig. 
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5.12 the resulting curves for displacement, velocity and acceleration are plotted. The values 

for velocity and acceleration are computed with Equations (5.27) and (5.28), respectively. 

Table 5.1 Results of Newmark algorithm for N®# = 0 3 ;R⁄  > [;] 4 N� [3] N�� [3 ;]⁄  N®� [3 ;R]⁄    
0 0 0 0 0 

0.1 1 0.5 10 200 
0.2 2 2.5 30 200 
0.3 3 6.5 50 200 
0.4 4 12.5 70 200 
0.5 5 20.5 90 200 
0.6 6 30.5 110 200 
0.7 7 42.5 130 200 
0.8 8 56.5 150 200 
0.9 9 72.5 170 200 
1.0 10 90.5 190 200 

 
 

Fig. 5.12    Diagram of N, N�  and N®  for results of Newmark algorithm for N®# = 0 3 ;R⁄  

If we compare the computed solution for the maximum displacement with the analytical 

solution 

 N�> = 1;! = N®2 >R + N�#> + N# = �>R23 = 1003 (5.64) 

we observe a certain deviation with respect to Table 5.1. This error becomes bigger for bigger 

time-steps and vice versa. The deviation results from the acceleration value used for the 

initialization of the Newmark algorithm. For the calculation of Table 5.1 N®# = 0 3 ;R⁄  is 

assumed as sometimes done by FE tools by default. But obviously this assumption is not 

correct because the force � is applied immediately at > = 0; and from the equation of motion 

we get  

 N®�> = 0;! = ��> = 0;!3 = 200 3;R . (5.65) 

If this value is used for the initialization of the Newmark algorithm the correct results are 
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obtained as it can be seen in Table 5.2 and Fig. 5.13 since such a second-order integration 

scheme is able to integrate the linear velocity exactly. 

Table 5.2 Results of Newmark algorithm for N®# = 200 3 ;R⁄  > [;] 4 N� [3] N�� [3 ;]⁄  N®� [3 ;R]⁄    
0 0 0 0 200 

0.1 1 1 20 200 
0.2 2 4 40 200 
0.3 3 9 60 200 
0.4 4 16 80 200 
0.5 5 25 100 200 
0.6 6 36 120 200 
0.7 7 49 140 200 
0.8 8 64 160 200 
0.9 9 81 180 200 
1.0 10 100 200 200 

 
 

Fig. 5.13    Diagram of N, N�  and N®  for results of Newmark algorithm for N®# = 200 3 ;R⁄  

In most practical applications the time-step size is small enough that initialization values for 

the accelerations have only a minor influence onto the result of the computation. 

Nevertheless, most FE tools offer the possibility of computing the initial acceleration at the 

beginning of a dynamic analysis. This can be done with the help of the equations of motions 

as demonstrated for example. 

To show the behavior of an explicit time-integration scheme we now use the explicit Euler-

Forward algorithm (5.4). The equations for the iteration are then 

 N��Ñ? = N�� + N®�∆> = N�� + �3 ∆>, (5.66) 

 N�Ñ? = N� + N��∆>. (5.67) 

If necessary, the acceleration can be computed from  

 N®�Ñ? = N®� + N&�∆> = �3 + 0. (5.68) 
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If we use again a time-step size of ∆> = 0.1; we get the results in Table 5.3 and Fig. 5.14. 

One can observe an error in the maximal displacement which decreases if the time-step size is 

decreased (Fig. 5.15). Obviously, the accuracy of the Euler-forward algorithm is equal to the 

order of the time-step since this is a first-order integration scheme. 

Table 5.3 Results of Euler-Forward algorithm > [;] 4 N� [3] N�� [3 ;]⁄  N®� [3 ;R]⁄    
0 0 0 0 200 

0.1 1 0 20 200 
0.2 2 2 40 200 
0.3 3 6 60 200 
0.4 4 12 80 200 
0.5 5 20 100 200 
0.6 6 30 120 200 
0.7 7 42 140 200 
0.8 8 56 160 200 
0.9 9 72 180 200 
1.0 10 90 200 200 

 
 

Fig. 5.14    Diagram of N, N�  and N®  for results of Euler-Forward algorithm  

 
 

Fig. 5.15    Error of explicit Euler-Forward algorithm depending on time-step size 
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5.4.2 1-DOF Vibration 

To study the influence of the Newmark parameters W and V on the solution, the equation of 

motion of a simple 1-degree of freedom vibration problem (Fig. 5.16a) is used. Also the 

behavior of the explicit central difference method will be demonstrated.  
  

Fig. 5.16    1-degree of freedom vibration system (a) and linear and nonlinear spring 

characteristics (b) 

The equation of motion for this free undamped system with constant spring stiffness * (Fig. 

5.16b) is 

 N® + *3 N = 0. (5.69) 

As initial conditions we define N# = N�> = 0! = −13 for the displacement and N�# =N��> = 0! = 0 3 ;⁄  for the velocity. For convenience we assume * 3⁄ = 1 ;R⁄  which 

simplifies Equation (5.69) to 

 N® + N = 0. (5.70) 

From the initial displacement condition follows straight away from (5.70): N®# = N®�> = 0! =1 3 ;R⁄ . An analytical solution can be derived by using the approach 

 N�>! = N#;(4�p> + n#!. (5.71) 

The initial displacement condition immediately gives then nB = � 2⁄ . The first derivative of 

(5.71) yields 

 N��>! = pN#�Ó;�p> + n#! (5.72) 

and thus the second derivative 

 N®�>! = −pRN#;(4�p> + n#!. (5.73) 

By using (5.73) and (5.71) in (5.70) the unknown eigenfrequency p can be determined as p = 1æ�� ;⁄  which finally leads to the analytical solution  

 N�>! = −;(4 ç> + �2è = ;(4 ç> − �2è (5.74) 

for this simple vibration problem of Equation (5.70). 
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If we want so solve the problem numerically by the implicit Newmark algorithm, we have to 

substitute N®  in Equation (5.70) by Equation (5.28) and N by N�Ñ? resulting in 

 
−2N� + 2N�Ñ? + ∆>�−2N�� + �2V − 1!∆>N®�!2V∆>R + N�Ñ? = 0 (5.75) 

which can be solved for N�Ñ? as  

 N�Ñ? = N� + ∆>N�� + ∆>R ç12 − Vè N®�V∆>R + 1  . (5.76) 

For a time step-size of ∆> = 0.2; and parameters W = 0.5, V = 0.25 the solution in Fig. 5.17a 

is obtained. As we can observe, there is almost no difference between the analytical and the 

numerical solution. 

To study the influence of the Newmark parameters W and V as well as the time-step size ∆>, 

these parameters are varied in Fig. 5.17b and Fig. 5.18. An increase of W leads obviously to a 

decrease of the vibration amplitude (Fig. 5.17b), which is called numerical damping. By this, 

a certain stabilization of the solution is reached in some cases, since it is possible to damp 

higher frequencies. We will further discuss this fact in the stability analysis in the next 

section. 

a) 
 
 

 

 

 

 

b)  

Fig. 5.17   Comparison of analytical and numerical solution obtained by Newmark algorithm 

for ∆> = 0.2;, V = 0.25 and a) W = 0.5, b) W = 0.6 

An increase of the time-step size still leads to a stable solution (Fig. 5.18a), however, some 

accuracy gets lost due to the observable period elongation. By changing the parameter V, this 

inaccuracy can be partially corrected (Fig. 5.18b). For this reason V is sometimes also called 
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accuracy parameter, but whether an increase or decrease of V improves the solution depends 

on the particular mechanical problem. 

a) 

b)  

Fig. 5.18    Comparison of analytical and numerical solution obtained by Newmark algorithm 

for ∆> = 0.6;, W = 0.5 and a) V = 0.25, b) V = 0.166 

Next, we want to use the HHT algorithm to solve the simple free vibration problem. By 

adding the extra terms of Equation (5.29), the equation of motion (5.70) becomes 

 N®�Ñ? + �1 + U!N�Ñ? − UN� = 0. (5.77) 

Substituting N®�Ñ? by Equation (5.28) leads to 

 −2N� + 2N�Ñ? + ∆>�−2N�� + �2V − 1!∆>N®�!2V∆>R + �1 + �!N�Ñ? − UN� = 0 (5.78) 

which can be solved for N�Ñ? as 

 N�Ñ? = N��1 + ∆>RUV! + ∆>N�� + ∆>R ç12 − Vè N®�1 + ∆>RV�1 + U!  . (5.79) 

For U = 0 this obviously reduces to the solution (5.76) of the Newmark scheme. In Fig. 5.19 

the solution of the free vibration problem obtained with the HHT algorithm for a time-step 

size of ∆> = 0.6; and a parameter choice of U = −0.2 is plotted. If the parameter coupling 

(5.30), (5.31) is applied, strong numerical damping is introduced. But it is also possible to 

keep U, V and W uncoupled. In this case the solution differs only slightly from the Newmark 

solution and no numerical damping is added since this is regularized by a proper value of the W parameter. However, the advantage of using the parameter coupling is that just one 
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parameter has to be set by the user, which reduces the probability of choosing an unstable 

parameter combination by accident. 

Finally, the central difference scheme (5.21) as an explicit time-integration algorithm is 

applied to the free vibration problem of Equation (5.69) with * 3⁄ = 1 ;R⁄ , which leads to the 

recursion formula 

 N�Ñ? = 13 [−�∆>R* − 23!N� − 3N�Ä?] = −N��∆>R − 2! − N�Ä?. (5.80) 

For a time-step size of ∆> = 0.1; we get the displacement solution in Fig. 5.20. Almost no 

difference is visible between the numerical and analytical results. 
 

Fig. 5.20    Comparison of analytical and numerical solution obtained with the central 

difference method and a time-step size of ∆> = 0.1; 

Moreover, it is interesting to note what happens if the time-step size in the central difference 

scheme is increased. In Fig. 5.21 the solutions for a time-step size of ∆> = 1.9; and for ∆> = 2.1; are shown. For a bigger time-step size the accuracy is reduced as it could be 

expected for using ∆> = 1.9;, but the solution grows unbounded if the time-step size is 

increased further to ∆> = 2.1;. The question is why is there such a big difference with regard 

to the solution although there is only a small change in the time-step size? The answer to this 

 

Fig. 5.19   Comparison of analytical and numerical solutions for ∆> = 0.6; obtained by 

Newmark algorithm (W = 0.5, V = 0.25) and HHT algorithm with (U = −0.2 →  W = 0.7, V = 0.36) and without parameter coupling (U = −0.2, W = 0.5, V =0.25) 
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question is strongly related to the stability of this time-integration algorithm and will be given 

in Chapter 6. 

 

Fig. 5.21    Solutions for free vibration problem with explicit central difference method for ∆> = 1.9; and ∆> = 2.1; 

5.4.3 Nonlinear 1-DOF Vibration 

The last example is similar to the one before, but now we assume the nonlinear spring 

characteristic (Fig. 5.16b) 

 ���ê��@�N!~NS. (5.81) 

The local spring stiffness can be calculated as derivative of the force-displacement curve as 

 *�N! = ����ê��@�N!�N = ��N �
NS! = 3
NR (5.82) 

where constant 
 is chosen to be equal to three (
 = 3 *" 3R;R⁄ ). By this, the equation of 

motion becomes 

 N® + 3NS = 0, (5.83) 

if we assume again 3 = 1*". 

To solve (5.83) numerically, Newmark time-integration with W = 0.5 and V = 0.25 is used, 

which leads to the nonlinear equation  

 ��N�Ñ?! = N�Ñ?S + N�Ñ?3V∆>R − 2N� − ∆>�−2N�� + �2V − 1!∆>N®�!6V∆>R = 0 (5.84) 

with respect to N�Ñ?. If we want to use a Newton or Quasi-Newton algorithm for the solution, 

the derivative of ��N�Ñ?! with respect to N�Ñ?  

 �′�N�Ñ?! = 3N�Ñ?R + 13V∆>R (5.85) 

is needed. In Fig. 5.22 the solutions computed by a Full-Newton and two different Quasi-

Newton approaches (constant stiffness and secant stiffness) are plotted with ∆> = 0.6;. For 

all approaches the equilibrium iterations are aborted if an accuracy of �� N KÑ? �Ñ?! < 0.001 is 
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reached. As initial conditions N# = N�> = 0! = −13, N�# = N��> = 0! = 0 3 ;⁄  are used from 

which N®# = N®�> = 0! = −3N#S = 3 3 ;⁄  follows. 
 

Fig. 5.22    Comparison of the numerical solutions for the nonlinear vibration problem 

obtained by Full-Newton and Quasi-Newton methods and a time-step size of ∆> = 0.6; 

The results of the Full-Newton and Quasi-Newton approaches are quite similar. However, 

after a longer simulation time some differences are visible. In this case, it is more interesting 

to have a look at the number of iterations performed by the different algorithms in every time-

step (Fig. 5.23). As one can, see the number of iterations is the lowest for the Full-Newton 

algorithm followed by the Quasi-Newton algorithm using the secant stiffness (see also Fig. 

5.10) and the Quasi-Newton algorithm using a constant stiffness (computed only once in the 

first iteration). On the other hand, one iteration of a Quasi-Newton algorithm needs less time 

than that of a Full-Newton algorithm due to the fact that there is no need for a time-

consuming computation of derivatives (which corresponds to the computation of the stiffness 

matrix of the problem). For this reason it always depends on the particular problem (necessary 

time-step size, accuracy requirements, effort for computation of derivatives, nonlinearity of 

problem, etc.) to be solved, which solution procedure is the fastest one. The differences in the 

number of iterations per time-step between the three approaches are for example much 

smaller if a time-step size of ∆> = 0.1; is used. 
 

Fig. 5.23    Number of iterations needed per time-step for different strategies to solve the 

nonlinear equation of the free vibration problem 
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6 Stability and Accuracy Considerations of Time-Integration 
Algorithms 

For every numerical algorithm or solution process, stability is a very important aspect. As we 

have seen in Fig. 5.21, the solution of time-integration algorithms may grow unbounded under 

certain circumstances. Here, we will discuss under which conditions such a phenomenon may 

appear and what is necessary to avoid such unwanted effects. Moreover, a stability analysis of 

a time-integration algorithm is always useful to show the borders of its applicability. A 

definition of numerical stability could be the following: A system is stable if small changes in 

the initial conditions (input data) lead only to small changes of the numerical solution of the 

system behavior (output data). In other words, the numerical solution of a stable system may 

not grow unbounded or become chaotic without converging to an attractor (for more details 

see e.g. [59,100]). It is important to stress the fact that the system under investigation is 

stable, otherwise a definition of numerical stability wouldn’t work. This problem can be 

easily demonstrated for a simple example: Let us assume that we want to solve the differential 

equation 

 3N® + N ∙ �sin�p>! − 2! = 0 (6.1) 

with parametric excitation numerically for p = 1æ�� ;⁄ , N�0! = 03, N��0! = 13 and 3 = 1*". The “stiffness” term �sin�p>! − 2! is always negative, but the solution N�>! grows 

unbounded (Fig. 6.1). In such a case, a stability criterion would predict unstable behavior of 

the solution algorithm although the algorithm itself might be stable, but not the underlying 

physical problem. A deeper discussion of this topic can be found in [89]. 
 

Fig. 6.1    Solution of Equation (6.1) 

For stability analysis of time-integration algorithms, different strategies exist which also 

depend on the linearity/nonlinearity of the considered problem. From a mechanical point of 

view, a linear stability analysis procedure can be applied to mechanical problems which can 

be described by ordinary linear differential equations or systems of ordinary linear differential 

equations, respectively. For nonlinear problems there is no general methodology which can be 

used to determine the stability behavior of an algorithm. Nevertheless, there are some 

possibilities of showing the stability/instability of time-integration schemes for certain 

[m] 

[s] 
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nonlinear constellations. An algorithm is called unconditionally stable if no time-step size 

restriction is necessary for stability, and conditionally stable otherwise. 

Besides the stability of an integration algorithm its accuracy is of importance. As we have 

seen in Section 5.4.2, there are differences between the algorithms in terms of the amplitude 

decay/ascent as well as in the elongation/shortening of the period. The amplitude change is 

strongly related to the so-called spectral radius h��! of an integration algorithm. The smaller 

the spectral radius, the bigger is the numerical damping (under the condition that h��! ≤ 1). 

In this chapter we investigate the accuracy of the presented time-integration algorithms with 

regard to period elongation and amplitude decay again for the example of the simple free and 

undamped vibration problem (6.3) with initial conditions N# = −13 and N�# = 1 3 ;⁄  in 

dependency of the used time-step size. As already mentioned, the accuracy of an integration 

algorithm does also depend on the particular problem it is used for. Nevertheless, the 

investigation of such an example problem gives at least an idea about the errors that can be 

expected for the different schemes and allows a comparison of them. 

6.1 Stability of Linear Problems 

Approaches for the stability analysis of linear systems are presented in [17] and [84] for 

example. Especially in the field of control theory, stability criteria play an important role, 

which is why many approaches for stability considerations are borrowed from there. In this 

section, we will refer to the assessment of stability presented in [17], which uses the concept 

of amplification matrices and goes back to ideas presented in [93,113,144] and [34]. A 

detailed description of this concept, which sometimes is also called von Neumann stability 

analysis, can be found in [142] and [92]. 

As described in [17] and [11], time-integration procedures can be formulated as 

 .Z�Ñ? = � ∙ .Z� + ,æ�Ñ5 . (6.2) 

The matrix � describes both the integration algorithm and the mechanical problem, the vector , is the load operator, and æ�Ñ5 expresses the applied load where b depends on the particular 

time-integration algorithm and is e.g. equal to one for the implicit algorithms considered here 

and equal to zero for the explicit central difference method. Depending on the integration 

scheme, the vectors .Z�Ñ? and .Z� contain for example displacements, velocities and 

accelerations (for the presented implicit schemes) or just displacements (for the central 

difference method). For the stability analysis and the computation of � it is sufficient to 

consider a simple undamped free vibration problem of the form  

 N® + pRN = 0. (6.3) 

This has the advantage that the load operator , can be neglected because æ�Ñ5 equals zero. 

