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ABSTRACT
The present study aims to capture some key hydrody-

namic effects resulting from turbulent flows in wall-bounded
configurations with homogeneous roughness. We formulate
a Darcy-like 1-D model that enables a dimensionally re-
duced dynamical representation of roughness effects for the
wall-normal coordinate in boundary-layer-type flows. Simi-
lar roughness modeling approaches have been pursued in the
past. Here, we rely on a conceptualization of the roughness as
a fractal set of roughness elements. Our goal is to incorporate
the effect of the turbulence in the modeling framework, which
has not been considered in the past for similar reduced order
models. To that extent, a map-based stochastic 1-D turbulence
model is also used in order to numerically simulate the turbu-
lent flows over rough walls. In this way, full-scale resolution of
wall-normal transport processes is achieved without requiring
the explicit representation of the roughness topography. Pre-
liminary results reveal that the model calibration is uniquely
determined for large Reynolds numbers over smooth walls.
We use an ad-hoc parameterization for the roughness-drag to
demonstrate that the smooth wall calibration also holds for
rough walls. To that extent, we show that simulated roughness-
induced drag and wall-normal stress contributions are compa-
rable to available direct numerical simulation (DNS) data.

VOLUME-AVERAGING FRAMEWORK
We consider a representative averaging volume (RAV),

which has the form of a thick plane of surface area LW , where
L is the length in streamwise x direction, and W is the width
in spanwise z direction. This plane has thickness ∆y, which
is a thickness equal to a wall-normal resolution capable of re-
solving all turbulent flow scales, see Figure 1. We consider
that for a given order of accuracy, any flow variable ψ can
be resolved in y direction with resolution ∆y. Following the
volume-averaging theory (VAT) Whitaker (1996), ψ is aver-
aged in the RAV LW ∆y. This leads to the definition of super-
ficial and intrinsic averages, ⟨ψ⟩(y) and ⟨ψ⟩β (y), respectively,
which are related to the porosity ε by ⟨ψ⟩= ε⟨ψ⟩β . Following
Whitaker (1996), a volume-average can be applied to both the
continuity and the Navier-Stokes momentum equation. Taking
the velocity vector components as ui (i = 1,2,3), or conversely
u,v,w, the volume-averaged equation for ui is

ρ
∂ ⟨ui⟩

∂ t
+ρMi =−∂ ⟨p⟩

∂xi
+µ

∂ 2⟨ui⟩
∂x2

j
−µεK−1

T,i j⟨u j⟩ (1)

Here, ρ and µ are the (constant) fluid density and dynamic
viscosity, respectively, and p is the (hydrodynamic) pres-
sure. K−1

T,i j ( j = 1,2,3) is the inverse of the total permeabil-
ity tensor, which involves a higher-order polynomial of ⟨ui⟩.
This comprises all linear contributions to the subgrid-scale
Reynolds stress tensor (SGS-RST), residual pressure gradi-
ents, wall-normal porosity gradients, and fluid-roughness in-
terfacial forces. This parameterization acts as a closure similar
to that addressed by Whitaker (1996). The difference is that
the unsteady term and Mi model all time-dependent and non-
linear SGS-RST contributions. Considering KT,i j = KT,xxδi j,
which is an isotropic tensor in the case of steady and homoge-
neous laminar channel flow, we obtain the viscosity-pressure-
based drag model εD̃2K−1

T,xx = εG+B0. Here, εG+B0 is
a nondimensional parameterization in terms of a local pore
Reynolds number, Rep(y) = ρ⟨u⟩(y)D̃(y)/µ , where D̃ is the
pore diameter for the RAV. In this work, we use a cubic regres-
sion for G from Khalifa et al. (2020), extended with the same
data to include a linear dependence on ε . Notice that the lin-
ear truncation of the cubic fit of Khalifa et al. (2020) results in
the classical Darcy-Forchheimer’s law for porous media. No-
tice further that the RAV is here associated with a disordered
porous medium in which, although a periodic velocity field
is observed, the measured pressure difference along x is char-
acteristic of a time-averaged uniform mean pressure gradient
dp/dx = (px=L,y,z − px=0,y,z)/L, a constant in Eq. (1). In order
to allow nonzero wall-normal motion needed for our chosen
model for Mi (see the section One-Dimensional Turbulence),
we ignore the volume-averaged (1-D) incompressible continu-
ity equation and the associated ∂ ⟨p⟩/∂y. The governing equa-
tions for ⟨ui⟩ can now be written in short-hand form as

