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Introduction

Turbulent convection denotes the chaotic flow driven by buoyancy forces due to an unstable temperature
stratification. The induced flow strongly affects the momentum and heat transfer between the bulk of
fluid and the wall. An understanding of convecting flows is therefore relevant for many applications
ranging from the technological to the geophysical context (e.g. [1] and references therein).

Turbulent convection has been studied numerically in planar and spherical geometries, where direct nu-
merical simulations (DNSs) have reached the Rayleigh number Ra = 2×1012 in 3-D [2] and Ra = 1014

in 2-D [3]. Such simulations are extremely costly and in the case of long-time simulations constrained
to Ra . 1010 [1, 4]. Accurate and efficient modeling strategies are therefore needed if one wishes to
increase the accessible range of Ra within the considerable future. For this objective, we suggest the
map-based, so-called one-dimensional turbulence (ODT), modeling approach [5, 6]. We have extended
the ODT formulation and present key results for planar and spherical convection cells.

Configuration

Rayleigh–Bénard (RB) setups considered in this study are shown in Fig. 1. The planar one is given by a
fluid-filled cylinder with a heated bottom and cooled top with constant gravity g pointing downwards.
For geophysical applications it can be crucial to take the spherical confinement geometry into account.
Gravity g(r) is directed in radial direction and its strength may vary with distance r from the center.
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Figure 1: Schematic showing a planar (a) and spherical (b) Rayleigh–Bénard setup.

A convective flow in a given geometry is characterized by the Rayleigh and the Prandtl number,

Ra =
g0 β ∆T L3

νκ
and Pr =

ν

κ
,

where g0 is the reference gravity, ∆T = Thw − Tcw is the imposed temperature difference, L is the
distance between the walls, β is the thermal expansion coefficient of the fluid, ν its kinematic viscosity,
and κ its thermal diffusivity. Practically relevant values of Ra encompass several orders of magnitude,
106 . Ra . 1027, whereas Pr ' 1 for many working fluids [1]. Note that we only consider the linearized
equation of state, ρ(T ) = ρ0

[
1− β (T − T0)

]
, where ρ is the density and T is the temperature.

ODT in a Nutshell

ODT is a stochastic turbulence model that resolves all scales of a turbulent flow, but reduces its di-
mensionality [5]. The computational domain is the ODT line (Fig. 1), which is a representative line of
the turbulent flow. Property profiles (e.g. of the temperature and velocity) are evolved on this line by
molecular diffusion. This deterministic part is interrupted by stochastic mapping events, so-called eddy
events, which mimic the effect of turbulent advection as shown in Figs. 2 and 3.

An eddy event is characterized by three random variables: eddy size, position, and time of occurrence.
The triplet map (TM) induces fluid displacement in the eddy-size interval centered at a given position
which results in a local steepening of property gradients [5]. In spherical geometry, the mapping is radial
so that the mapping has to compensate the volumetric stretching factor r 2 to maintain conservation
properties. Here, the TMB has been used for this purpose [7].
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Figure 2: Schematic of an eddy turnover (a) and its 1-D representation due to the triplet map (b).

The random variables are sampled from guessed distributions so that the physical soundness of a can-
didate eddy event has to be tested with the momentary flow state [5]. The eddy timescale τ plays a
central role in this respect and is given by [6, 7, 8]

1

τ
=

√
2

ρ0V l2

(
∆Ekin + ∆Epot − Z Evp

)
so that Pa = C

∆ts

τ
,

where ∆Ekin and ∆Epot denotes the map-induced change of the kinetic and the potential energy, re-

spectively, Evp is the viscous penalty, V is the eddy volume (V = l3 in planar geometry), Pa is the
acceptance probability, and ∆ts is a time scale related to the sampling.

Numerical simulations have been performed with a fully-adaptive Langrangian finite-volume imple-
mentation of ODT [7, 9]. Representative ODT solutions are shown together with the corresponding
sequence of eddy events in Fig. 3.
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Figure 3: Space-time diagrams of ODT temperature solutions for planar (a) and spherical (b) geometry. Black lines mark
implemented eddy events and tf =

√
L/(g β ∆T ) is the free-fall time.

Temperature and Velocity Profiles in Planar Geometry

The eddy-rate parameter C and the viscous-penalty parameter Z need to be determined with the aid of
reference data for a given flow configuration. We optimized C and Z for planar RB cells by matching the
mean wall-temperature gradient and the logarithmic region of the thermal boundary layer to reference
data at 2 × 1010 ≤ Ra ≤ 3 × 1010 and Pr = 0.7 [2, 4]. This resulted in the optimal values C = 60
and Z = 220, which ‘put’ the ODT line on the axis of a cylindrical RB cell (Fig. 4). Other selections of
model parameters are possible provided that C (Z ) ≈ 4

√
Z [8]. A correlation between C and Z is also

discussed in [6]. The local minimum in the fluctuations obtained with ODT is a known artifact [9].
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Figure 4: Profiles of the temperature T and the velocity u1 normalized with the free-fall velocity Uf =
√

g β ∆T L are shown
in linear scaling (a). Profiles of the normalized mean temperature Θ =

(
T̄ − Tm

)
/∆T with Tm =

(
Thw + Tcw

)
/2 (b, top)

and of the standard deviation σ =
√

T 2 − T̄ 2 (b, bottom) are shown in semi-logarithmic scaling.

Temperature Profiles in Spherical Geometry

The radius ratio η = ri/ro is a geometry parameter and appears automatically in the spherical ODT
formulation [7], but inclusion of position-dependent gravity demands a model extension [8]. This is a
modification of the planar formulation for uniform gravity [6].

In Fig. 5 the mean temperature profile of a slightly under-resolved DNS is compared with the corre-
sponding ODT solution for which very good agreement has been obtained with the reference. To assess
this further, the thermal boundary layer thickness δT ,i at the inner sphere and δT ,o at the outer one have
been computed with the slope method. The asymmetry factor δT ,o/δT ,i is expected to be independent
of Ra for Pr = 1, but it will still depend on the ratio g(ri)/g(ro) and η [10]. This is captured by ODT
for η ≥ 0.25 and all g(r) investigated, but the asymmetry factor is systematically overestimated.

(a) (b)

Figure 5: Radial profile of the mean temperature T̄ (a). Asymmetry between the thermal boundary layer thickness at the
outer and inner sphere in terms of the ratio δT ,o/δT ,i for various Ra, η, and g(r) (b).

Conclusions

•ODT formulation for spherical geometries and treatment of position-dependent gravity are validated.

•ODT is robust: One set of parameters gives reasonable results for Ra variation across 5 decades.

• Ra has to be large enough (Ra > 108) to make the assumption of structureless turbulence reasonable.

• The new eddy energetics can be useful for an application of ODT to Taylor–Couette flow (the flow
between differentially rotating cylinders).

Forthcoming Research

•ODT simulations of the heat transfer up to Ra ' 1017 (ultimate regime)

• Prandtl number variations
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