For the investigation of the stability of the recursive scheme (6.2), the spectral decomposition 

of the matrix � is used, which is given by 

 � = zvzÄ? (6.4) 
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with z as the matrix of eigenvectors of � and v as the Jordan canonical form of �. If all 

eigenvalues are distinct, v is a diagonal matrix with eigenvalues `� along its diagonal [145]. 

For multiple eigenvalues, v is not necessarily a diagonal matrix, but consists of so-called 

Jordan segments for each eigenvalue, which are made up of a number of Jordan blocks 

containing the eigenvalues along their diagonals and the entry “1” at their superdiagonals 

[104]. 

If we want to compute the 4-th recursion value starting from 4 = 0 and .Z# by applying (6.2) 4 times and using æ�Ñ5 = 0 for simplicity, we get 

 .Z� = � ∙ … ∙ � ∙ � ∙ .Z# = �� ∙ .Z#. (6.5) 

Decomposing �� with respect to (6.4) gives  

 �� = �zvzÄ?!�zvzÄ?!. . .   �zvzÄ?! = zv�zÄ?. (6.6) 

If the elements of the matrix v containing the eigenvalues of � have bigger absolute values 

than one, the solution will grow unbounded for 4 → ∞. For this reason the spectral radius of a 

matrix is defined as the eigenvalue of the matrix with the biggest absolute value as 

 h��! = max� |`�|. (6.7) 

The stability criterion states that an integration algorithm is unconditionally stable if the 

spectral radius of the matrix � is smaller or equal to one for all time-step sizes, i.e., 

 h��! ≤ 1   ∀ ∆> (6.8) 

in case of unique eigenvalues `�, or  

 h��! < 1   ∀ ∆> (6.9) 

in case of multiple eigenvalues [11,63,66]. The reason for a stricter condition in case of 

multiple eigenvalues can be demonstrated based on a simple example for a 2x2 matrix � with 

distinct eigenvalues `? ≠  `R. The Jordan canonical form of � is then 

 v = þ`? 00 `R� (6.10) 

and therefore  

 v� = þ`?� 00 `R��. (6.11) 

For a double eigenvalue ` = `? = `R the Jordan canonical form for � is  

 v = �` 10 `� (6.12) 

and consequently 

 v� = �`� 4`�Ä?0 `� �. (6.13) 

From this little example it becomes obvious that the entries of (6.11) will not grow unbounded 

for 4 → ∞ in the case of distinct eigenvalues as long as `� ≤ 1. However, for double 

eigenvalues, ` < 1 is necessary to guarantee that also the entry 4`�Ä? stays bounded in 
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(6.13). In Fig. 6.2 the effects of double and single eigenvalues are demonstrated for a 2x2 

matrix v. As it can be seen, the maximum value of all matrix elements max�,6�6�6� � grows 

unbounded if the biggest eigenvalue of the matrix is greater than one for distinct eigenvalues 

or equal to one for a double eigenvalue. In the latter case, the matrix values are limited only 

for ` < 1. 
 

 

 

Fig. 6.2    Maximum value of all coordinates of v� for different eigenvalue constellations 

6.1.1 Newmark Algorithm 

The computation of matrix � needed in the stability criterion (6.8) and (6.9), respectively, for 

the Newmark algorithm is possible with the help of Equations (5.27) and (5.28). Together 

with the equation of motion (6.3) of the underlying mechanical problem there are three 

equations for determining the three unknowns N®�Ñ?, N��Ñ? and N�Ñ?, which finally leads after 

some transformations to the linear system of equations 

 7N®�Ñ?N��Ñ?N�Ñ?8 = � ∙ 7N®�N��N�8. (6.14) 

For the Newmark algorithm the matrix � can be derived as  

�$9 =
���
���
� 2V − 12V ?

−1∆>V ?
−1∆>RV ?∆> − W�2V − 1!∆>2VRpR ? − ∆>W2V 1 + W∆>RVRpR ? − WV −WV∆> + W∆>SVRpR ?−�2V − 1!2VpR ?

1∆>VpR ?
1∆>RVpR ? ���

���
�

(6.15) 

with the abbreviation 

  ? = ¸1 + 1VpR∆>R¹. (6.16) 

For computing the spectral radius of �$9 it is necessary to determine its eigenvalues from the 

eigenvalue problem 

3�N �1.1� 00 0� 
3�N �1� 4 ∙ 1�Ä?0 1� � 

3�N �0.9� 4 ∙ 0.9�Ä?0 0.9� � 

max�,6 �6�6� � 



6.1   Stability of Linear Problems          129 

 

 det�`t − �$9! = 0 (6.17) 

which yields  

 `? = 0, 
 

`R,S = 1 + ∆>R=R �R�4V − 2W − 1! ± �:∆>T=T �R[�1 + 2W!R − 16V] − 4 ∆>R=R1 + 4V ∆>R=R �R , (6.18) 

where p is substituted by 2� =⁄  (see Appendix A). These eigenvalues are unique if `R ≠ `S 

and `R,S ≠ 0. Equality of `R and `S exists if the root expression in Equation (6.18) equals 

zero: 

 ∆>T=T �R[�1 + 2W!R − 16V] − 4 ∆>R=R = 0 (6.19) 

which is fulfilled for  

 ∆>= ∈ ;0, − 2π<�1 + 2W!R − 16V , 2π<�1 + 2W!R − 16V=. (6.20) 

The cases ∆> = = 0⁄  and ∆> = < 0⁄  needn’t be considered, since ∆> =⁄  is always greater than 

zero. This means that the two eigenvalues are different except for the special case of  

 ∆>= = 2π<�1 + 2W!R − 16V (6.21) 

where we have to apply stability criterion (6.9), else criterion (6.8) is sufficient. 

By plotting the maximum absolute value of (6.18), which is the spectral radius h��$9!, it is 

possible to check the stability for arbitrary parameter combinations of W, V and ∆> =⁄ . 

However, it is more convenient to plot the spectral radius for fixed parameters W and V over 

the normalized time-step size ∆> =⁄ . As shown in Fig. 6.3, the spectral radius of the Newmark 

algorithm with the standard parameters (W = 0.5, V = 0.25) is equal to one for all time-step 

sizes and therefore unconditionally stable (except for (6.21) which is discussed in Appendix 

B). A change of the W- or V-parameter influences the spectral radius and leads in the case of W = 0.4, V = 0.25 to conditional stability, which means that stability is only guaranteed if the 

normalized time-step size is smaller than a certain value. For simple problems like the free-

vibration example used here, also a conditionally stable algorithm could be used if the time-

step size is small enough such that h��, ∆> =⁄ ! ≤ 1. But for a more complex FEM problem, 

the highest frequency and its associated period = = 2� p⁄  is not known a priori. Therefore, 

the necessary time-step guaranteeing stability is also not known. For this reason, only 

unconditionally stable algorithms should be used in this context. 

The remaining question then is, for which parameter combinations unconditional stability can 

be guaranteed? To derive a condition for parameters W and V, the eigenvalues of the matrix �$9 given in (6.18) have to be considered again as demonstrated in Appendix B, where it is 

shown that choosing 
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 W ≥ 12 ∧  V ≥ �2W + 1!R16  (6.22) 

or 

 W > 12 ∧  W2 ≤ V < �2W + 1!R16  (6.23) 

leads to unconditional stability of the Newmark algorithm. Fig. 6.4 illustrates this stable 

parameter region of W and V described by conditions (6.22) and (6.23). 

For small time steps the spectral radius is close to one for all stable parameter combinations of W and V. But for bigger time steps the spectral radius can become quite small for certain 

parameter combinations, which leads to a strong numerical damping (Fig. 6.5). 

 

Fig. 6.3    Spectral radius of Newmark algorithm for different parameter combinations of W 

and V 

 

Fig. 6.4    Stable region of Newmark algorithm for all parameter combinations of W and V 
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Fig. 6.5    Spectral radius h of Newmark algorithm for different normalized time-step sizes 

in stable parameter region 

6.1.2 HHT Algorithm 

The process for the computation of the amplification matrix � for the HHT method is similar 

to that for the Newmark algorithm leading also to Equation (6.14) where 

�>>� = ?RÑR+ò?∆�ò ��
��  R�2V − 1!∆>R −2 R∆> −2pR∆>[2�1 − W!¿¿+ R∆>R�2V − W!] 2 + 2 R∆>R�V − W! −2∆>WpR

�1 − 2V!∆>R 2∆> 2 + 2UV∆>RpR��
�� (6.24) 

with the abbreviation 

  R = �1 + U!pR. (6.25) 

In Fig. 6.6 the spectral radii of (6.24) and therefore the HHT algorithm for different parameter 

combinations of U, W and V are plotted versus ∆> =⁄ . For U = −0.05 and U = −0.2 the 

parameter coupling (5.30)/(5.31) is used. The curves show the reason for the numerical 

damping introduced by some parameter combinations already observed in Fig. 5.19 for U = −0.2. Whenever the spectral radius for a given normalized time-step size is smaller than 

one, the corresponding frequency is damped. The damping is stronger the smaller the spectral 

radius is. For the solution of example problem (5.70) plotted in Fig. 5.19, a time-step size of ∆> = 0.6; is used. The eigenfrequency of the 1-DOF vibration system is p = 1æ�� ;⁄  

corresponding to a period of = = 2� p⁄ = 2� ;. By this, the normalized time-step size in this 

example is ∆> =⁄ ≈ 0.0955 which leads to a spectral radius of h��>>�! ≈ 0.99833 for U = −0.2. 

For the determination of the stability constraints with respect to the parameters of the 

algorithm, it is useful to perform a numerical experiment and plot the stability condition (6.8) 

for ∆> =⁄ → ∞. This is done by replacing p by 2� =⁄  in Equation (6.24), computing the 

eigenvalues of �>>� and subsequently the limit values of these eigenvalues for ∆> =⁄ → ∞, 

both obtained through symbolic computation. Finally, all parameter combinations with 

∆>= = 0.01 
∆>= = 0.1 

∆>= = 1 

h h h 
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h��>>�! ≤ 1 are plotted in Fig. 6.7. From this plot it becomes obvious that values U < −0.5 

do not make sense if unconditional stability is demanded. 

In [63] the parameter coupling (5.30)/(5.31) is suggested, which has the advantage that only 

the parameter U has to be managed by the user of the algorithm. Moreover, the linear coupling 

between W and U gives the possibility of directly influencing the numerical damping by 

changing U and keeping W inside its stability limits. Coupling Equation (5.31) results from 

using (5.30) in (6.22) and demanding equality. To answer the question of worthwhile choices 

for parameter U, it is helpful to consider the plots in Fig. 6.8 showing the spectral radii of the 

 

Fig. 6.6    Spectral radii of HHT algorithm for different parameter combinations of U, W and V 

 

Fig. 6.7    Parameter space of HHT algorithm satisfying condition (6.8) for ∆> =⁄ → ∞ 
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HHT algorithm depending on U and the normalized time-step size ∆> =⁄ . Starting from U = 0  

the numerical damping cannot be increased by decreasing U below U = − 1 3⁄ , obviously. 

For this reason a logical choice would be − 1 3 ≤⁄ U ≤ 0 if the parameter coupling is applied. 
 

 

 

Fig. 6.8    Spectral radii of HHT algorithm depending on U (with parameter coupling of W 

and V ) and the normalized time-step size (left), and spectral radius depending on U for ∆> =⁄ = 10 and ∆> =⁄ → ∞ (right) 

6.1.3 Newmark-Euler Algorithm (Composite Scheme) 

The derivation of the recursion matrix � for the Newmark-Euler or Composite integration 

scheme is more elaborate, but follows basically the same procedure as for the other schemes  

resulting in (6.14). Here, only the Composite scheme of Equations (5.39) and (5.40) is 

considered for two reasons. First, it is more general and the Newmark-Euler scheme is a 

special case of the Composite scheme. The second reason is that a fair comparison of the 

different integration schemes is only possible, if the same time-step sizes are used, whereas 

the time-step in the Newmark-Euler scheme is divided into a Newmark and an Euler-

Backward step, where the step sizes are just as half as big. In the Composite scheme the time-

step sizes of the Newmark and the Euler-Backward step can be chosen such that every time-

step has the same size as the time-steps of an integration scheme the Composite scheme is 

compared to. 

The amplification matrix in Equation (6.14) for the Composite scheme (5.39), (5.40) reads as 

 �HBØ� =  12��1 + U!2 + ∆>42p2��1 + V∆>4−12 p2� @�11 �12 �13�21 �22 �23�31 �32 �33A (6.26) 

where �?? = [∆>�Ä? + U�∆>� + ∆>�Ä?!] ∙ pR[�1 + U!�2V − 1!∆>�Ä? + 2∆>��W − 1! +¿ ¿∆>�∆>�Ä?R �W − 2V!pR], 

∆> = → ∞⁄  

∆> = = 10⁄  
∆>=  

h��>>�! 

U 



134          6   Stability and Accuracy Considerations of Time-Integration Algorithms 

 

�?R = −2pRB�1 + U!R�∆>� + ∆>�Ä?! − ∆>�∆>�Ä?[−�1 + U!V∆>�Ä? + �∆>�Ä? +¿¿¿ ¿¿¿U�∆>� + ∆>�Ä?!�WípRC, �?S = 2pRB−�1 + U!R + ∆>�[U�1 + U!V∆>�Ä? + �∆>�Ä? + U�∆>� +¿¿¿¿ ¿¿¿∆>�Ä?!�¿W]pRC, �R? = [∆>�Ä? + U�∆>� + ∆>�Ä?!] ∙ B−2�1 + U!�W − 1! − ∆>�Ä?[∆>� − 2V∆>� +¿¿ ¿¿�1 + U!∆>��W − 2V!]pRD, �RR = 2B�1 + U!R − [U∆>�R + ∆>�∆>�Ä?�1 + U! − ∆>�Ä?R �V + 2UV + URV! +¿¿ ¿¿�1 + U!∆>�Ä?�∆>�Ä? + U�∆>� + ∆>�Ä?!�WípRC, �RS = 2E−�1 + U!Rì∆>� + �∆>�Ä? + U�∆>� + ∆>�Ä?!�WípR + UV∆>�R∆>�Ä?pTC, �S? = [∆>�Ä? + U�∆>� + ∆>�Ä?!][−�1 + U!�2V − 1!∆>�Ä? − 2∆>��W − 1! +¿ ¿∆>�∆>�Ä?R �2V − W!pR], �SR = 2B�1 + U!R�∆>� + ∆>�Ä?! − ∆>�∆>�Ä?[−�1 + U!V∆>�Ä? + �∆>�Ä? +¿¿¿ ¿¿¿U�∆>� + ∆>�Ä?!�WípRC, �SS = 2��1 + U!R − ∆>��U�1 + U!V∆>�Ä? + �∆>�Ä? + U�∆>� + ∆>�Ä?!�W�pR�. 

First, we want to study the influence of the parameter U in the Composite scheme. In the 

Newmark-Euler scheme this parameter describes the time-split point, but in the Composite 

method the time-step sizes of the Newmark and Euler-Backward step may be varied 

independently from each other. Fig. 6.9 shows that the parameter U directly influences the 

spectral radius of the algorithm and therefore its stability. To find the limit for U which 

guarantees unconditional stability, we firstly compute the eigenvalues of (6.26) for W = 0.5, V = 0.25 and ∆>� = ∆>�Ä? = ∆>. By substituting again p = 2� =⁄  we get 

 `? = 0, 
`R,S = �1 + U!R − [5 + 3U�4 + U!] ¸∆>�= ¹2 ± 2�û− ��1 + 3U! ¸∆>= ¹3 �R − 2 ∆>= �1 + U!R�R

�1 + ¸∆>�= ¹2� ��1 + U!R + 4 ¸∆>�= ¹2�  

  (6.27) 

as shown in Appendix C. Unconditional stability which means stability independent of the 

used time step-size is reached for  

 0 ≤ U ≤ 12 (6.28) 

if W = 0.5 and V = 0.25 are chosen as proved in Appendix D.  

An additional variation of the parameters W and V leads to much more complex stability 

conditions where Fig. 6.10 gives an impression about it. Even if U = 0.5 is chosen, the 

remaining parameters W and V define a rather complex space of stable parameter 

combinations as revealed in Fig. 6.11. For this reason it is suggested to use e.g. the 
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unconditionally stable parameter combination U = 0.5, W = 0.5 and V = 0.25. For arbitrary 

parameter combinations, a general statement about the stability for arbitrary time-step sizes is 

not possible, and even if an analytical description of the stable parameter space would exist, 

this description would be far too complex for practical use. Hence, a specific choice of a 

parameter combination should always be checked for stability by plotting the spectral radius 

of this combination. 
 

Fig. 6.10    The U, W, V-parameter space of the Composite algorithm satisfying stability 

condition (6.8) with ∆>� = ∆>�Ä? = ∆> for ∆> =⁄ → ∞ (left) and for ∆> =⁄ = 0.1 

(right) 

Finally, some attention should be drawn to the influence of the difference between the time-

step sizes ∆>�Ä? and ∆>� on the spectral radius and thus the stability. The contour plot in Fig. 

6.12 shows the spectral radius, indicated by the color, depending on all possible combinations 

 

Fig. 6.9    Influence of parameter U on spectral radius of Composite time-integration 

algorithm for W = 0.5, V = 0.25 and ∆>� = ∆>�Ä? = ∆> 
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of ∆>�Ä? and ∆>� in the range  0 < ∆>�Ä? =⁄ ≤ 1 and 0 < ∆>� =⁄ ≤ 1. The blue line indicates 

combinations of ∆>�Ä?/∆>� on the stability border h��! = 1. As it can be seen, a strong 

decrease of the time-step size ∆>� compared to ∆>�Ä? results in instability due to a spectral 

 

Fig. 6.11    Space of parameters W and V which satisfy condition (6.8) for U = 0.5 in 

dependence of the normalized time-step size ∆> =⁄  with ∆> = ∆>� = ∆>�Ä? 