ρ
∂ ⟨ui⟩

∂ t
+ρMi =−dp

dx
δi1 +µ

∂ 2⟨ui⟩
∂y2 −µεK−1

T,xx⟨ui ̸=2⟩ (2)

Here, K−1
T,xx is related to the model εG+B0. The drag term is

not applied to ⟨u2⟩ due to our model choice for Mi. We note
that Forooghi et al. (2018) proposed a simpler ad-hoc form
for the roughness drag, without using VAT, which inserts an
additional term in the (non-averaged) Navier-Stokes momen-
tum equation. This is a parametric forcing approach (PFA) for
the roughness drag, which avoids the need of a full DNS with
roughness topology. The additional term in Forooghi et al.
(2018) for the Navier-Stokes momentum equation has the form
−ρCviscous(y)ui −ρCinertial(y) |ui|ui. This parameterization is
used here as an alternative way to generate preliminary results.
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FRACTAL ROUGHNESS REPRESENTATION
The homogeneous roughness topography allows a simple

characterization of ε(y) and D̃(y). Specifically, D̃(y) = Dk(y)
is the expected value of the diameter of roughness spots (each
one associated with a roughness height k) at a given y coor-
dinate. Utilizing fractal geometry, the fractal dimension asso-
ciated with roughness spots can be defined as in Yang et al.
(2014). It is also possible to calculate the total number NT of
roughness elements with associated diameters in the interval
[Dk,min,Dk,max]. The fractal characterization of the roughness
requires to relate the diameter Dk of a discrete roughness el-
ement to its height k so that Dk = γk, where γ is a multiply-
ing factor, see Fig. 1. The cone-shaped roughness elements in
Forooghi et al. (2017) can be used as an example. Following
this, the calculation of the first statistical moment of a proba-
bility density function f (Dk) over [Dk,min,Dk,max] using fractal
theory (similar to the rationale in Yang et al. (2014)) leads to
an expression for D̃(y). This in turn allows the definition of a
porosity profile ε(y). Both D̃(y) and ε(y) can then be used to
determine a local viscosity-pressure-based drag model using
the nondimensional regression εG+B0.

ONE-DIMENSIONAL TURBULENCE
Our goal is to simulate the fully wall-normal resolved,

plane-averaged macro-scale equations. A key issue for the
present case is the representation of the direct kinetic en-
ergy cascade and anisotropic mixing in boundary-layer-type
flows. The one-dimensional turbulence (ODT) model (see
Kerstein (1999)) aims to represent fundamental properties of
wall-bounded turbulence in a highly reduced manner. The
nonlinear advection terms Mi in Eq. (2) symbolize a stochas-
tic process formulated with the aid of spatial mapping events.
For a channel flow with homogeneous roughness as sketched
in Figure 2, only wall-normal gradients are present in the
macro-scale equations. The flow can then be simulated with
full-scale wall-normal resolution. The Lagrangian mapping
used to model turbulent advection maps the 1-D scalar profiles
of ⟨ui⟩ in an intermittent way, parallel to the numerical time
integration in the 1-D domain. This implies that every model-
represented turbulent eddy by a mapping, also has an associ-
ated eddy turnover time. Following this, a stochastic process
can be formulated to sample mappings based on their indi-
vidually calculated rate (flow state). An ensemble averaging
of these mapping events with their associated time integration
(time-averaging) yields wall-normal flow statistics compatible
with the VAT-based roughness representation. As a turbulence
model, ODT naturally relies on the use of model parameters.
These play a role in the sampling process, specifically in the
calculation of the individual eddy turnover time. See Lignell
et al. (2013) for details.

