
Ongoing development of a hybrid reduced order stochastic/LES solver for
turbulent flows

Pavle Marinković 1,2, Juan A. Medina Méndez 1, Heiko Schmidt 1,2, Marten Klein 1.2
1Scientific Computing Lab of the EIZ, 2Chair of Numerical fluid and gas dynamics, BTU Cottbus-Senftenberg

Introduction

Scaling energy systems poses computational challenges, especially in turbulent flow simula-
tions like the atmospheric boundary layer. While Direct Numerical Simulations (DNS) offer
accuracy, they are computationally prohibitive, and Large Eddy Simulations (LES) remain
costly. This drives the need for efficient algorithms like the One-Dimensional Turbulence-based
Large Eddy Simulation (ODTLES), balancing accuracy and efficiency.
Reliable, maintainable, and extensible code is crucial for effective computational tools in

solving complex problems. Rigorous code refactoring enhances turbulent flow modeling capa-
bilities and overall computational simulation efficiency in energy systems and beyond.

Code Refactoring

Software development in computational fields is iterative and prone to change. Our re-
finement of the ODTLES solver involves extensive code refactoring, focusing on reliability,
maintainability, and extensibility. Originally in Fortran, the codebase was rewritten in C++,
with ongoing significant changes and Python supplementation for flexibility and future expan-
sions. This meticulous approach ensures adaptability, enabling rapid modifications. Guided by
core principles—extraction, abstraction, and unit testing—we systematically extract reusable
components, clarify complex functionalities, and rigorously test our codebase for robustness
and scalability.

Figure 1: Code timeline

Extraction

In software development, extraction refers to the process of isolating and extracting specific
functionalities, components, or patterns from existing code, such as classes or methods. This
is done to create more modular, reusable, or maintainable software structures by breaking
down larger entities into smaller, more manageable units. Below you can see an example from
our current work.

Figure 2: Extraction from the setPressurePoissonCoefficients() method

Abstraction

Abstraction in software development reduces code complexity by increasing conceptual com-
plexity. In this refactor, we heightened the conceptual complexity of our momentum equation
representation and boundary condition handling. Initially, we directly manipulated indices (1)
(only diffusion shown for brevity), necessitating numerous conditional statements to identify
boundary indices and execute specific boundary condition operations.

ρ
∂Upq

∂t
∆x∆y =

ν∂U
∂y

∣∣∣∣∣∣
p+1

2,q

− ν
∂U

∂y

∣∣∣∣∣∣
p−1

2,q

∆x +

ν∂U
∂y

∣∣∣∣∣∣
p,q+1

2

− ν
∂U

∂y

∣∣∣∣∣∣
p,nq−1

2

∆x (1)

We have transitioned to a more abstract for of the momentum equation, that is the so called
compact form (2).

aUp Up +
∑
faces

aUnUn = b + SU (2)

With this formulation, we now loop over all faces of a cell implicitly and boundary conditions
are handled by the neighbour coefficients aUn , owner cell coefficient a

U
p and the source term

SU at lower levels. This was possible to achieve by also increasing the conceptual complexity
of our Mesh class that now contains a method for if a face belongs to a boundary.

Unit testing

Unit tests are code snippets designed to validate the behavior of individual components or
units of software, ensuring they meet specified requirements and perform as expected. In our
current work we have put emphasis on writing and maintaining extensible unit tests. Below

you can see a visual representation of a test case for the aforementioned method of the Mesh
class.

Figure 3: Illustration of a test case for the is boundary face() method

ODTLES/XLES

ODTLES is a model with high potential for highly turbulent flows, and from a method-
ological point of view is in between DNS and LES. In ODTLES a set of 1D ODT models us
embedded in a coarse grained 3D LES, where on the ODT scale, the turbulent advection is
modeled as a sequence of stochastic eddy events, while the other terms are fully resolved in
space and time [1].

Figure 4: ODTLES model structure [2]

The ODTLES momentum equation can be written as:

0 =
∂uk,i
∂t

+
1

ρ

∂P

∂Xi

+
∂

∂xk
uk,k · uk,i +

∂

∂Xi
uk,i · uk,i +

∂

∂Xj
uk,j · uk,i + CLES

j→k,i

+ (eddyk,i − ν
∂2

∂x2k
uk,i − Fi)− ν

∂2

∂X2
uk,i + CODT

j→k,i

(3)

where {i, j, k} are positive permutations of {1, 2, 3} with i ̸= k. The turbulent ODT ad-
vancement eddyk,i represents an ODT eddy and CLES

j→k,i and CODT
j→k,i are coupling terms used

for communication between grids [1].

Results and outlook

The current state of the code has successfully produced results that closely align with equiva-
lent OpenFOAM simulations for laminar 3D channel and cavity flows. The ongoing process of
integrating ODT with the newly refactored LES base holds promise for further advancements.
Upon completion of this coupling, it will pave the way for the exploration of new ideas and
the continued development of the model.

Figure 5: Laminar Channel flow results

References

1. C. Glawe, J.A. Medina Méndez, and H. Schmidt. IMEX based multi-scale time advance-
ment in ODTLES. Zeitschrift für Angewandte Mathematik und Mechanik, 98:1907-1923,
2018.

2. Juan A. Medina Méndez, Christoph Glawe, Tommy Starick, Mark S. Schöps, and Heiko
Schmidt. IMEX-ODTLES: A multi-scale and stochastic approach for highly turbulent
flows. Proc. Appl. Math. Mech., 19:e201900433, 2019.