 

Fig. 6.12    Spectral radius of Composite scheme for U = 0.5, W = 0.5, V = 0.25 and varying 

normalized time step-sizes ∆>� =⁄  and ∆>�Ä? =⁄  
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radius slightly above one which, however, is not critical since such strong changes in the 

time-step size happen very rarely. The time-step size changes, for example by an automatic 

time-step control algorithm, are not very big in practical applications. Mostly, the time step-

size of a following time-step is bounded like 0.5∆>� ≤ ∆>�Ñ? ≤ 1.5∆>�. Hence, the solution 

cannot become unstable. An increase of the size of the 3-Point-Euler-Backward step would 

cause more numerical damping and is therefore uncritical too. 

6.1.4 Central Difference Method 

To compute the amplification matrix for the central difference method, we substitute Equation 

(5.19) in (6.3) and add the trivial equation N� = N� which yields the recursion scheme 

 �N�Ñ?N� � = �2 − ∆>RpR −11 0 � ∙ � N�N�Ä?� 
 

                             �H�9 

(6.29) 

corresponding to Equation (6.2). The eigenvalue problem 

 �F>�`t − �H�9! = 0  (6.30) 

 yields  

 `R + `�∆>RpR − 2! + 1 = 0 (6.31) 

with the two solutions and eigenvalues of matrix �H�9  

`?,R = 2 − ∆>RpR2 ± û�∆>RpR − 2!R4 − 1 

= 1 − 2�R ¸∆>= ¹R ± û�1 − 2�R ¸∆>= ¹R�R − 1 . 
(6.32) 

A plot of the maximum absolute values of maxB|`?|, |`R|D over the normalized time-step size 

shows an interesting effect in Fig. 6.13. The spectral radius of the matrix �H�9 equals one up 

to a certain time-step size and grows unbounded beyond this critical time-step size. As shown 

in Appendix E the stability conditions (6.8), (6.9) are satisfied only for 

 ∆> ≤ 2p = =�    ⇒    ∆>= ≤ 1� . (6.33) 

A solution obtained by the central difference method will grow unbounded if the time-step 

size becomes bigger than that critical time-step size. For practical applications the maximum 

time-step size of the central difference method should be below this critical limit because also 

the amplitude error and the period elongation increase as the time-step size comes closer to 

the critical time-step size (see also Sections 6.3 and 6.4). With this information we are now 

able to explain the behavior of the numerical solution in Fig. 5.21. The critical time-step size 

for this example is ∆>�ê�����é = 2 p⁄ = 2;, which results in the stable behavior of the solution 

for ∆> = 1.9; and unstable behavior for ∆> = 2.1;. 
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For a more complex structure, like typically used in FEM computations, the question about 

the highest frequency and following from that the critical time-step size may not be answered 

as simply as for the 1-DOF vibration system. Let us assume that in a FEM computation the 

highest frequency of a model is limited by the membrane mode of a rod, shell or solid 

element, respectively, because the membrane stiffness is usually much higher than the 

bending stiffness due to the much better utilization of material for membrane loading than for 

bending. The derivation of the critical time-step is demonstrated here for the example of a 

single rod element, but it is similar for other element types (shells, solids). 

A rod element is defined by its length 1 and cross section area � as well as elastic modulus � 

and density h of the material. Typically, the mass 3 = �1h of the element is distributed 

equally to its nodes (Fig. 6.14). 
 

Fig. 6.14    Rod element and mass distribution with lumped mass approach 

To calculate the eigenfrequency of the element we use the equation of motion 

 x.® + w. = ² (6.34) 

with mass matrix 

 x = ù12 �1h 0
0 12 �1hý (6.35) 

and stiffness matrix 

 w = ��1 � 1 −1−1 1 �. (6.36) 

 

Fig. 6.13    Spectral radius of central difference method with critical time-step size 

 

Critical time-step size ∆>/= = 1/� 

h = |`R| 

|`?| 
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For the analytical solution of (6.34) we use the approach . = GF�H� resulting in .® =−pRGF�H�. Applied to Equation (6.34) this gives  

 �w − x`!G = ² (6.37) 

with ` = pR. A non-trivial solution exists for 

 �F>�w − x`! = ¸��1 − ` �1h2 ¹R − ¸��1 ¹R = `R ¸�1h2 ¹R − `��Rh = 0. (6.38) 

Solving (6.38) for ` leads to `? = 0, which corresponds to the rigid body mode of the rod, 

and 

 `R = 4�1Rh . (6.39) 

The maximum eigenfrequency of the rod element is thus 

 pØ�� = <`R = 21 û�h . (6.40) 

With the stability condition (6.33) we get from (6.40) 

  ∆> ≤ 1:h� . (6.41) 

The expression <� h⁄  describes the wave propagation speed � in an elastic rod [112]. By this, 

we may also write   

 ∆> ≤ 1� (6.42) 

which is called the Courant-Friedrichs-Lewy criterion (CFL criterion) [34]. From this 

perspective, ∆> is the time that a wave needs to propagate through a rod of length 1. 
For a three-dimensional elastic solid, the lateral contraction effect has to be taken into account 

[56] and the wave propagation speed becomes 

 � = û ��1 − b!�1 + b!�1 − 2b!h = û�h û 1 − b�1 + b!�1 − 2b! . (6.43) 

The influence of the Poisson’s ratio b on the wave propagation speed (and thus the critical 

time-step size) increases with growing b as it can be seen in Fig. 6.15. 

An overview of critical time-step sizes for different finite element formulations is given in 

[66]. It is also shown that in general the critical time-step size for higher-order elements is 

smaller than for linear elements. Also other possibilities of the mass distribution like the 

consistent mass approach [2] are discussed. 

Another aspect of explicit time-integration, that should be mentioned, is the possibility of 

mass scaling [5,101,115, 140]. Since the critical time-step size is decisively determined by the 

material density h (see Equation (6.41) for instance), an increase of the density increases the 

critical time-step size. This speeds up the computational time, because bigger stable time 
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steps are possible, but on the other hand the mechanical system is changed by the additional 

mass. In practical applications, mass scaling should only be used with care and especially for 

parts that are not highly accelerated during the simulation. According to Equation (6.41) also 

the element length 1 influences the critical time-step size. By this, also coarser meshes will 

lead to bigger critical time-steps. In view of this fact, especially in explicit computations, the 

mesh density should not be higher than necessary. 

6.2 Stability of Nonlinear Problems 

As already mentioned in the introduction to this section, there is no general concept for the 

stability analysis of nonlinear problems like the one demonstrated for linear ones. 

Nevertheless, for particular integration algorithms and parameter combinations some 

approaches do exist. For example, in [89] a stability analysis for the explicit central difference 

method and the Runge-Kutta method [28] applied to strain-softening materials is performed. 

A stability analysis of the Newmark algorithm for structures with nonlinear damping is 

presented in [95] with the help of an energy approach. Also by using an energy approach, a 

stability analysis of the Newmark algorithm for a nonlinear material behavior is available in 

[67] as extension of the results from [22]. It is shown that the Newmark algorithm can suffer 

instability problems for V ≥ 1 4⁄  in some situations. 

In [31], an interesting approach uses methods from control theory to prove the stability of the 

Newmark algorithm for some special cases (method with constant and linear acceleration and 

positive tangent stiffness). This is done by using the equation of motion of a one-degree of 

freedom system at a certain time-step, i.e., 

 3N®�Ñ? + �N��Ñ? + *N�Ñ? = ��Ñ? (6.44) 

and reformulating it as 

 3N®�Ñ? + �N��Ñ? = ��Ñ? − *N�Ñ? =∶ -�Ñ?. (6.45) 

 

Fig. 6.15    Ratio of wave propagation speeds of rod and solid elements in dependency of 

Poisson’s ratio b 
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Modeling Equation (6.45) as a control loop results in the closed loop system in Fig. 6.16 as 

shown in [31].  
 

Fig. 6.16    Closed loop system representing Equation (6.45), from [31] 

The discrete transfer function �′� ! may be determined by a Z-transformation [54,94,114] of 

the Newmark equations (5.27) and (5.28) which leads to the transfer function 

 ��� ! = I� !-� ! = 4R�  R + 4?�  + 4#��R�  R + �?�  + �#�  . (6.46) 

The coefficients 4�� and ��� for numerator and denominator are given in [31] and lead to 

 ��� ! = 2V∆>R R + ∆>R�2W − 4V + 1! + ∆>R�2V − 2W + 1!�23 + 2W�∆>! R + ��∆>�2 − 4W! − 43! + �∆>�2W − 2! + 23. (6.47) 

For the whole closed loop system of Fig. 6.16 the discrete transfer function results from I = �′�� − *I! as 

 �� ! = I� = ��� !1 + *��� ! . (6.48) 

A nonlinear stiffness behavior may be taken into account in the equation of motion (6.44) by 

substituting *N�Ñ? by æ�Ñ? which yields 

 3N®�Ñ? + �N��Ñ? + æ�Ñ? = ��Ñ?. (6.49) 

By writing Equation (6.49) for 4 instead of 4 + 1 and subtracting both equations, we find for 

the incremental form with ∆N®� = N®�Ñ? − N®�, ∆N�� = N��Ñ? − N��, ∆æ� = æ�Ñ? − æ� and ∆�� = ��Ñ? − �� 

 3∆N®� + �∆N�� + ∆æ� = ∆��. (6.50) 

If small time-steps ∆> are assumed, the increment of the restoring force can be approximated 

as  

 ∆æ� = æ�Ñ? − æ� ≈ *�∆N� (6.51) 

with *� as the tangent stiffness. This leads together with Equation (6.50) to 

  3∆N®� + �∆N�� = ∆�� − *�∆N� =∶ ∆-�. (6.52) 

As shown in [31] this equation can be represented by the block diagram in Fig. 6.17, where an 

additional block J� ! = ∆�� ! �� ! = � − 1!  ⁄⁄  is introduced relating the external 

excitation force ��Ñ? to the incremental force ∆��. 

From ∆I� = ���J� − *�∆I�! we receive the closed loop transfer function  

 
∆I�� = J� ! ��� !1 + *���� ! (6.53) 
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similar to Equation (6.48). The stability of the transfer function J� ! is always given, because 

the pole of J� ! is always zero due to its denominator   (see above). Therefore it is only 

necessary to consider the closed loop part with the characteristic equation 

  1 + *���� ! = 0 (6.54) 

leading to 

 1 + *� 2V∆>R R + ∆>R�2W − 4V + 1! + ∆>R�2V − 2W + 1!�23 + 2W�∆>! R + ��∆>�2 − 4W! − 43! + �∆>�2W − 2! + 23 

= 0. (6.55) 

As explained in detail in [31], stability of the integration algorithm is reached when the 

absolute values of all solutions for z of Equation (6.55) are smaller or equal than 1, i.e., 

 | �| ≤ 1   ∀ (. (6.56) 

Solving Equation (6.55) for   gives the solution 

  ?,R = 2�∆>�2W − 1! + ∆>R*��4V − 2W − 1! + 434��∆>W + V∆>R*� + 3!  

±<∆>R[4�R + 4�∆>*��1 − 2W! + *��∆>R*���1 + 2W!R − 16V! − 163!]4��∆>W + V∆>R*� + 3! . (6.57) 

It can be shown that the absolute z-values are smaller than or equal to one for � = 0, W = 1 2⁄  

and V = 1 4⁄  (no external and no numerical damping) for positive *�  [31], which means 

unconditional stability for the Newmark algorithm. It is also derived that for � = 0, W = 1 2⁄  

and V = 1 6⁄  the Newmark algorithm is stable under the condition 

 
*�3 ∆>R = p�R∆>R ≤ 12 (6.58) 

or with p� = 2� =⁄  for 

 ∆>= ≤ √3�  (6.59) 

and positive *�. 

These results can be extended to the more general case of V ≥ 1 4⁄  or V < 1 4⁄  by evaluating 

(6.57). Under the assumption of no external or numerical damping (� = 0, W = 1 2⁄ ) we find 

that the Newmark algorithm is unconditionally stable for V ≥ 1 4⁄  and conditionally stable 

for V < 1 4⁄  if 

 

Fig. 6.17    Closed loop system representing an integration algorithm applied to a nonlinear 

system [31] 
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*�3 ∆>R = p�R∆>R ≤ 41 − 4V or 

∆>= ≤ 1�<1 − 4V , (6.60) 

still under the assumption of a positive tangent stiffness *�. The same procedure is also 

performed for the HHT algorithm and leads to the result that this scheme is stable for any 

positive *� when U = − 1 3⁄  is chosen. 

Unfortunately the presented methodology for the stability consideration of nonlinear problems 

is not able to explain all phenomena. In [149] it is shown for an example of two different 

nonlinear differential equations 

 N® + !?N�1 + !RNR! = 0 (6.61) 

and 

 N® + ! tanhN = 0 (6.62) 

that the Newmark algorithm can produce chaotic or unstable solutions in computations of 

long duration responses. For ! = 100, N# = 10 and N�# = 0, the solution of Equation (6.62) 

obtained with Newmark time-integration (W = 1 2⁄ , V = 1 4⁄ ) becomes unstable e.g. for ∆> = 0.25 (which corresponds to ∆> =⁄ ≈ 0.139). The solution of the second example 

problem (6.61) does not grow unbounded when solved with the Newmark algorithm, but 

produces chaotic results for !? = −0.5, !R = −1, N# = 0.5 and N�# = 0. 

Referring to the results of [31], the described phenomena should not appear for positive 

tangent stiffness values *� > 0. Plotting the stiffness expressions 

 *� = �[!?N�1 + !RNR!]�N = !?�1 + 3!RNR! (6.63) 

for (6.61) and 

 *� = ��! tanhN!�N = !�1 − tanhRN! (6.64) 

for (6.62) shows that *� is always positive for (6.62) as visible in Fig. 6.18b whose solution 

became unstable, whereas *� can become negative for (6.61) as visible in Fig. 6.18a which led 

to chaotic but not unbounded results. This seems to be a contradiction to the stability 
 

Fig. 6.18    Stiffness *��N! of Equations (6.61) and (6.62) 

a) b) 
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conditions derived with the help of control theory and the closed loop system in Fig. 6.17. But 

one has to keep in mind that in Equation (6.51) “small” time-steps ∆> are assumed for the 

computation of the tangent stiffness *�. The instability appeared for a time-step size of ∆> =⁄ ≈ 0.139 and it is questionable whether this can be considered to be a “small” time-step 

size. In particular, in the region of −1 < N < 1, the change of the stiffness �*� �N⁄  is very big 

as illustrated in Fig. 6.19. 
 

Fig. 6.19    Plot of �*� �N⁄  for Equation (6.64) 

This example demonstrates that the development of stability criteria for time-integration 

algorithms used for the solution of nonlinear problems is much more elaborate than for linear 

problems. Coming back to the differential equation (6.62), it is even more surprising that the 

Newmark solution becomes stable again if the time-step size is increased to ∆> = 0.3 (which 

corresponds to ∆> =⁄ ≈ 0.167) as shown in [149]. This means on the other hand that a stable 

solution can become unstable when the time-step size is decreased. 

Consequently, the investigation of the stability of time-integration algorithms applied to 

nonlinear problems is still a subject of scientific research. Also for elastic rotating structures 

like they appear in aero-engines instability problems may appear, as shown for example in 

[87] for different algorithms, and will be discussed in detail in Chapter 7. 

6.3 Period Elongation 

Next we want to consider the effect of the period elongation caused by a time-integration 

algorithm. For this purpose we compute the numerical solution of Equation (6.3) for one 

period where p = 2� ;⁄  and compare it to the analytical solution being computed at the same 

time-points as the numerical ones (see Fig. 6.20). For the initial conditions N�0! = −1, N��0! = 0 the analytical solution becomes 

 N�>! = sin çp> − �2è = − cos�p>! (6.65) 

as shown in Equations (5.71)-(5.74). Because every numerical scheme will cause a certain 

period elongation (or contraction), the numerically computed amplitude value at > = 1; will 
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not be identical to the analytical solution. This means the numerically computed solution has 

the form 

 N�CØ�>! = − cos[�p − \!>] (6.66) 

where \ determines the period elongation. For p = 2� ;⁄  and > = 1;, Equation (6.66) 

becomes N�CØ = −cos�\!. If we know the value for N�CØ�> = 1;! from the numerical 

solution, we can determine \ as 

 \ = arccos[−N�CØ�> = 1;!]. (6.67) 

The percentage of period elongation is finally computed as  

 �� = \2� ∙ 100%. (6.68) 

In Fig. 6.20 the derived method and the introduced definitions are illustrated for a better 

understanding. 

 

Fig. 6.20  Discrete numerical (blue) and analytical solution (purple) with adjusted cosine 

functions (dotted lines) and definition of period elongation (right) 

Fig. 6.21 shows the percentage of period elongation �� over the normalized time-step size ∆>/= for different time-integration algorithms. Obviously the period elongation increases 

with ∆> for all integration schemes. The smallest errors can be expected for the Composite 

integration scheme (generalization of Newmark-Euler). It should be mentioned that the errors 

not only depend on the time-step size, but also on the algorithmic parameters U, V and W. 

6.4 Amplitude Error   

For the calculation of the amplitude error, the highest positive amplitudes of the discrete 

numerical and analytical solutions after one period are compared. Since the discrete solution 

may not have a solution point at the position of its highest amplitude, a cosine function of the 

form � ∙ �Ó;�p>! is fitted to the data points. The amplitude error is then computed for the 

example problem (6.3) as 

 �� = �1 − |�|! ∙ 100%. (6.69) 

\2� − \ 

( ) 
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It should be noted that this procedure does not work for the central difference method when 

the time-steps become too big. Due to a strong amplitude increase and decrease of the period 

for bigger time-steps, the fitting process with the simple cosine function leads to inaccurate 

results. For this reason a fifth-order polynomial is used for interpolation between the discrete 

values of the central difference method. The maximum value of this interpolation polynomial ��� is then used to compute the amplitude error �� as 

 ��MNO = Æ1 − max�����Æ ∙ 100%. (6.70) 

Fig. 6.22 shows the amplitude errors for example (6.3) and the different time-integration 

schemes. The amplitude error for the Newmark algorithm equals zero because no numerical 

damping is introduced for W = 0.5 and V = 0.25. 