NUMERICAL SIMULATION RESULTS
The preliminary results discussed below show ODT sim-

ulation results for an ad-hoc PFA representation of roughness
based on Forooghi et al. (2018). To that extent, Fig. 5 shows
the form of the forcing coefficients Cviscous(y) and Cinertial(y)
in viscous units for two different types of homogeneous rough-
ness. The coefficients are associated to the effects of viscous
and pressure-based (form) drag, respectively. One ODT sim-
ulation is performed for each type of roughness in a channel
flow at friction Reynolds number Reτ ≈ 500. Fig. 3 shows
the ODT simulation results obtained for the mean velocity
profiles. Channel flow results are obtained utilizing parallel

walls with typical no-slip conditions in the 1-D domain (closed
channel). Open channel flow results utilize the zero gradient
condition for u and w (i = 1,3) and the impermeability condi-
tion v = 0 (i = 2) at the upper domain boundary. The rough-
ness forcing term is adapted in a corresponding way in order
to simulate the closed or the open channel flow. Finally, Fig. 4
shows the stress contributions and turbulence kinetic energy
(TKE) production for a selected case.

CONCLUSION
A stochastic 1-D modeling approach to fractal roughness

has been proposed and fundamentally validated for a paramet-
ric forcing approach (PFA). The reduced order framework is
compatible with volume-averaging theory (VAT). The model
provides means for a detailed analysis of boundary-layer tur-
bulence in response to surface roughness in terms of boundary-
layer structure and stress balance, among others. The approach
circumvents both the need to resolve roughness and flow struc-
tures in 3-D if only bulk properties and 1-D boundary layer
statistics are of interest. The ad-hoc PFA approach is, nonethe-
less, inconvenient, given that the parameterized forcing can be
different in the 1-D model and the 3-D DNS. This is the rea-
son why a more rigorous framework utilizing VAT to fractal
roughness is pursued. The latter should not require additional
parameter coefficients for the roughness drag representation.
To remain compatible with this goal, we will demonstrate that
the one-dimensional model formulation exhibits a uniquely de-
termined and physically justified calibration over smooth and
rough walls (within the PFA approach) for large asymptotic
Reynolds numbers. Furthermore, we will show that the mean
velocity, drag contributions, and wall-normal stresses are rea-
sonably captured well across the roughness region so that the
model enables investigations for an extended parameter space.
Last, we will utilize fractal theory to estimate D̃(y) and ε(y).
The fractal roughness profiles for ε(y) will be compared to
those used in the PFA of Forooghi et al. (2018) for validation.
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Figure 1. RAV and representative roughness element. Figure 2. Flow configuration sketch.

Figure 3. PFA coefficients as in Forooghi et al. (2018). Figure 4. Mean velocity profiles.

Figure 5. Stress contributions and TKE production for homogeneous roughness case with nondimensional mean roughness height
k/H = 0.19 and k+ = 105.3. Viscous units are obtained for the velocity and the y coordinate by dividing by the friction velocity uτ

and the viscous length scale η , respectively. The contributions listed in the legend are, from top to bottom, the total stress, the DNS
Reynolds stress as in Forooghi et al. (2018), the mean velocity gradient, the parameterized drag integral contribution, and the calculated
ODT Reynolds stress. The TKE production is shown with the blue line (right axis). The Fig. also shows the melt-down height position
k+MD and the coordinate of peak production y+

P̂+ , which in this case coincides with the zero-crossing of the drag integral as in Yuan
& Piomelli (2014). The peak production coordinate also coincides here with the maximum roughness height. The viscous scaling
corresponds to channel flow simulations with friction Reynolds number Reτ ≈ 500, which is defined based on the available channel
height 2H, subtracting the melt-down height 2kMD, see also Fig. 2.
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