Simulation of radiatively driven mixing in a smoke cloud using
“one-dimensional turbulence”
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Why 1D? Profile comparison Scaling analysis

In the following, a previous DNS study [2] is benchmarked against the ODT results. The bulk
Reynolds number is chosen to be Rep = 1600, and the initial stratification (i.e. the Richardson

s a 1D turbulence model for boundary layer atmospheric simulations still relevant in our 3D

= Fig. 5 The turbulent buoyancy flux at the inversion falls within the range
world? Yes, because:

= 1D is cheap! Atmospheric-Reynolds-number resolution is not viable across the entire
boundary layer in 3D LES and DNS models in the near future [1].

number) Rip = 57.

= Fig. 2 and Fig. 3 The general features of the buoyancy and smoke mean profiles from the

DNS study [2] are reproduced by ODT.

(w't') = (—0.175 £ 0.05) By from the DNS study [2] for Reg > 800 and Rig > 50.

= Fig. 6 The entrainment velocity approaches the Rio_1 scaling as Reg increases.

= Vertical profiles are what we care about (often). Consistent with the horizontal periodic 0.00 - 0.00 - ” _
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The One-Dimensional Turbulence Model (ODT) was first proposed by Kerstein [3]. .y o6 AN &'+ RV S S 6400 : 155 0
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= ODT is 1D - surprise! Flow variables (velocity components, temperature, tracers etc.) are = P o - | WX N | % . ;ggg
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= ODT resolves molecular diffusion explicitly. Diffusion equations are solved for all (222 22.2 < Rio Reo
transported flow variables. L 19
. ( . ) . 22.0 22.0 Figure 5. The turbulent buoyancy flux at inversion as functions of the Reynolds and Richardson number.
= ODT models turbulent advection. Contrary to LES, the “supergrid-scale” transport is | 13 5
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= ODT is stochastic. The size and location of the eddy events are sampled stochastically Lo
based on the kinetic and potential energy of the current flow state. The probability to 21.67 12107 0.015-
implement in a small time interval d¢t an eddy whose lower edge lies in |z, zg + dzg] and 0 5 10 15 20 0 5 0 15 20 0 5 10 15 20

whose length lies in [, 1 + dl] is given by
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Figure 2. Buoyancy Hovmoller diagrams. The left and middle subplots are from a realisation with the pressure
correction, the middle one being a zoomed-in view near the inversion height, while the right subplot is the same

zoomed-in view from a realisation without the correction.
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Figure 1. Left: A schematic of the ODT set-up. Right: A schematic of an eddy event in a stratified flow state. 14 0.0 0.2 0.4 0.6 0.8 1.0 —2.0 0.0 0.2 0.4 0.6 0.8 10

The governing equations
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Figure 3. Mean profiles. The right subplot is a zoomed-in version of the left one near the inversion height.
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Figure 4. Turbulent flux profiles. The right subplot is a zoomed-in version of the left one near the inversion height.
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