 

 

Fig. 6.21   Period elongation for free-vibration problem (6.3) integrated with different time-

integration schemes: Central difference method, HHT (U = −0.1), Newmark 

(W = 0.5, V = 0.25), and Composite (U = 0.5, W = 0.5 and V = 0.25) 

 

Fig. 6.22   Amplitude errors for free-vibration problem (6.3) integrated with different time-

integration schemes: Central difference method, HHT (U = −0.1), Newmark 

(W = 0.5, V = 0.25), and Composite (U = 0.5, W = 0.5 and V = 0.25) 
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7 Implicit Time-Integration of Fast Rotating Structures 

Especially for long-term simulations (simulation time of a few seconds) of dynamic 

processes, implicit time-integration algorithms may be more advantageous than explicit 

strategies due to their bigger time-steps and higher accuracy, and thus lower computational 

times and more accurate results. In the dynamic simulation of high-fidelity aero-engine 

models, often simulation times of a few seconds are required. If the goal of such a simulation 

is to study the behavior of an engine under certain flight maneuvers or conditions with respect 

to tip clearance behavior for example, under absence of highly dynamic events like fan blade 

off or bird strike, implicit time-integration promises a faster simulation process. On the other 

hand, the spinning of the rotor of the engine can be a highly dynamic process too, depending 

on the rotational velocity, which results in smaller implicit time-steps as we will see in this 

chapter. But even these small implicit time-steps are some orders of magnitude bigger than 

the necessary explicit time-steps. The mentioned scenarios fan blade off, bird strike or 

rubbing events cause extremely small implicit time-steps. Thus, a change of the time-

integration algorithm from implicit to explicit during the simulation may make sense too in 

such cases.  

7.1 The Instability Problem  

The implicit simulation of rotating structures can cause instability phenomena which is 

demonstrated here by an example of a rotating plate (Fig. 7.1a). This quadratic plate has the 

size � × 	 × > = 200 × 200 × 1033 and consists of linear elastic material with Young’s 

modulus � = 115000 Á 33R⁄ , Poisson’s ratio b = 0.3 and density h = 4.429 ∙ 10ÄÅ > 33S⁄  resulting in a mass of 3 = 1.7716 ∙ 10ÄS>. The translational 

degrees of freedom at the center nodes of the plate are fixed allowing only rotation about the 

3-axis. At its corner segments, the plate is loaded by pressure loads according to Fig. 7.1b 

following the rotation. 

a)  b) 

Fig. 7.1    Rotating plate (a) and load curve for rotating plate (b) 

At the beginning of this nonlinear transient simulation the plate is at rest. For checking the 

correctness of the obtained numerical solution, an exact analytical solution is desired. With 

Fixation of all 
translational 
degrees of 
freedom 

3 

1 
2 
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the simplification of assuming a rigid plate, an approximate solution for the rotational velocity 

may be obtained from Euler’s law 

 'Sp� S = 2S (7.1) 

resulting in 

 pS�>! = � 2S'S d>�
# . (7.2) 

According to Fig. 7.1b and Fig. 7.2a, where the forces are computed from the pressure loads 

on the corner segments, the torque is given as 2S�>! = 4 ∙ ��>! ∙ æ where  

��>! = 

  200 Á     −2 ∙ 10ô Á; ∙ > + 10TÁ    −200Á  
for 0 ≤ > ≤ 0.049; for 0.049; < > < 0.051; Á;  for 0.051; ≤ > ≤ 0.1;. (7.3) 

With 'S = �3 12⁄ ! ∙ ��R + 	R! we get  

pS = 4æ'S ∙  200Á ∙ >  −10ô Á; ∙ >R + 10TÁ ∙ > − 240.1Á;  −200Á ∙ > + 20Á; 

for 0 ≤ > ≤ 0.049; for 0.049; < > < 0.051;Ns  for 0.051; ≤ > ≤ 0.1;. (7.4) 

A conversion of pS into the unit æFE >(3F⁄  is possible by dividing pS by 2�. To obtain the 

commonly used unit æFE 3(4⁄  we have to expand by 60; = 13(4 and get with 

 4 = pS2� ∙ 60;13(4 = pS ∙ 30 ; 3(4⁄�  (7.5) 

the rotational velocity curve of the rigid plate, plotted in Fig. 7.2b. 

a)  b)  

Fig. 7.2    Load application points at plate (a) and approximately computed velocity-time 

curve (b) 

In order to perform a finite element simulation of the problem, the plate is meshed with 

10x10x4 underintegrated linear solid elements (Fig. 7.1a). The simulation is carried out with 

the classical Newmark time-integration scheme in combination with a Newton algorithm for 

the solution of the resulting non-linear system of equations and a constant time-step size of ∆> = 0.001;. Figure 7.3 shows the resulting velocity-time curves for different parameter 
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combinations of W and V. Obviously the simulation with the standard parameters W = 0.5 and V = 0.25 leads to an unstable behavior with extremely high velocities and finally terminates. 

By increasing the numerical damping (W = 0.55, V = 0.2756) a stabilization of the 

computation is possible, but the computed result is unphysical and deviates from the expected 

solution. A further change of the Newmark parameters to W = 0.5, V = 0.2756 leads to a 

stable and plausible solution. Unfortunately the problem is not solved in general by using W = 0.5 and V = 0.2756, because for small modifications of the model instabilities also 

appear for this specific choice of Newmark parameters. 
 

Fig. 7.3    Velocity-time curves resulting from simulation of a spinning plate with different 

parameters of the Newmark algorithm and constant time-step size ∆> = 0.001; 

For more complex structures like a simplified turbine stage of an aero-engine similar 

problems may appear (Fig. 7.4). The model is fixed at its outer casing region (yellow part), 

and in the bearing region in the center of the model friction-free contact definitions are used, 

which allows for a free rotation of the turbine rotor. The pressure on the turbine blades is 

increased linearly. By this, we would expect a quadratic behavior of the velocity curve. As 

 

Fig. 7.4    Velocity-time curves resulting from the simulation of a simplified turbine model 

with different time-integration schemes and variable time-step size 

fixed 

W = 0.5, V = 0.25 

W = 0.55, V = 0.2756 

W = 0.5, V = 0.2756 
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visible in Fig. 7.4, instabilities appear although an automatic time-step size control is 

activated for both the Newmark algorithm (W = 0.5, V = 0.2756), and the Newmark-Euler 

algorithm (U = 0.5), which in this case and all following computations is the generalized 

Newmark-Euler scheme (Composite scheme). Actually, the latter one is intended for the 

simulation of rotating structures [13]. As one can observe, a bit more stability is provided by 

the Newmark-Euler algorithm, since the instability problem appears later. These instability 

problems in the implicit simulation of elastic rotating structures are also described in 

[13,39,55,87,129,130]. In the next section we want to explain the reasons for this unstable 

behavior and study in detail the numerical problems that are causing the issues based on the 

simple example of a rotating elastic pendulum. 

7.2 Explanation of the Instability Phenomenon 

A possible source of the described instability effects could be the time-integration scheme 

itself. However, as discussed in Chapter 6, the Newmark scheme as well as the Newmark-

Euler scheme are unconditionally stable if we assume that the time-steps are small enough for 

considering the structure to behave linearly between two time-steps. For the spinning plate we 

used a constant time-step size of ∆> = 0.001;. For a rotational velocity of 2500æ73 =41.67æ7;, the period for one rotation is = = 1 41.67æ7; = 0.024;⁄  resulting in a normalized 

time-step size of ∆> =⁄ = 0.04167. The rotation angle per time-step of the plate changes by 41.67æ7; ∙ 2� ∙ 0.001; = 0.2618æ�� =Q 15°. Since sin�0.2618æ��! differs only by 

approximately 1% from its argument and cos�0.2618æ�� ! from 1 only by approximately 

3.5%, we may consider the problem to behave almost linearly between two time-steps. But 

even if the problem would behave nonlinearly, the Newmark scheme should remain stable 

with regard to Section 6.2. This means that the time-integration scheme cannot be the source 

of instability. For a deeper understanding of the numerical situation, it is helpful to use a more 

simple mechanical model which is why we start our investigations with a rigid rotating 

pendulum. 

7.2.1 Rigid Rotating Pendulum 

Usually the description of such a simple rotational problem could be done in polar coordinates 

with just one degree of freedom (rotation angle). But since finite element codes work with 

Cartesian coordinates, we also describe the kinematics of the pendulum by Cartesian 

coordinates (Fig. 7.6a). The equations of motion can be derived from the free-body diagram 

of the mass in Fig. 7.5. Summation of all forces in x- and y-direction and neglecting gravity 

leads to  

 3N® = � cos n − �� sin n, (7.6a) 

 3Q® = � sin n + �� cos n. (7.6b) 

With the substitution of the centripetal force �� = 3ER 1⁄  where ER = �N� R + Q� R!, cos n =−Q 1⁄  and sin n = N 1⁄  we get the equations of motion 
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3N®  � 
��  

n � cos n 
� sin n 

n �� cos n �� sin n 
3Q®  

 3N® + � ∙ Q1 + 3N1R �N� R + Q� R! = 0, (7.7a) 

 3Q® − � ∙ N1 + 3Q1R �N� R + Q� R! = 0. (7.7b) 

Since they have to be combined with the constraint NR + QR = 1R, they are called differential 

algebraic equations (DAE’s). A detailed discussion of this type of equations and solution 

methods may be found in [4] or [108], where also an overview about further literature is 

given.  

For 3 = 1*", 1 = 13 and � = 0Á, Equations (7.7) simplify to  

 N® + N�N� R + Q� R! = 0, (7.8a) 

 Q® + Q�N� R + Q� R! = 0. (7.8b) 

Application of the Newmark time-integration to these nonlinear differential equations with 

substitutions (5.27) and (5.28) results in 

 �� = −2N� + 2N�Ñ? + ∆>�−2N�� + �2V − 1!∆>N®�!2V∆>R  

+N�Ñ? 7�2V∆>�N�� + ∆>N®�! − W�2N� − 2N�Ñ? + 2∆>N�� + ∆>RN®�!2V∆> �R ¿ 
¿+ �2V∆>�Q�� + ∆>Q®�! − W�2Q� − 2Q�Ñ? + 2∆>Q�� + ∆>RQ®�!2V∆> �R8 = 0 

(7.9a) 

and 

 �X = −2Q� + 2Q�Ñ? + ∆>�−2Q�� + �2V − 1!∆>Q®�!2V∆>R  

+Q�Ñ? 7�2V∆>�N�� + ∆>N®�! − W�2N� − 2N�Ñ? + 2∆>N�� + ∆>RN®�!2V∆> �R ¿ 
¿+ �2V∆>�Q�� + ∆>Q®�! − W�2Q� − 2Q�Ñ? + 2∆>Q�� + ∆>RQ®�!2V∆> �R8 = 0. 

(7.9b) 

For the solution of this nonlinear system of two equations, a classical Newton algorithm 

(5.52) is applied which uses the iterative rule 

 

Fig. 7.5    Free-body diagram of pendulums mass point 



152          7   Implicit Time-Integration of Fast Rotating Structures 

 

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

-1.2 -0.8 -0.4 0 0.4 0.8 1.2

y-
co

or
di

na
te

 [
m

]

x-coordinate [m]

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

-1.2 -0.8 -0.4 0 0.4 0.8 1.2

y-
co

or
di

na
te

 [
m

]

x-coordinate [m]

N Q 

3 
� 

1 
n n 

N Q 
* 

3 
� 

1�>! 

 � N KÑ? �Ñ? Q KÑ? �Ñ? � = � N K �Ñ? Q K �Ñ? � − 6Ä?� N K �Ñ? , Q K �Ñ? ! ∙ ���� N K �Ñ? , Q K �Ñ? !�X� N K �Ñ? , Q K �Ñ? !� (7.10) 

where 6 = ���
�� ����N�Ñ?

����Q�Ñ?��X�N�Ñ?
��X�Q�Ñ?���

��. 
  

The integration of (7.8) is performed for the initial conditions N�0! = 03, Q�0! = −1 =−13, N��0! = E# = 10 3 ;⁄  and Q� �0! = 0 3 ;⁄  with Newmark time-integration and 

parameters W = 0.5 and V = 0.25. Additionally N®�0! = 0 3 ;R⁄ , Q® �0! = E#R 1⁄  are used as 

consistent accelerations for the first time-step of the Newmark algorithm. Setting the desired 

accuracy of the Newton algorithm to  

 |��� N KÑ? �Ñ? , Q KÑ? �Ñ? !| < 10Äô   ∧   Æ�X� N KÑ? �Ñ? , Q KÑ? �Ñ? !Æ < 10Äô, (7.11a) 

leads for a constant time-step size of ∆> = 0.01; and a simulation time of >Ø�� = 1; to a 

perfect behavior of the x- and y-coordinates of the mass point plotted in Fig. 7.7a. If the time-

a) b) 

Fig. 7.6    Rotating  pendulum with a) rigid and b) elastic connection of mass to ground 

a)  b)  

Fig. 7.7    Solutions for rigid pendulum with Newmark algorithm for a) ∆> = 10ÄR; and b) ∆> = 10Ä?; 
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step size is increased to ∆> = 0.1;, however, the solution loses some accuracy, but still 

remains stable as shown in Fig. 7.7b. Even for simulation times of more than >Ø�� = 50; no 

instability appears. 

7.2.2 Elastic Rotating Pendulum 

Let us now consider an elastic pendulum where the mass is connected to the ground via a 

spring with stiffness * and undeformed length 1# (Fig. 7.6b). In this case, the centripetal force �� is replaced by the spring force �� = * ∙ �1 − 1#! and we get for the equations of motion   

 3N® + � ∙ Q1 + *N1 �1 − 1#! = 0, (7.12a) 

 3Q® − � ∙ N1 + *Q1 �1 − 1#! = 0, (7.12b) 

where the current length 1 of the spring can be substituted by 1 = <NR + QR leading to 

 3N® + � ∙ Q<NR + QR + *N ∙ <NR + QR − 1#<NR + QR = 0, (7.13a) 

 3Q® − � ∙ N<NR + QR + *Q ∙ <NR + QR − 1#<NR + QR = 0. (7.13b) 

Like for the rigid pendulum, 3 = 1*" and � = 0Á are used and these equations simplify to  

 N® + *N ∙ <NR + QR − 1#<NR + QR = 0, (7.14a) 

 Q® + *Q ∙ <NR + QR − 1#<NR + QR = 0. (7.14b) 

Analogously to the numerical solution process for the rigid pendulum, Newmark time-

integration is applied which leads to 

 �� = −2N� + 2N�Ñ? + ∆>�−2N�� + �2V − 1!∆>N®�!2V∆>R  

+*N�Ñ? <N�Ñ?R + Q�Ñ?R − 1#<N�Ñ?R + Q�Ñ?R = 0, (7.15a) 

 �X = −2Q� + 2Q�Ñ? + ∆>�−2Q�� + �2V − 1!∆>Q®�!2V∆>R  

+*Q�Ñ? <N�Ñ?R + Q�Ñ?R − 1#<N�Ñ?R + Q�Ñ?R = 0. (7.15b) 

The initial conditions and Newmark parameters are chosen as above (N�0! = 03, Q�0! =−1�0!, N��0! = E# = 10 3 ;⁄ , Q� �0! = 0 3 ;⁄ , W = 0.5 and V = 0.25). The consistent 

accelerations are N®�0! = 0 3 ;R⁄  and Q® �0! = −*Q ∙ �1�0! − 1#! 1⁄ = * ∙ �1�0! − 1#!. The 

initial length of the spring 1 = 1�0! results from the equilibrium 



154          7   Implicit Time-Integration of Fast Rotating Structures 

 

 *�1 − 1#! = 3E#R1 , (7.16) 

leading to the quadratic equation 

 1R − 1#1 − 3E#R* = 0 (7.17) 

in 1, which has the solutions  

 1?,R = 1#2 ± û1#R4 + 3E#R*  . (7.18) 

Since the centrifugal force will always lengthen the spring, only the positive solution remains, 

which for 1# = 13 and a spring stiffness of * = 10õ Á 3⁄  yields 

 1�0! = 1#2 + û1#R4 + 3E#R* = 1,000013. (7.19) 

For a time-step size of ∆> = 0.01;, standard Newmark parameters W = 0.5, V = 0.25 and the 

same Newton algorithm as before we get the result in Fig. 7.8a. At the beginning of the 

simulation, the mass point moves as expected on a circular arc. However, after approximately 

three quarters of rotation at > = 0.45; the solution “jumps” to an unexpected value and thus 

becomes somehow unstable. To explain this surprising behavior, it is useful to have a look at 

the numerical situation right before the jump appears. For this purpose, all relevant variable 

values at > = 0.45; are listed in Table 7.1. 

Table 7.1 Relevant variable values at > = 0.45; before onset of instability 

Variable Value V 0.25 ∆> 0.01 ; * 10õ Á 3⁄  N�  −0.9717077973201222 3 Q�  0.23614647740490619 3 N�� −2.3517560831270767 3/; N®� −91.33130927254165 3/;R 
 

With these values it is possible to plot the function ���N�Ñ?, Q�Ñ?! from Equation (7.15a) in 

Fig. 7.9a. The task for the Newton algorithm is to find the zero(s) of the function ��N�Ñ?, Q�Ñ?!, which are then the equilibrium solutions at time point >�Ñ?. For a better 

understanding of the function ���N�Ñ?, Q�Ñ?!, a cut through this function at the constant value Q�Ñ? = Q� is plotted in Fig. 7.9b, which means that for the unknown value of Q�Ñ? the value 

from the previous time-step as approximation is used for visualization purposes. Obviously 

there is more than one zero for the function ���N�Ñ?!. Actually, we would expect from the 

Newton algorithm to converge to the solution N�Ñ? ≈ −1 close to N� ≈ −0.97, but as we can 

see from Fig. 7.9b there are two other zeros of �� at N�Ñ? ≈ 0 and N�Ñ? ≈ +1. According to  
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Fig. 7.8    Solutions for elastic pendulum with Newmark algorithm with appearing 

instability for ∆> = 10ÄR; (a) and without instability for ∆> = 10ÄS; (b) 

a) 

 

 

 

 

 

 

 

 

 

b) 

Fig. 7.9    Function ���N�Ñ?, Q�Ñ?! for elastic pendulum at time point  > = 0.45; (a) with cut 

along Q�Ñ? = Q� (b) [77] 

> = 0.45; 

�� [Á]
Q�Ñ? [3]

Converged solution Correct solution 

 N�Ñ? [3]

 �� [Á] 
N�Ñ? [3]



156          7   Implicit Time-Integration of Fast Rotating Structures 

 

0

100

200

300

400

500

0 0.2 0.4 0.6 0.8 1

V
el

oc
it

y 
[m

/s
]

Time [s]

Fig. 7.8a, obviously the solution N�Ñ? ≈ +1 was found which means that the Newton 

algorithm converges into a wrong equilibrium solution causing the “jump” of the mass point.  

By this, also the velocities, computed from Equations (5.27) and (5.28) with the wrong value 

for N�Ñ? are not correct anymore (see Fig. 7.10). Due to the unphysical high displacement �N�Ñ? − N�! a dramatic change of the velocity is obtained, starting at > = 0.46;. This finally 

leads to the unstable behavior of the whole solution. 

To answer the question why the Newton algorithm converges into the wrong equilibrium 

solution, it is useful to have again a closer look at Fig. 7.9b. In the region of −1 ≤ N�Ñ? ≤ 1 

the function has extremely steep slopes. Small errors in the computation of the slope during 

the Newton iterations (errors always happen when dealing with numerics) have a big 

influence on the next iterate N KÑ? �Ñ?  and finally to N�Ñ?. This also explains the fact that 

Quasi-Newton algorithms are much more susceptible to this kind of instabilities than Full-

Newton algorithms. 

 

Fig. 7.10    Behavior of velocity E� = <N��R + Q��R of the elastic pendulum’s mass point [77] 

7.3 Influence of Stiffness and Time-Step Size 

Next, we want to study the influence of spring stiffness * and time-step size ∆> on the 

stability behavior of the pendulum. We are doing this by keeping all other values of Table 7.1 

unchanged and plotting again ���N�Ñ?!. It is observable in Fig. 7.11a that a change of the 

time-step size from ∆> = 0.01; to ∆> = 0.001; changes the function ���N�Ñ?! such that only 

the zero at N�Ñ? ≈ −1 is left and therefore only one equilibrium state remains. By this, the 

Newton algorithm can only converge to this correct solution and no “jump” is possible 

anymore. The same holds for a reduction of the spring stiffness from * = 10õ Á 3⁄  to * = 10ô Á 3⁄  in Fig. 7.11b. 

With this knowledge, the simulation of the elastic pendulum is repeated with changed time-

step size and changed spring stiffness, respectively. Fig. 7.12 shows the resulting velocity 

curves E� = <N��R + Q��R for a simulation time of >Ø�� = 30;. As one can, see there is no 

unsteady behavior of the curves and therefore no instability as in Fig. 7.10. Consequently, it is 

possible to stabilize the simulation by reducing the time-step size or decreasing the model 
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stiffness. The latter one shows a remarkable parallel with the mass scaling of explicit time-

integration. By decreasing the stiffness of the system it is possible to use bigger time-steps. 

The influence of the time-step size and stiffness on the function behavior is also visible in 

Equations (7.15): The smaller the time-step size ∆>, the more dominant becomes the first 

linear term of the function, which reduces the tendency of developing a second zero. The 

bigger the spring stiffness * becomes on the other hand, the more dominant becomes the 

second nonlinear term and, therefore, the danger of further zeros. It is interesting to note that 

for * → ∞ the problem of instabilities does not exist as demonstrated by the example of the 

rigid pendulum. 

Other implicit time-integration algorithms such as Newmark-Euler (here the generalized 

Composite scheme) and HHT also suffer from the same problems. Fig. 7.13a shows the 

function ���N�Ñ?! for the same problem at the same time-point as used in Fig. 7.9b, but 

additionally for the HHT scheme with parameter coupling (5.30)/(5.31) and the Composite 

scheme. For the latter, the situation of the Euler step is plotted. The behavior of the HHT 

scheme can be influenced by varying the parameter U. A change of the spring stiffness from * = 10õ Á 3⁄  to * = 10ô Á 3⁄  changes the plotted functions for all schemes and gives better 

numerical conditions, see Fig. 7.13b. 

 

Fig. 7.11    Plot of function ���N�Ñ?! at  > = 0.45; for  * = 10õ Á 3⁄  and ∆> = 0.001; (a) 

and for  * = 10ô Á 3⁄  and ∆> = 0.01; (b) [77] 

a) b) 

Fig. 7.12    Velocity curves E��>! of the mass point of the elastic pendulum with  * =10õ Á 3⁄ , ∆> = 0.001; (a) and  * = 10ô Á 3⁄ ,  ∆> = 0.01; (b) [77] 

N�Ñ? [3] N�Ñ? [3]

�� [Á] �� [Á] b) a) 
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7.4 Possibilities for Resolving the Instability Problem 

For real structures, the reduction of the stiffness, e.g. by reducing the Young’s modulus, to 

avoid instabilities is no option. Hence, the time-step size remains as the only parameter to 

influence the stability. In the following, two simple strategies are presented which may 

prevent the appearance of instabilities. 

7.4.1 First Strategy 

A hint for unfavorable numerical conditions of the nonlinear equations can be the number of 

iterations per time-step needed by the Newton algorithm to solve them. Typically a Newton 

algorithm converges very fast within a few iterations. A high number of iterations may be an 

indication for problems. In Fig. 7.14 the number of iterations per time-step of the Newton 

algorithm for the elastic pendulum problem is shown. It can be seen that the number of 

iterations for * = 10õ Á 3⁄  (dotted line) is much higher than for the stable solution with * = 10ô Á 33⁄  (solid line). The number of iterations is similarly low, if instead of the 

pendulum stiffness the time-step size is reduced to ∆> = 0.001; (not shown). 

With this knowledge we are able to construct the following simple time-step size control 

strategy: 

- If the Newton algorithm needs more than a certain number of iterations per time-step 

without reaching convergence, the current equilibrium search is aborted, time-step size 

is reduced, e.g. according to 

 ∆>��� = ∆>Bé� − 0.5 ∙ ∆>Bé�, (7.20) 

and the equilibrium search is restarted with the new reduced time-step size. 

- If the number of iterations per time-step is lower than a certain value, the time-step 

size of the next time-step is increased according to 

 

Fig. 7.13    Function ���N�Ñ?! at  > = 0.45; for a) * = 10õ Á 3⁄  and ∆> = 0.01; and b) for  * = 10ô Á 3⁄  and ∆> = 0.01; for Newmark with V = 0.25 (black), HHT with  U = −0.05 (red), HHT with  U = −0.4142 (blue) and Newmark-Euler time-

integration with U = 0.5 (green) 

N�Ñ? [3]
N�Ñ? [3]

�� [Á] �� [Á] b) a) 
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 ∆>��� = ∆>Bé� + 0.5 ∙ ∆>Bé�. (7.21) 

It is very important not to use results of a converged Newton iteration with a high number of 

iterations, because this is a hint for numerical problems and could mean that a wrong 

equilibrium solution was found. Such results have to be dismissed and the equilibrium search 

for the actual time-step has to be repeated with the reduced time-step size. 

When this simple approach is implemented for the rotating pendulum, which became unstable 

before, a stable solution is obtained now even for a simulation time of >Ø�� = 30; (Fig. 

7.15a). The automatically adjusted time-step size varies in a range of 0.0021; ≤ ∆> ≤ ∆># =0.01; (Fig. 7.15b). The mean value of the used time-step size is ∆>��� ≈ 0.0036;. For this 

particular problem, a maximum number of seven iterations per time-step turned out to be a 

good choice. If the Newton algorithm does not reach convergence within this limit, the 

equilibrium search is aborted and restarted with a smaller time-step size according to 

Equation (7.20). The time-step size is increased with respect to Equation (7.21) if the number 

of iterations falls below the limit of three. 

a) b) 

Fig. 7.15    Velocity curve E��>! of the mass point of the elastic pendulum with  * =10õ Á 3⁄  and automatic time-step control after first strategy (a) and 

automatically adjusted time-step size over time (b) [77] 

 

 

Fig. 7.14    Number of Newton iterations per time-step (∆> = 10ÄR;) for the elastic rotating 

pendulum with  * = 10õ Á 3⁄  (dotted line) and  * = 10ô Á 3⁄  (solid line) [77] 

∆>#2  

∆># 
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7.4.2 Second Strategy 

A second simple strategy for the detection of possible instabilities could be to check the errors 

of two consecutive Newton iterations with respect to their monotonicity: 

- If the error of the �* + 1!-th Newton iteration is bigger than that of the *-th Newton 

iteration, this is an indication of possible numerical problems and the equilibrium 

search should be aborted and restarted with a reduced time-step size according to 

Equation (7.20). 

- If the number of iterations per time-step falls below a certain value (in this case a 

value of three was used), the time-step size has to be increased as described by 

Equation (7.21). 

Also this strategy leads to a stable solution for the elastic pendulum problem. But since the 

number of function evaluations is about nine times higher compared to the first strategy, it is 

slower. 

7.5 Finite Element Examples 

In the following, it is demonstrated that the findings for the elastic pendulum are transferable 

to the FEM problems already used in Section 7.1. To reach stability, it is possible to decrease 

the model stiffness or to use the suggested time-step control strategies. A decrease of the 

model stiffness is for example possible by reducing Young’s modulus of the used material. If 

we decrease this material parameter for the simple spinning plate problem in Fig. 7.1 from � = 115000 Á 33R⁄  by a factor of 10 to � = 11500 Á 33R⁄ , the simulation of the rotation 

stays stable and reasonable results are obtained in Fig. 7.16. Even better results are obtained if 

the presented first strategy for automatic time-step control is used. In this case, a maximum of 

seven Newton iterations per time-step is allowed before the equilibrium search is aborted, and 

the time-step size is increased if the number of iterations is smaller than three. 
 

Fig. 7.16    Comparison of numerical solutions obtained with Newmark time-integration for 

spinning plate model with expected solution 
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For non-academic examples, the reduction of the model stiffness is of course no option since 

this influences the overall model behavior and may lead to wrong results in terms of 

displacements and stresses. Therefore, only the presented time-step control strategy should be 

used. Figure 7.17 shows that this strategy applied to the turbine model in Fig. 7.4 now leads to 

correct velocity-time curves for both the Newmark algorithm and the Composite scheme even 

for rotational velocities up to 20.000 rpm without any instability. After 0.53s the pressure load 

on the blades is removed and the turbine spins with a constant velocity. It can also be seen 

that the reached velocity is slightly smaller for the Composite scheme due to the higher 

numerical damping, although the same loads, boundary conditions and contact formulations 

are used. 

7.6 Optimization of Time-Integration Parameters 

The goal of a FEM simulation is always to get results as fast and accurate as possible. In 

many cases, accuracy of a computation and reduction of computational time are conflicting 

objectives. This conflict appears especially for the Newmark-Euler algorithm in transient 

computations: On the one hand, bigger time-steps promise a reduction of computational time, 

but on the other hand the numerical damping of the algorithm increases with increasing time-

steps (see also Fig. 6.9). With a higher numerical damping, however, an amplitude decay for 

periodic problems is recognizable, which is again demonstrated in Fig. 7.18 for the simple 

linear pendulum of Section 5.4.2 and the Newmark-Euler parameters U = 0.5, W = 0.5 and V = 0.25. A time step size of ∆> = 0.6; corresponds to a normalized time-step size of 

approximately ∆> = = 0.1⁄ . Although the numerical damping is still small for this time-step 

size (see Fig. 6.9), an amplitude decay is visible. If the time-step size is halved, the amplitude 

decay is almost not observable at the beginning but for long-term simulations the decay 

appears, too. 

In nonlinear FEM simulations, the time-step size in combination with an automatic time-step 

control strategy can be influenced by setting different values for the maximum number of 

 

Fig. 7.17    Solutions for complex FEM example of turbine model for improved time-step 

control strategy and different time-integration algorithms 
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allowable Newton (or Quasi-Newton) iterations per time-step. If this value is reached in a 

simulation, the time-step size is reduced. If the number of iterations is smaller than another 

certain limit value, the time-step size is increased again. A higher number of allowable 

iterations typically leads to bigger time-steps, but this does not automatically mean that the 

computational time decreases, since for these bigger time-steps often more Newton iterations 

are needed for the equilibrium search. This implies that a tradeoff between time-step size and 

the necessary number of Newton iterations has to be found for a fast simulation. In particular, 

for rotating structures the time-step size should not become too big for stability reasons as 

explained in the sections before. A good compromise between time-step size and necessary 

number of Newton iterations for the turbine model is a maximum number of 9 Newton 

iterations. Figure 7.19 shows the time-step size following from this setting and the computed 

velocity curve, where the load is removed after 0.37s. Although the normalized time-step size 

at a rotational velocity of 4 = 9300 æ73 is ∆> =⁄ ≈ 0.0211 and thus quite small, the 

numerical damping observed from the spectral radius in Fig. 7.20 leads to a decrease of the 

rotational velocity after removal of the load (Fig. 7.19a) which is unphysical. 

 

Fig. 7.18    Analytical and numerical solutions of simple linear pendulum problem obtained 

by Newmark-Euler algorithm for different time-step sizes 

a)  b)  

Fig. 7.19    Velocity curve for turbine model simulated with Newmark-Euler algorithm (a) 

and history of time-step size (b) 

∆> = 0.6; 

∆> = 0.3; 

solution 
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As already demonstrated in Section 5.4, the numerical damping of a time-integration 

algorithm can be influenced by its parameters. An increase of the parameter W of the 

Newmark algorithm leads to higher numerical damping and vice versa. Also the parameter U 

of the Newmark-Euler scheme influences the damping behavior (see Fig. 6.9). Consequently, 

it should be possible to adjust these time-integration parameters such that the numerical 

damping is reduced while keeping sufficient stability of the algorithm. 

 

Fig. 7.20    Spectral radius h��! of Newmark-Euler time-integration scheme with standard 

parameters shows reason for numerical damping and velocity decrease of turbine 

model 

One possibility of adjusting the parameters in the described manner is to use an optimization 

algorithm, because a manual parameter change satisfying all requirements is rather difficult 

and almost impossible as described in Section 6.1. The objective of this optimization is to 

maximize the integral of the spectral radius h��! for 0 < ∆> =⁄ ≤ 0.1, which reads for the 

Newmark-Euler scheme as 

 maxR,S,T � h��! d ¸∆>= ¹#.?
# . (7.22) 

As an additional constraint for guaranteeing stability we introduce the condition that the 

maximum value of the spectral radius may not exceed a value of 1.0 even for very big time-

steps up to ∆> = = 1000⁄ , i.e., 

 max#U∆� �⁄ U?### ρ��! ≤ 1.0. (7.23) 

The time-step sizes for the Newmark part and the Euler-Backward part are assumed to be 

equal. For the optimization the Downhill-Simplex method from Nelder and Mead [109] in 
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combination with a simple penalty strategy is used for making the algorithm applicable for 

constrained optimization problems. This leads to the optimized values for U, W and V given in 

Table 7.2. In Fig. 7.21 the effect of this new parameter combination with respect to the 

spectral radius is shown. The spectral radius is always smaller or equal than one and the 

numerical damping in the interesting frequency spectrum is reduced. 

Table 7.2 Optimized parameters of the generalized Newmark-Euler scheme 

Variable Optimized value U 0.80767719 W 0.73496847 V 0.33580917 
  

 

Fig. 7.21    Spectral radius h��! of Newmark-Euler time-integration scheme with standard 

(solid) and optimized parameters (dot-dashed) 

As a next step, the influence of the optimized parameter combination to the turbine FEM 

example is investigated. For this purpose, the same computation as before is repeated, but the 

optimized parameter settings of Table 7.2 are used. As observable in the grey velocity curve 

of Fig. 7.22a, the decrease of the velocity after removing the pressure load is now much 

smaller and the behavior is almost ideal and no instabilities appear. Also the time-step size in 

Fig. 7.22b did not change dramatically in comparison to the computation with standard 

parameters which results in a similar computational time for both parameter settings. The 

presented optimized parameter values might not be the best for all possible problems and 

applications, but at least the used methodology shows a proper way to adjust a time-

integration scheme to particular requirements. 
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a) 
 

 

b) 

Fig. 7.22    Velocity curve of turbine model (a) and time-step size (b) for Newmark-Euler 

algorithm with standard (black) and optimized parameters (grey) 



 

 



 

 

8 Model Reduction Strategy and Dummy Engine Model 

The described high-fidelity models of aero-engines contain up to one hundred millions of 

degrees of freedom which results in high computational costs for the solution of the 

underlying boundary value problem. For this reason, model reduction strategies for reducing 

the number of degrees of freedom are very desirable while keeping the accuracy almost as 

high as in the non-reduced model. Especially for implicit computations, the benefit in terms of  

computational costs can be very high, since the number of degrees of freedom determines the 

overall computational time by a quadratic function. This relationship is only a linear one for 

explicit computations. 

Another important aspect in developing high-fidelity models is the time needed for the 

meshing process. Since an automatic mesh generation for structured brick meshes is not 

possible yet, this part of the model generation is very time-consuming and induces a big 

portion of the overall costs from an economical point of view. In [75] a so-called contact 

meshing approach is described which simplifies the meshing process for complex structures 

dramatically while keeping the accuracy of the results high. 

8.1 Model Reduction via Solid-by-Shell Substitution 

In this section a method is presented where solid elements are substituted by shell elements in 

regions which are applicable for this strategy. Such regions are typically thin-walled regions 

like the casings of an aero engine, where no loads in thickness direction are applied and the 

curvature is moderate, which results in non-spatial stress states. If 3D solid elements are used, 

fully-integrated elements should be avoided because of the locking problems discussed in 

Chapter 3. Underintegrated elements do not suffer locking effects, but due to the constant 

strain distribution in the element at least three elements in thickness direction should be used 

to correctly map the linear strain distribution in thickness direction resulting from bending 

and keeping the integration error low (integration error is reduced if the interval becomes 

smaller, which means a finer mesh). Additionally, the dimensions of the element should be 

similar in all three directions to avoid a distortion of the element under large deformations of 

the whole structure. All these requirements lead to a fine mesh of 3D solid elements with 

many degrees of freedom. 

Figure 8.1 shows such a part meshed with solid elements and the same part with the applied 

solid-by-shell substitution strategy. Obviously the number of degrees of freedom, and thus the 

computational time, can be reduced by using this strategy because shell elements are not 

subjected to the described restrictions for solid elements and much coarser meshes are 

possible without losing accuracy. For the coupling of solid and shell elements, there exist 

different algorithms which are implemented in modern FE tools and discussed for example in 

[126]. 
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8.2 Considerations about Necessary Mesh Density 

Before discussing the approach of model reduction of solid-by-shell substitution further, the 

question about the necessary mesh density of shell elements in regions with varying thickness 

should be addressed. Typically, the thickness within a shell element is constant. Even if the 

element thickness may be different at its nodal points, these values are usually averaged to a 

constant shell thickness. But is the arithmetic mean value a good choice for the element’s 

thickness? And how many elements are necessary to approximate a structure with a varying 

thickness for keeping the displacement error for bending small? These questions will be 

answered for the example of a simple Euler-Bernoulli beam and should at least give an idea 

about the similar behavior of a plate. 

8.2.1 Beam with Constant Bending Moment   

According to Fig. 8.2a we consider a plane beam structure with a linearly varying thickness 

 >�N! = >? − >#1 ∙ N + >#. (8.1) 

The beam is subjected to a bending moment 2�N! = �Ó4;>. (Fig. 8.2b). By using the Euler-

Bernoulli beam theory, the displacement J�N! in z-direction can be calculated from �'XX�N!J���N! = −2�N! by 

 J�N! = 1� � 7� −2�N!'�N! dN�
# 8�

# dN + 
?N + 
R (8.2) 

with integration constants 
? and 
R. For a rectangular cross section 	 × > with the area 

moment of inertia '�N! = 	 ∙ >�N!S 12⁄  and beam width 	 this leads to 

 J�N! = 122#�	 � � 1ç>? − >#1 ∙ N + >#èS dN�
#

�
# dN + 
?N + 
R. (8.3) 

 

a)  b)  

Fig. 8.1    Part meshed with solid elements (a) and applied solid-by-shell substitution 

strategy (b) 
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1 
N ># >? 

  

2# 2# 

Performing the integrations and determining the integration constants from the boundary 

conditions J�0! = J�1! = 0 yields 

 J�N! = 62#1N�	>#R ¸ N1># + N�>? − >#! − 1>?¹ (8.4) 

with the maximum deflection 

 JØ�� = J �N = 1 ∙ ># − <>#>?># − >? � = − 62#1R
�	>#�>? + <>#>?�R (8.5) 

as shown in Appendix F. 
 
 

a)  
 

b)  

Fig. 8.2    Plane beam with linearly varying thickness (a) and bending load case (b) 

For the determination of a constant beam thickness >�, which is necessary for a beam with 

constant cross section of equal stiffness, different possibilities for the stiffness definition are 

conceivable. The first possibility is to demand equal maximum deflections JØ���># = >? =>�! = 32#1R �2�	>�S!⁄ = JØ���># ≠ >?!, i.e., 

 
32#1R2�	>�S = 62#1R

�	>?�># + <>#>?�R, (8.6) 

which gives 

 >� = û>#�>? + <>#>?�R
4V  . (8.7) 

Choosing e.g. ># = 1033 and >? = 533 would result in >� ≈ 7.14233. This value for >� 

obviously differs from the arithmetic mean value 7.533 of ># and >?. 

But it would also be possible to define the stiffness of the beam as the sum of all its 

displacements which leads to the equivalence condition 

� J�N, ># = >? = >�!dNé
#  = � J�N, ># ≠ >?!dNé

#  

(8.8) 
or  

� 62�	>�S �NR − 1N!dNé
#  = � 621N�	>#R ¸ N1># + N�>? − >#! − 1>?¹é

# dN 

or  
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− 1S6>�S = 1S �>?R − >#R + 2>#>?ln ç>#>?è�2>#>?�># − >?!S  

and finally to 

 >� = X >#>?�># − >?!S−3 �>?R − >#R + 2>#>?ln ç>#>?è�V
 . (8.9) 

By choosing again ># = 1033 and >? = 533, we obtain >� ≈ 7.15633. 

A third possibility for defining the beam stiffness could be the total strain energy stored in the 

structure as the work of stresses, which can be derived from 

 F��� = 12 � i��\��dD =�
12� � i��R#

� dD. (8.10) 

With i���N! = 2�N! ∙  'XX�N!⁄  we get 

 F��� = 12� � 2�N!R'XX�N!R  R
� dD (8.11) 

or with dD = d�dN and 'XX�N! = ð  Rd� 
  

 F��� = 12� � � 2�N!R'XX�N!R �  Rd� 

 �é

# dN = 12� � 2�N!R'XX�N! dN.é
#  (8.12) 

This term can also be transformed with the relation �'XX�N!J���N! = −2�N! = 2# to 

 F��� = �2 � 'XX�N!J′′�N!RdN.é
#  (8.13) 

Evaluating (8.12) for ># = >? = >� gives 

 F��� = 62#R1�	>�S  (8.14) 

and for ># ≠ >? 

 F��� = 12� � 2#R	12 ç>? − >#1 ∙ N + >#èS dNé
# = 32#R1�	 �># + >?>#R>?R �. (8.15) 

Demanding the equality of (8.14) and (8.15) yields 

 >� = û2>#R>?R>#+>?V  . (8.16) 

For the example ># = 1033, >? = 533 a value of >� ≈ 6.93433 is obtained.  
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Obviously, the different definitions of the equivalent beam stiffness lead to similar but not 

identical constant thickness values if we are looking for a constant thickness beam of the 

same stiffness. For our further considerations, we will choose the strain energy stored in the 

structure as measure for stiffness comparison.  

8.2.2 Beam with Variable Bending Moment 

Now we assume not only a varying thickness of the beam as given in Equation (8.1), but also 

a linearly varying bending moment according to 

 2�N! = 2? − 2#1 ∙ N + 2# (8.17) 

with 2# being the bending moment at N = 0 and 2? the bending moment at N = 1 to take into 

account the most general case with regard to a finite beam element. For this case, the 

displacements are computed according to (8.2) as 

 J�N! = 12�	 � � 2? − 2#1 ∙ N + 2#ç>? − >#1 ∙ N + >#èS dN�
#

�
# dN + 
?N + 
R (8.18) 

which yields after a laborious calculation to 

 J�N! = 61�	># ���
��− �># − >?!R�2?># − 2#>?!�1 − N!N>?�1># + N�>? − >#!��># − >?!S ¿ 

¿ + 2>#�2# − 2?![�1 − N! ln�1>#! + N ln�1>?! − 1 ln�1># − >#N + >?N!]�># − >?!S ���
��. 

(8.19) 

Using (8.12) with ># = >? = >� results in the strain energy 

 F��� = 21�	>�S �2#R + 2#2? + 2?R! (8.20) 

and for ># ≠ >? in 

 F��� = 31�	>#R>?R�># − >?!S �     �># − >?!�2?># − 2#>?!¿ ∙ 
¿�21>0�>0 − 3>1! + 20>1�3>0 − >1!� + 2>02>12�20 − 21!2 ln ¸>0>1¹     �. (8.21) 

The constant beam thickness >� we are searching for can be determined by setting (8.20) equal 

to (8.21) and solving for >� which finally yields 

 >� = X 2�2#R + 2#2? + 2?R!>#R>?R�># − >?!S3�># − >?!�2?># − 2#>?!�2?>#�># − 3>?! + 2#>?�3># − >?!� + 2>#R>?R�2# − 2?!R ln ç>#>?èV
. 

  (8.22) 
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As shown in Table 8.1 for a few examples, the equivalent constant beam thickness >� 

computed with Equation (8.22) does not only depend on the beam’s thickness distribution, but 

also on the loading. 

For a better visualization of the final Equation (8.22) the substitutions � = ># >?⁄  and 	 =2# 2?⁄  are introduced. By this, (8.22) can be transformed to 

 >�>? = û 2�� − 1!S�R�1 + 	 + 	R!3�� − 1!�� − 	!�−	 + ��� − 3 + 3	!� + 6�R�	 − 1!Rln��!V  . (8.23) 

The illustration of this result in Fig. 8.3 gives an impression about the influence of the varying 

load and thickness ratios on the constant beam thickness >� in relation to the thickness >?. 

Table 8.1 Equivalent constant beam thickness for >0 = 1033, >1 = 533 and different 

loading conditions 

a) 20 = 100Á33, 21 = 0Á33 

 >� = 8.48833 

b) 20 = 100Á33, 21 = 50Á33 

 >� = 7.49433 

c) 20 = 100Á33, 21 = 100Á33 

 >� = 6.93433 

Since the section loads for a finite element are not known before the computation, an iterative 

process would be required to determine the correct thickness values. However, is such an 

effort really necessary? To answer this question, load case a) of Table 8.1, where the 

equivalent beam thickness differs most from the average thickness (see also Fig. 8.4b), is 

modeled with different mesh densities. Each of the used beam elements is modeled with the 

average thickness >�,� = �>#,� + >?,�� 2⁄  according to its position in the mesh. For the test 

problem the parameters � = 210000 Á 33R⁄ , 1 = 20033, 	 = 133, >�N = 0! = 1033, >�N = 1! = 533 and the loads 2# = 100Á33 and 2? = 0Á33 (corresponds to � =0.5Á) are chosen. In Fig. 8.4a the computed tip deflections of the beam are plotted for 

different mesh densities with 1, 2, 3 or 4 Euler-Bernoulli beam elements in longitudinal 

direction. Additionally, the relative error of the tip deflection in comparison to the analytical 

solution computed with Equation (8.19) is shown. As it can be seen, the FEM solution 
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converges quite fast to the analytical solution with increasing mesh density, where for four 

elements the error is only about 2.7% 
  
 

 

Fig. 8.3    Influence of load and thickness distribution on constant beam thickness of equal 

stiffness 

From these considerations follows that especially in regions with varying thickness a shell 

mesh should not be too coarse. The necessary mesh density does not only depend on the 

thickness variation, but also on the applied load. Typically a refinement of the mesh leads to 

fast convergence of the displacement results. 
 
 

a)  
 
 
 
 
 
 
 
 
 
 

 

b) 

Fig. 8.4    Displacements and errors for different mesh densities of beam (a) and applied 

load case (b) 

8.3 Tests and Examples of Solid-by-Shell Substitution 

To demonstrate the capabilities of the described solid-by-shell substitution strategy, a casing 

part of the Dummy Engine model in Section 8.4 is chosen. This part is subjected to three 

different load cases as presented in Fig. 8.5. In the first load case the part is mainly subjected 

to tension, the second load case is a mixture of bending and shear, and the third load case 

consists of a thermal load. 
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a)  

Fig. 8.5    Casing part subjected to load cases tension (a), shear (b) and temperature (c)
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region (Fig. 8.6d). The used commercial finite element code requires for the coupling of solid 
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Fig. 8.6    Casing part meshed with solid elements (a), hybrid mesh of classical shells and 

solids (b), hybrid mesh 

structured T-shell mesh (d)

The results of these static computations are summarized in 

normalized with respect to the results of the solid model.

displacements between the different models is very good. Only for the tension load case t
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b)  c)  

Casing part subjected to load cases tension (a), shear (b) and temperature (c)

The described loads are applied to four different model types. In the first model

underintegrated solid elements (Fig. 8.6a), where three elements in 

thickness direction are used in all regions resulting in a very fine mesh with approximately 

. The second model is a so-called hybrid model where the solid

substitution strategy is applied. Regions, where no spatial stress states are expected

Fig. 8.6b), other regions like the flange regions are meshed with 
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ype appears to the user as a solid element, but uses the kinematics of shell elements

and is also coupled via a tie constraint to the solid part. The fourth model is also a hybrid one 

but in contrast to the third model with a structured mesh in the shell 

d). The used commercial finite element code requires for the coupling of solid 

and classical shell elements a certain match of the meshes (Fig. 8.6b), which is 

c) 
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Casing part meshed with solid elements (a), hybrid mesh of classical shells and 
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hybrid model with classical shell elements reacts too stiff. This behavior is related to the 

coupling algorithm between classical shells and solid elements. The algorithm impairs the 

Poisson effect in the coupling area which introduces an artificial stiffness into the model and 

results in smaller displacements. The biggest advantage of the hybrid model technology is the 

lower number of degrees of freedom which yields to a remarkable speed-up of the 

computation. The computational time of the hybrid model with a structured T-shell mesh is 

just about 15% of that of the solid model which corresponds well to the expected quadratic 

influence of the model size on the computational time. 

8.4 Dummy Engine Model 

In this section, strategies discussed and presented in the previous chapters and sections are 

applied to a so-called Dummy Engine model. This finite element model of an aero-engine is 

not related to any existing aero-engine, since it contains many simplifications, but it includes 

all important parts. Figure 8.8 gives an overview of the model and its most important 

components. Some components like different kinds of struts, guide vanes, seal fins, abradable 

liner and special details of the mounting system are also part of the model but not referenced 

in Fig. 8.8. The model contains all together 56 contact definitions in the bearing region, 

between the different parts of the mount system, between fan blades and fan disc, abradable 

liners and turbine drum, casings and blades, etc. For all rotating contact surfaces Mortar 

contacts are defined, all other contact definitions use the surface-to-surface approach in 

combination with a penalty formulation.  

Figure 8.9 shows some details of the rear mount system and the region of the turbine blades, 

where also the used mesh is visible (Fig. 8.9b). For all those details and small components, 

contact is defined between the moveable parts. An elastic viscoplastic material model, which 

also takes into account thermal affects, is used for all parts of the engine. Since the whole 

model is meshed by underintegrated solid elements, an anti-hourglassing formulation 

according to [19] is chosen. In total, the whole structure contains more than 1100 parts and 

about 8.7 million finite elements with 11.3 million nodes. 

 
 
 

Fig. 8.7    Computational results for different casing models 
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Fig. 8.8    Components of Dummy Engine 

 
 
 

a)  

Fig. 8.9    Rear mount system (a) and mesh of turbine blades with guide vanes, liners and 

seal fins (b) of Dummy Engine 

8.4.1 Applied Test Load Case and Results

In the implicit solution process of a boundary value problem, as describ

typically consists of the steps 

• matrix assembly, 

• symbolic factorization (ordering),

• numeric factorization and

• numeric solution, 

an important aspect is the symbolic factorization or ordering.

conditioning the matrix such that the following steps can be performed more efficient

commercial FE codes, different ordering schemes are implemented. Before starting a transient 
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properties and primarily on the problem size. For the Dummy Engine model three different 

ordering schemes are tested: 

• MMD (Multiple Minimum Degree, see e.g. [139,96]), 

• Metis [74] and 

• LSGPart [3]. 

The test computations, consisting of two iterations of a single time-step, are performed on a 

cluster with 40 CPU cores per compute node. Figure 8.10 shows the computational time for 

this example problem computed with Newmark time-integration and a Full-Newton algorithm 

for a varied number of compute nodes together with different ordering schemes. Two aspects 

are important here. First, LSGPart achieves the lowest computational times for all tested 

numbers of compute nodes, and second, LSGPart shows the best scalability, which means that 

the computational time still decreases for a higher number of CPUs. For these reasons, the 

following implicit computation for the Dummy Engine model is performed with the LSGPart 

ordering scheme. 
 
 
 

Fig. 8.10    Comparison of different ordering schemes for Dummy Engine model 

The load case is simple but activates almost all contact definitions in the model: A linearly 

increasing pressure load is applied to the turbine blades and a linearly increasing gravity load 

is applied to the whole structure while the upper surfaces of the front and rear mount system 

are fixed. Figure 8.11 shows the computed rotational velocity of the engine’s shaft for an 

explicit and implicit simulation of the described problem. The explicit simulation uses a slight 

modification of the central difference method and the implicit one generalized Newmark-

Euler (Composite) time-integration in combination with a Full-Newton algorithm. As one can 

see, the consistency of both time-integration schemes is very good. The explicit computation 

is terminated after approximately 0.1s for this reason. The waviness of the velocity time curve 

results from a folding back effect of the fan blades, which are loosely mounted on the fan disc 

and reach their final position at a certain angular velocity due to the centrifugal load. In 

addition, the implicit computation is about 10 times faster than the explicit one for the first 

0.1s of simulation time, which was another reason for the premature termination of the 

explicit run. 



178          8   Model Reduction Strategy and Dummy Engine Model

 

 

Fig. 8.11    Comparison of different 

8.4.2 Test of Model Reduction Strategy

For testing the solid-by-shell reduction strategy, part regions of the Dummy Engine 

where the substitution strategy is applicable

to the solid area at their boundaries. 

8.12b the same model with applied solid

also other parts of the model

elements but in the sense of a conservative approach we restrict 

shown in Fig. 8.12b. 
 
 

a)  

Fig. 8.12    Dummy Engine m

(green) regions 

Since most of the shell regions belong to the static, non

use the casing structure for some test computations. First, three different 

cases are applied. Figure 8.13

torsion. For the torsion load case

casing. In all three load cases the structure is fixed at the 

flange of the thrust bearing housing (

casing. By this, most of the substi

displacements resulting from the three load

0

20

40

60

80

100

0.00 0.05

R
ot

at
io

na
l v

el
oc

it
y 

[r
pm

]

Model Reduction Strategy and Dummy Engine Model 

Comparison of different time-integration schemes for Dummy Engine 

Test of Model Reduction Strategy 

shell reduction strategy, part regions of the Dummy Engine 

where the substitution strategy is applicable, are meshed by classical shell elements and tied 

to the solid area at their boundaries. Figure 8.12a shows the solid element model and 

b the same model with applied solid-by-shell substitutions. It should 

also other parts of the model, e.g. the blades, vanes and struts, could be meshed by shell 

elements but in the sense of a conservative approach we restrict ourselves

 

b)  

model with a) solid regions and b) with shell 

most of the shell regions belong to the static, non-rotating part of the engine

use the casing structure for some test computations. First, three different 

13 illustrates these load cases, which are tension, bending and 

torsion. For the torsion load case, stiff beams are used to translate the moment to the fan 

casing. In all three load cases the structure is fixed at the whole circumference of the 

thrust bearing housing (TBH) casing and loaded at the front flange of the fan 

of the substitution regions are loaded. Table 8

displacements resulting from the three load-cases. All results are normalized with respect to 

0.10 0.15 0.20
Time in s

 

schemes for Dummy Engine model 

shell reduction strategy, part regions of the Dummy Engine model, 

are meshed by classical shell elements and tied 

he solid element model and Fig. 

. It should be mentioned that 

could be meshed by shell 

ourselves to the regions 

with shell (red) and solid 

rotating part of the engine, we just 

use the casing structure for some test computations. First, three different linear static load 

, which are tension, bending and 

to translate the moment to the fan 

whole circumference of the rear 

casing and loaded at the front flange of the fan 

8.2 summarizes the 

All results are normalized with respect to 

0.20

Implicit

Explicit



 

the displacements of the solid model. For the torsion load case

introduction point is evaluated. All displacements are within an aspired maximum difference 

of 10%.  

a)  
 

 
 
 
 

Fig. 8.13    Static structure of engine
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substitution strategy also to the rotor components of the model where parts like blades (except 

the blade roots) or the shaft are also well suited for a modeling by she

Table 8.3 Eigenfrequencies of static structure in Hz

Mode 

Solid model

Eigen-

frequency 
Selected mode shapes

7 59.746 

8 60.033 

9 96.721 

10 96.785 

11 101.64 

12 113.38 

13 114.1 

14 143.37 
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17 162.22 

18 188.13 

19 201.46 

20 204.09 
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9 Conclusions and Outlook 

The field of finite element computations is an area which is almost impossible to cover with 

all its topics in a single textbook. The intention of this publication, therefore, is to draw the 

reader’s attention to some special issues that may appear in extremely detailed high-fidelity 

engine models (but also in other types of models). The more components are included in a 

model, the more contact conditions have to be defined, monitored and managed during a 

nonlinear computation. The ideas behind algorithms for this purpose are described and 

explained for simple examples. The knowledge about these procedures is important to 

discover and solve problems like slow or even unstable convergence or unwanted 

penetrations. Both kinds of problems may also arise from the unintended stiffening or 

softening effects, locking and hourglassing. Choosing an appropriate finite element 

formulation or anti-hourglassing strategy is important for obtaining accurate and reliable 

results.  

In this work, attention is especially drawn to time-integration procedures, which are essential 

in the solution process of transient, nonlinear boundary value problems. Explicit time-

integration schemes are very robust and well-established for the simulation of highly dynamic 

processes but suffer the problem of enormous computational times when it comes to the 

simulation of events over a time-span of several seconds due to their extremely small time-

steps. In the field of aero-engines, it is highly appreciated by many of the involved disciplines 

to have data of the thermo-mechanical behavior of a running engine over a bigger time-span. 

Typically, experiments can deliver these data only in a limited extent. One reason for these 

limitations are the high costs of such experiments. Furthermore, it is difficult or sometimes 

impossible to monitor all desired data in all regions of an engine because of the restricted 

accessibility to many components, extremely high temperatures and further obstacles. A 

solution for the described difficulties of the explicit simulation and limitations for the 

experiments could be the implicit simulation of aero-engines as demonstrated in this work. 

Although implicit time-integration requires more computational effort per time-step due to the 

necessary solution of in general nonlinear systems of equations in each time-step, the stable 

time-step sizes may be a few orders bigger than that of an explicit integration scheme. 

Instability problems of implicit time-integration schemes for rotating elastic structures, like 

the rotor of an aero-engine, are investigated and the strategies presented that allow a stable 

and efficient simulation. 

Of course, for every simulation process it is desirable to reduce the model size while keeping 

the accuracy of the results high. Substituting solid by shell elements in certain model regions 

can be a step towards this requirement. In this context, considerations about the mesh density 

of shell-meshed regions are carried out and the substitution procedure is successfully 

implemented and applied to a fictive aero-engine model. 

The mesh density is also a very important aspect in the detailed modeling of bearings. The 

mesh should be fine enough to allow for a kinematically correct rotation of the bearing but not 
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too fine, especially in explicit computations, since the stable time-step size is influenced by 

the finite element size. As it could be shown, also the contact description in a bearing 

determines the required mesh density, which can be calculated by derived equations. 

As already mentioned, not all topics could be covered here and there a many further points 

which can improve the results and reduce the computational time in particular. The 

decomposition of huge models has a remarkable influence on the overall computational time 

on distributed systems like clusters with thousands of CPUs. Related to this, an improvement 

of the scalability, especially of implicit simulations, on the mentioned systems would lead to a 

significant speed-up of computations. For such improvements, experience has shown there 

needs to be close collaboration between programmers and cluster developers. 

An important development that might in the future solve many problems associated with the 

time-consuming meshing process is isogeometric analysis. Such a direct NURBS-based 

computation of displacements and stresses would bypass many of the known problems during 

the discretization procedure and leads to a very exact representation of the geometry also in 

the computational domain. 



 

 

Appendix 

A Computation of Eigenvalues for Stability Analysis of Newmark 

Algorithm 

Computing det�`t − �$9! and setting it equal to zero yields with the substitution (6.16) the 

characteristic polynomial 

 `S + `R ¸−1 + WV − 1 ? + 12V ? − 1V∆>RpR ? − WVR∆>RpR ?¹ 

+` ¸ 1 ? + 12V ? − WV ? + 1V∆>RpR ?¹ = 0. (A.1) 

From this, `? = 0 follows directly and the quadratic equation 

 `R + ` ¸−1 + WV − 1 ? + 12V ? − 1V∆>RpR ? − WVR∆>RpR ?¹ 

+ ¸ 1 ? + 12V ? − WV ? + 1V∆>RpR ?¹ 

= `R + ` ú∆>RpR ç−VR ? + WV ? − VR + 12 Vè − V − WVR∆>RpR ? ü 

+ úVR∆>RpR + 12 V∆>RpR − WV∆>RpR + VVR∆>RpR ? ü = 0 

(A.2) 

remains, which has the solutions 

 `R,S = ∆>RpR çVR ? − WV ? + VR − 12 Vè + W + V2VR∆>RpR ?  

±X@∆>RpRV ç−V ? + W ? − V + 12è − W − V2VR∆>RpR ? AR − ∆>RpR �V + 12 − W� + 1V∆>RpR ?  . 
(A.3) 

Reversing the substitution (6.16) results in 

 `R,S = 4 + ∆>RpR�4V − 2W − 1!4 + 4V∆>RpR  

±û�−4 − ∆>RpR�4V − 2W − 1!4 + 4V∆>RpR �R − 2∆>RpR�2V − 2W + 1! + 44 + 4V∆>RpR  

= 4 + ∆>RpR�4V − 2W − 1!4 + 4V∆>RpR  

(A.4) 
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±<−16∆>RpR + ∆>TpT[�1 + 2W!R − 16V]4 + 4V∆>RpR  

and for p = 2� =⁄  finally in 

 `R,S = 1 + ∆>R=R �R�4V − 2W − 1! ± �:∆>T=T �R[�1 + 2W!R − 16V] − 4 ∆>R=R1 + 4V ∆>R=R �R  . (A.5) 

B Derivation of Stability Conditions for Newmark Time-Integration 

Unconditional stability means that the stability conditions (6.8) and (6.9) are fulfilled even for 

arbitrary big time steps. To evaluate (6.18) or (A.5) in terms of these conditions different 

cases have to be considered. Since `? equals zero, only `R,S is important. We also assume that W and V have positive values.   

Case I: 

At first we consider the situation of complex eigenvalues (where `R ≠ `S is always true) 

which appear if the root expression in (6.18) becomes negative. With the substitution  = ∆> =⁄  this condition can be written as  

 zR�R[�1 + 2W!R − 16V] − 4 < 0. (B.6) 

Since zR�R is always greater than zero inequality (B.6) is fulfilled for [�1 + 2W!R − 16V] ≤ 0 

or Z ≥ �[ + �Y!� [\⁄ , respectively (case Ia). But also for V < �1 + 2W!R 16⁄  inequality 

(B.6) may be fulfilled if zR�R is small enough (case Ib). 

Case Ia: 

If V ≥ �1 + 2W!R 16⁄  the corresponding stability condition 

 ]1 + zR�R�4V − 2W − 1! ± z�<zR�R[�1 + 2W!R − 16V] − 41 + 4VzR�R ] ≤ 1 (B.7) 

can be transformed to 

 ]1 + zR�R�4V − 2W − 1! ± (z�<−zR�R[�1 + 2W!R − 16V] + 41 + 4VzR�R ] ≤ 1 (B.8) 

with ( = √−1 being the imaginary unit which gives 

 <[1 + zR�R�4V − 2W − 1!]R + zR�R[−zR�R[�1 + 2W!R − 16V] + 4] ≤ 1 + 4VzR�R. (B.9)  

Squaring and simplifying (B.9) yields 

 zR�2γ − 1!�1 + 4βzR�R! ≥ 0 (B.10) 

from which directly follows ` ≥ [ �⁄ . 
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Case Ib: 

In this case we assume Z < �[ + �Y!� [\⁄  and a�b� < � [�[ + �Y!� − [\Z]⁄  which also 

fulfills the inequality (B.6) and leads to the stability condition (B.7) resulting in ` ≥ [ �⁄  

for conditional stability. 

Case II: 

Next, we consider the case of distinct eigenvalues `R ≠ `S plus a positive root expression in 

Equation (6.18) for which  

 zR�R[�1 + 2W!R − 16V] − 4 > 0 (B.11) 

is necessary. This condition is fulfilled for a�b� > � [�[ + �Y!� − [\Z]⁄  and �1 + 2W!R −16V > 0. The latter results in the premise Z < �[ + �Y!� [\⁄ . Under the assumption of these 

two premises we define further subcases which may appear depending on the parameter 

choice and the time-step size as follows:  

Case II(`R): 

The stability criterion for case II(`R) reads 

 c1 + zR�R�4V − 2W − 1! + z�<zR�R[�1 + 2W!R − 16V] − 4c ≤ 1 + 4VzR�R 
(B.12)  

where we have to distinguish between subcase II(`R)a with  

 1 + zR�R�4V − 2W − 1! + z�<zR�R[�1 + 2W!R − 16V] − 4 ≥ 0 (B.13)  

and subcase II(`R)b with  

 1 + zR�R�4V − 2W − 1! + z�<zR�R[�1 + 2W!R − 16V] − 4 < 0. (B.14)  

Case II(`S): 

The stability criterion for case II(`S) reads 

 c1 + zR�R�4V − 2W − 1! − z�<zR�R[�1 + 2W!R − 16V] − 4c ≤ 1 + 4VzR�R 
(B.15)  

where we have to distinguish between subcase II(`S)a with  

 1 + zR�R�4V − 2W − 1! − z�<zR�R[�1 + 2W!R − 16V] − 4 ≥ 0 (B.16)  

and subcase II(`S)b with  

 1 + zR�R�4V − 2W − 1! − z�<zR�R[�1 + 2W!R − 16V] − 4 < 0. (B.17)  

Because only the eigenvalue with the biggest absolute value is important for the stability we 

do not need to consider all four subcases II(`R)a, II(`R)b, II(`S)a and II(`S)b. For this reason 

we start with a comparison of the absolute values of the eigenvalues of the four subcases to 

find out whether `R or `S is the more critical eigenvalue. 
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Comparison 1 (II(`R)a with II(`S)a, which means `R > 0 and `S > 0): 

 1 + zR�R�4V − 2W − 1! + z�<zR�R[�1 + 2W!R − 16V] − 4 ⋛ 1 + zR�R�4V − 2W − 1! − z�<zR�R[�1 + 2W!R − 16V] − 4 
(B.18) 

 from which directly follows 

 z�<zR�R[�1 + 2W!R − 16V] − 4 > − �<zR�R[�1 + 2W!R − 16V] − 4 

(B.19)  

 since <zR�R[�1 + 2W!R − 16V] − 4 > 0 because of premise (B.11). Therefore II(`R)a is 

more critical than II(`S)a. 

Comparison 2 (II(`R)b with II(`S)b, which means `R < 0 and `S < 0): 

 −1 − zR�R�4V − 2W − 1! − z�<zR�R[�1 + 2W!R − 16V] − 4 ⋛ −1 − zR�R�4V − 2W − 1! + z�<zR�R[�1 + 2W!R − 16V] − 4 
(B.20)  

 from which follows 

 −z�<zR�R[�1 + 2W!R − 16V] − 4 <  �<zR�R[�1 + 2W!R − 16V] − 4 
(B.21)  

 and therefore II(`S)b is more critical than II(`R)b. 

Comparison 3 (II(`R)b with II(`S)a, which means `R < 0 and `S > 0): 

 This situation of `R < 0 and `S > 0 is not possible for the following reason. If `S > 0 also 1 + zR�R�4V − 2W − 1! must be greater than zero. But if 1 + zR�R�4V − 2W − 1! > 0 the 

eigenvalue `R can never be negative. 

Comparison 4 (II(`R)a with II(`S)b, which means `R > 0 and `S < 0): 

 1 + zR�R�4V − 2W − 1! + z�<zR�R[�1 + 2W!R − 16V] − 4 ⋛ −1 − zR�R�4V − 2W − 1! + z�<zR�R[�1 + 2W!R − 16V] − 4 
(B.22)  

 gives 

 1 + zR�R�4V − 2W − 1! ⋛ 0 (B.23)  

 which means at the moment we are not able to determine whether `R > 0 or `S < 0 is 

more critical. 

Summarizing these comparisons, we can say that II(`S)a is not critical since it is less critical 

than II(`R)a and may not appear in combination with II(`R)b. Plus, case II(`R)b is not critical 

since it is less critical than II(`S)b and may not appear in combination with II(`S)a. Therefore 

cases II(`S)a and II(`R)b do not need to be considered and we continue with the remaining 

two cases. 
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Case II(`R)a: 

In this case inequality (B.12)  becomes 

 1 + zR�R�4V − 2W − 1! + z�<zR�R[�1 + 2W!R − 16V] − 4 ≤ 1 + 4VzR�R 
(B.24)  

and can be simplified to  

 <zR�R[�1 + 2W!R − 16V] − 4 ≤ zπ�2W + 1! (B.25)  

which may be squared since the left-hand side is positive because of premise (B.11) and 

the right-hand side is positive too, leading to 

 −zR�R16V ≤ 4 (B.26)  

which is always true. 

Case II(`S)b: 

The stability criterion for case II(`S) is given in (B.15) and leads for case II(`S)b to the 

stability condition 

 −1 − zR�R�4V − 2W − 1! + z�<zR�R[�1 + 2W!R − 16V] − 4 ≤ 1 + 4VzR�R 
(B.27)  

 which can be simplified to 

 z�<zR�R[�1 + 2W!R − 16V] − 4 ≤ 2 + zR�R�8V − 2W − 1!. (B.28)  

 By introducing the slack variable ; ≥ 0 with ;Ø�� = 2 + zR�R�8V − 2W − 1! −z�<zR�R[�1 + 2W!R − 16V] − 4 this inequality can be transformed to the equation 

 z�<zR�R[�1 + 2W!R − 16V] − 4 + s = 2 + zR�R�8V − 2W − 1!. (B.29)  

 Since premise (B.11) holds and we assume that (B.28) is true we may square Equation 

(B.29) and get 

  −4�R R + �T T − 16V�T T + 4W�T T + 4WR�T T = 4 − 4; + ;R − 4 R�R + 32V R�R − 8W R�R + 2 R�R; −16V R�R; + 4W R�R; +  T�T − 16V T�T + 64VR T�T +4W T�T − 32VW T�T + 4WR T�T 

(B.30)  

 which can be simplified to 

 W�32V R�R + 8 − 4;! 

= 4 − 4; + ;R R�R + 32V + 2; − 16V; + 64VR R�R 
(B.31)  

 and solved for W yielding to 

 W�;! = 2V + 2 − ;4zR�R + ;4 − 2; + 16VzR�R . (B.32)  
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 Using the technique of slack variables for the solution of inequalities requires to discuss in 

our case the possible values of W resulting from (B.32) for all possible values of the slack 

variable ;. For gaining a better understanding the function W�;! is plotted for V = 0.55 and  = 1.43 in Fig. B.1. Starting from ; = 0 we see that there is an upper boundary for W of  

 W�;! ≤ W�; = 0! = 2V + 24zR�R (B.33)  

 which leads for arbitrary big time-steps  → ∞ to the condition 

 W ≤ 2V (B.34)  

 or 

 V ≥ W2 . (B.35)  

 Obviously, there is only one local minimum for ; ≥ 0 and positive W-values. Determining 

this minimum from �W �;⁄ = 0 yields 

 �W�; = − 14zR�R + 4 + 16VzR�R�4 − 2; + 16VzR�R!R = 0 (B.36)  

 with the solutions 

  ;Ø��,?,R = 2 + 8VzR�R ± 2zπ<1 + 4VzR�R (B.37)  

 where the first solution with the plus sign ;Ø��,? = 2 + 8VzR�R + 2zπ<1 + 4VzR�R is 

bigger than the singularity at ; = 8VzR�R + 2 and therefore corresponds to a negative W-

value which is not of interest. The second solution ;Ø��,R = 2 + 8VzR�R − 2zπ<1 + 4VzR�R is really a minimum since  

  �RW�;R = 16 + 64VzR�R�4 − 2; + 16VzR�R!S = 2 + 8VzR�R�2 − ; + 8VzR�R!S (B.38)  

 and consequently 

¿�RW�;R,Pe�$,ò
 = 2 + 8VzR�R

�2 − 2 − 8VzR�R + 2zπ<1 + 4VzR�R + 8VzR�R�S 

= 1 + 4VzR�R
4�zπ<1 + 4VzR�R�S = 14zSπS<1 + 4VzR�R > 0. (B.39)  

 Starting from ; > 0 we can see by increasing ; that W�;! may have all positive values with 

 W�;! ≥ W�;Ø��,R� = 2V + 4VzR�R − zπ<1 + 4VzR�R2zR�R  

+ 1 + 4VzR�R − zπ<1 + 4VzR�R2zπ<1 + 4VzR�R  

= − 12 + <1 + 4VzR�Rzπ  

(B.40)  
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 which means that if condition (B.40) is fulfilled in addition to condition (B.35) also the 

stability condition (B.27) for case II(`S)b is fulfilled. Since stability for arbitrary big time-

steps should be guaranteed  

 W�;! ≥ W�;Ø��,R, zπ → ∞� = − 12 + 2<V (B.41)  

 must hold which can be transformed to the condition 

  V ≤ �2W + 1!R16  (B.42)  

 and is already fulfilled by the premises for case II. For the smallest possible time-step 

according to the premises of case II we get 

W�;! 

 

≥ W ú;Ø��,R, zπ → û 4�1 + 2W!R − 16Vü 

= − 12 + :1 + 16V�1 + 2W!R − 16V: 4�1 + 2W!R − 16V  

= W 

(B.43)  

 which is always fulfilled. Concluding from these considerations we can say that case 

II(`S)b is always stable for the premises of case II plus condition (B.35). 
  
 

  

Fig. B.1    Function W�;! for V = 0.55 and  = ∆> = = 1.43⁄  

Case III:  

The last case we have to consider is the situation of a double eigenvalue `R = `S, which is 

true for  

W�;Ø��,R� 

;Ø��,R 

; = 8V R�R 
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  �<zR�R[�1 + 2W!R − 16V] − 4 = 0. (B.44)  

Since �  is always greater than zero 

 zR�R = 4�1 + 2W!R − 16V (B.45)  

must hold to fulfill (B.44) leading to  

 `R = `S = 1 + zR�R�4V − 2W − 1!1 + 4VzR�R  . (B.46)  

By using (B.45)  in (B.46)  we get 

`R,S = 1 + 4�4V − 2W − 1!�1 + 2W!R − 16V1 + 16V�1 + 2W!R − 16V 

= �1 + 2W!R − 16V + 4�4V − 2W − 1!�1 + 2W!R = 2W − 32W + 1 . 
(B.47) 

Stability is guaranteed for double eigenvalues according to (6.9) if  

 Æ`R,SÆ < 1 (B.48)  

which is always true for Y > [ �⁄ , obviously. A positive and finite value for zR�R requires Z < �[ + �Y!� [\⁄ , which directly follows from Equation (B.45) . Otherwise case C may not 

occur. 

Summarizing all investigations above we can say that we always have complex eigenvalues 

for Z ≥ �[ + �Y!� [\⁄  and unconditional stability is guaranteed for ` ≥ [ �⁄  following from 

case Ia. In case II the premise V < �1 + 2W!R 16⁄  together with V ≥ W 2⁄  fulfills all necessary 

stability conditions as long as zR�R > 4 [�1 + 2W!R − 16V]⁄  and leads to real eigenvalues. If 

the time-step size decreases and zR�R < 4 [�1 + 2W!R − 16V]⁄  is true case Ib (complex 

eigenvalues) becomes active and γ ≥ 1 2⁄  is demanded additionally. For the special case of a 

double real eigenvalue (case III) which means zR�R = 4 [�1 + 2W!R − 16V]⁄  the stricter 

condition γ > 1 2⁄  is necessary. This means, unconditional stability for real eigenvalues can 

only be guaranteed for Y �⁄ ≤ Z < �[ + �Y!� [\⁄  and Y > [ �⁄ . 

C Computation of Eigenvalues for Stability Analysis of Newmark-Euler 

Algorithm 

For W = 1 2⁄ , V = 1 4⁄ , p = 2� =⁄ , ∆>� = ∆>�Ä? = ∆>� and with the abbreviations  

  S = 1 + ∆>R�R=R , (C.49) 

  T = �1 + U!R + 4∆>R�R=R  (C.50) 

we get for (6.26) 



C   Computation of Eigenvalues for Stability Analysis of Newmark-Euler Algorithm         191 

 

 �HBØ� =  1 2 3 @�11 �12 �13�21 �22 �23�31 �32 �33A (C.51) 

with �?? = −�3 + U!�1 + 2U!∆>R�R, 
�?R = 4∆>�R ��1 + 3U! ∆>R�R=R − 2�1 + U!R�, 
�?S = 4�R ��2 + 5U + UR! ∆>R�R=R − �1 + U!R�, 
�R? = ¸∆> + 2U∆>2 ¹ �1 + U − 2∆>R�R=R �, 
�RR = �1 + U!R=R − �5 + 12U + 3UR!∆>R�R, 
�RS = −2∆>�R �3 + 5U + 2UR − 2U∆>R�R=R �, 
�S? = ¸3 + U4 ¹ �1 + 2U!∆>R=R, 
�SR = ∆>[2�1 + U!R=R − �1 + 3U!∆>R�R], �SS = �1 + U!R=R − �2 + 5U + UR!∆>R�R. 

Computing the characteristic polynomial of det�`t − �HBØ�� and setting it equal to zero 

yields  

`S + `R S T 

+ ` SR TR 

�6UR∆>R�R=R + 24U∆>R�R=R + 10∆>R�R=R − 2UR − 4U − 2� 

�1 + 10UT∆>R�R=R + 28US∆>R�R=R + 32UR∆>R�R=R ¿ + 20U∆>R�R=R  

+ 6∆>R�R=R + 9UT∆>T�T=T + 24US∆>T�T=T + 62UR∆>T�T=T  

+ 40U∆>T�T=T + 9∆>T�T=T + 36UR∆>Ì�Ì=Ì + 24U∆>Ì�Ì=Ì  

¿+ 4∆>Ì�Ì=Ì + UT + 4US + 6UR + 4U� = 0. 

(C.52) 

It directly follows `? = 0 and the remaining quadratic equation has the solutions 

 `R,S = �1 + U!R − [5 + 3U�4 + U!] ç∆>�= èR
 S T  

± 2�û− þ�1 + 3U! ∆>S�R=S − 2�1 + U!R ∆>= �R
 S T  . 

(C.53) 

Reversing the substitutions (C.49) and (C.50) finally gives 
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 `R,S = �1 + U!R − [5 + 3U�4 + U!] ç∆>�= èR
¸1 + ∆>R�R=R ¹ þ�1 + U!R + 4∆>R�R=R �  

± 2�û− þ�1 + 3U! ∆>S�R=S − 2�1 + U!R ∆>= �R

¸1 + ∆>R�R=R ¹ þ�1 + U!R + 4∆>R�R=R �  . 
(C.54) 

D Derivation of Stability Conditions for Newmark-Euler Time-Integration 

For the derivation of the stability condition with respect to U two cases have to be considered. 

Since `? = 0 only `R,S is relevant. In case I we assume distinct eigenvalues `R ≠ `S which 

automatically leads to complex eigenvalues. In case II real eigenvalues are considered which 

appear for a zero root expression in Equation (6.27). For both investigations the premise U ≥ 0 is used. 

Case I: 

According to condition (6.8) it is necessary for the stability of the Newmark-Euler time-

integration scheme that |`�| ≤ 1 is fulfilled in case of distinct eigenvalues `R ≠ `S and the 

stability condition reads as 

 

���
���
�

�1 + U!R − [5 + 3U�4 + U!] ç∆>�= èR

¸1 + ∆>R�R=R ¹ þ�1 + U!R + 4∆>R�R=R � �
R ¿ 

+ ¿
¡
¢¢
£2�ûþ�1 + 3U! ∆>S�R=S − 2�1 + U!R ∆>= �R

¸1 + ∆>R�R=R ¹ þ�1 + U!R + 4∆>R�R=R � ¨
©©
ª

R

���
���
�?R

≤ 1. 
(D.55) 

By using the abbreviation  = ∆> =⁄  it may be transformed to 

 [��1 + U!R − [5 + 3U�4 + U!] R�R!R ¿ 
+¿4�R[�1 + 3U! S�R − 2�1 + U!R ]R]?R ≤ �1 +  R�R![�1 + U!R + 4 R�R] (D.56) 

and squared and simplified leading to 

  R�1 + �R R![1 + U − 5US − 2UT + 5�R R − 2U�R R + 4�T T ¿ ¿−US�3 + 7�R R!] ≥ 0 
(D.57) 
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and after further simplification to 

 �1 − U − 2UR + �R R![�1 + U!R + 4�R R] ≥ 0 (D.58) 

where the second term is always positive according to the premises U ≥ 0,  > 0 from which 

follows 

 �1 − U − 2UR + �R R! ≥ 0. (D.59) 

Since this condition has to be fulfilled also for arbitrarily small normalized time-steps sizes  → 0 

 1 − U − 2UR ≥ 0 (D.60) 

must hold which leads for positive U to the stability condition 

 U ≤ 12 . (D.61) 

Case II: 

In case II we assume 

 �1 + 3U! ∆>S�R=S − 2�1 + U!R ∆>= = 0 (D.62) 

leading to the double eigenvalue 

 `R,S = �1 + U!R − [5 + 3U�4 + U!] ç∆>�= èR
¸1 + ∆>R�R=R ¹ þ�1 + U!R + 4∆>R�R=R �  (D.63) 

and the resulting stability condition 

 f�1 + U!R − [5 + 3U�4 + U!] ç∆>�= èR
¸1 + ∆>R�R=R ¹ þ�1 + U!R + 4∆>R�R=R � f < 1 (D.64) 

where we have to distinguish between case IIa with 

 �1 + U!R − [5 + 3U�4 + U!] ¸∆>�= ¹R ≥ 0 (D.65) 

and case IIb with 

 �1 + U!R − [5 + 3U�4 + U!] ¸∆>�= ¹R < 0. (D.66) 

Case IIa: 

The stability criterion for case IIa reads with   = ∆> =⁄  

 �1 + U!R − [5 + 3U�4 + U!]�R R�1 + �R R![�1 + U!R + 4�R R] < 1 (D.67)  

and can be transformed to 
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  R�5 + U�7 + 2U! + 2�R R!�1 + �R R![�1 + U!R + 4�R R] > 0 (D.68)  

which is always true for U ≥ 0. 

Case IIb: 

The stability criterion for case IIb reads with   = ∆> =⁄  

 −�1 + U!R + [5 + 3U�4 + U!]�R R�1 + �R R![�1 + U!R + 4�R R] < 1 (D.69)  

and can be transformed to 

 UR�1 − �R R! + U�2 − 5�R R! + 1 + 2�T T > 0. (D.70)  

Case II only appears if Equation (D.62) is fulfilled, which can be solved for ∆> =⁄ =   

resulting in a positive and negative solution where only the positive solution is of interest 

and reads 

 ∆>= =  = <2�1 + U!R�√1 + 3U  . (D.71)  

Using this in (D.70) yields 

 �U − 1!�1 + U!R�3 + U!�1 + 2U!�1 + 3U!R < 0 (D.72)  

which is only fulfilled for positive U if U − 1 < 0 or 

 U < 1, (D.73)  

respectively. 

Summarizing the investigations of case I and case II we can conclude that ² ≤ g ≤ [ �⁄  

guarantees unconditional stability for the Newmark-Euler time-integration scheme. 

E Derivation of Stability Conditions for Central Difference Method 

To derive a stability condition for the central difference method by using the spectral radius 

and therefore the eigenvalues of the amplification matrix (6.32) three different cases have to 

be considered. 

Case I: 

At first, we assume that the root expression in Equation (6.32) equals zero which means 

 �1 − 2�R ¸∆>= ¹R�R − 1 = 0. (E.74) 

Obviously, this condition is fulfilled for �∆> =⁄ = ±1 or ∆> = 0 where only the case �∆> =⁄ = 1 has practical relevance since the time-step size is always greater than zero. Hence, 

the stability condition (6.9) has to be applied leading to 
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 1 − 2�R ¸∆>= ¹R < 1 (E.75) 

which is always fulfilled for �∆> =⁄ = 1. 

Case II: 

In case II we assume a negative root expression in Equation (6.32)  

 �1 − 2�R ¸∆>= ¹R�R − 1 < 0 (E.76) 

and therefore complex eigenvalues `?,R which are obtained for 0 < �R R < 1 by using again 

the abbreviation  = ∆> =⁄ . The stability condition (6.8) becomes 

 :�1 − 2�R R!R + ç<−�1 − 2�R R!R + 1èR ≤ 1 (E.77) 

and can be simplified to 

 �1 − 2�R R!R − �1 − 2�R R!R + 1 ≤ 1 (E.78) 

which is always true. 

Case III: 

The last possibility we have to consider is a positive root expression in Equation (6.32) which 

holds for 

 �1 − 2�R R!R − 1 > 0 (E.79) 

or 

  �R R > 1, (E.80) 

respectively and leads to real eigenvalues 

 `? = 1 − 2�R R + <�1 − 2�R R!R − 1, (E.81) 

 `R = 1 − 2�R R − <�1 − 2�R R!R − 1. (E.82) 

The first eigenvalue `? is always smaller than zero because of 1 − 2�R R + <�1 − 2�R R!R − 1 ⋚ 0 

(E.83) ç<�1 − 2�R R!R − 1èR
 ⋚ �2�R R − 1!R −1 < 0. 

This means for stability 

 −1 + 2�R R − <�1 − 2�R R!R − 1 ≤ 1 (E.84) 

and consequently 

 2�R R − 2 ≤ <�1 − 2�R R!R − 1 (E.85) 

has to be satisfied. Squaring and simplifying (E.85) yields 
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 4�T T − 8�R R + 4 ≤ −4�R R + 4�T T (E.86) 

and finally 

 4 ≤ 4�R R (E.87) 

which is fulfilled for the premise �R R > 1. 

The second real eigenvalue `R is also always negative since 1 − 2�R R is negative for �R R > 1. By this, the stability condition for `R reads 

 −1 + 2�R R + <�1 − 2�R R!R − 1 ≤ 1 (E.88) 

and may be transformed to 

 <�1 − 2�R R!R − 1 ≤ 2 − 2�R R (E.89) 

which can never be fulfilled for �R R > 1 since the right-hand side is negative and the left 

hand-side positive. 

Summarizing the outcome of these investigations we can conclude that stability is guaranteed 

for complex eigenvalues or a double real eigenvalue which requires �R R ≤ 1 or ∆< ≤ i b⁄ . 

For bigger time-steps one of the resulting real eigenvalues has a magnitude smaller than one 

and the other one a magnitude greater than one where the latter leads to an unstable behavior 

of the integration scheme (see Fig. 6.13). 

F Deflection Function of Thickness-Variable Beam 

Starting with Equation (8.3) we get for the first integration 

J�N! = 122#�	 � � −1S2�>? − >#![1># + N�>? − >#!]R�#
��

# dN + 
?N + 
R 

= 122#�	 � � −1S2�>? − >#![1># + N�>? − >#!]R + 12�>? − >#!>#R��
# dN + 
?N 

+
R 

= 122#�	 � � 1N[21># + N�>? − >#!]2>#R[1># + N�>? − >#!]R��
# dN + 
?N + 
R 

(F.90) 

and for the second one 

J�N! = 122#�	 @ 1 �1R>#R + �1># + N�>? − >#!�R�2�>? − >#!R>#R[1># + N�>? − >#!]A#
� + 
?N + 
R 

= 122#�	 @ 1 �1R>#R + �1># + N�>? − >#!�R�2�>? − >#!R>#R[1># + N�>? − >#!] − 1R�>? − >#!R>#A + 
?N + 
R 

(F.91) 
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= 62#�	 � 1NR>#R[1># + N�>? − >#!]� + 
?N + 
R. 
From the boundary condition J�N = 0! = 0 immediately follows 
R = 0. The second 

boundary condition J�N = 1! = 0 leads to 

 J�N = 1! = 62#�	 � 1R>#R>?� + 
?1 = 0 (F.92) 

and thus 

 
? = − 62#�	 � 1>#R>?� (F.93) 

and finally to the deflection function 

 J�N! = 62#1N�	>#R ¸ N1># + N�>? − >#! − 1>?¹. (F.94) 

The point of maximum deflection is obtained by setting J��N! = �J �N⁄  equal to zero which 

gives 

 J��N! = 62#1[�>? − >#!NR + 21>#N − 1R>#]�	>B>?[1># + �>? − >#!N]R = 0 (F.95) 

and solving it for N resulting in 

 N?,R = 1 ∙ ># ± <>#>?># − >?  . (F.96) 

where only  

 N = 1 ∙ ># − <>#>?># − >?  (F.97) 

fulfills 0 < N < 1. Using this solution in Equation (F.94) yields 

 J �N = 1 ∙ ># − <>#>?># − >? � = JØ�� = − 62#1R
�	>#�>? + <>#>?�R . (F.98) 
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