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Introduction

• Heat transport in a layer of fluid heated from below (Rayleigh–Bénard system) is mathematically
similar to angular momentum transport in a layer of fluid between rotating cylinders (Taylor–
Couette system) (se e.g. [1]).

• Internal sources can destabilize the flow due to radiative heating [2, 3], internal wave breaking [4],
or intermittently unstable boundary layers [5].

• In turbulent thermal convection a chaotic flow is driven by buoyancy forces due to an unsta-
ble temperature stratification. This type of flow is considered here and encountered in numerous
applications that range from technical to atmospheric and astrophysical scales (see e.g. [6]).

Main objectives

• Investigation of scaling regimes of the heat transfer in radiatively driven thermal convection.

• Modeling using a numerical tool applicable throughout the relevant parameter space.

• Capture wall-normal (vertical) transport on all relevant scales of the flow by utilizing the
one-dimensional turbulence model [7].

Model formulation

The ODT model aims to resolve all relevant scales of a turbulent flow along a notional line-of-sight
(‘ODT line’). Flow variables are resolved along this line on a dynamically adaptive grid [8]. Instanta-
neous flow profiles are evolved by deterministic diffusion along the ODT domain, and a stochastic
process that models the effects of turbulent advection, pressure fluctuations, and buoyancy forces that
are aligned with the ODT domain (z coordinate) [7, 9, 10].

• ODT governing equations for the Cartesian velocity components ui and the temperature T are
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where ν is the kinematic viscosity, ρ0 the reference mass density, cp the specific heat capacity at
constant pressure, κ the thermal diffusivity, and Qtot the heat sources and sinks.

• Stochastic terms Ei and ET represent the effects of discrete turbulent eddy events in which the
triplet map models the turnover of a notional turbulent eddy (Fig. 1).

• The turbulent eddy rate τ−1(λ, z0; t) of a size-λ eddy event at location z0 at time t depends on the
total available eddy specific energy for the momentary flow state. The eddy rate reads [9, 10]
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2λ−2
(

Ekin − Epot − Z Evp
)

,

where Ekin and Epot denote the eddy specific kinetic and potential energy, respectively, and Evp is a
viscous penalty energy to suppress eddy events below a viscous length scale [7].

• Fixed ODT model parameters C = 60, Z = 220, and α = 2/3 are used here. Definitions are
identical to [10] but the calibration was performed for Rayleigh–Bénard convection with Pr . 1 [11].
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Figure 1: (a) Schematic of an eddy turnover. (b) Triplet map for an eddy event that covers the interval 0.33 6 z/H 6 0.67.

Flow configuration and model application

• Layer of fluid of height H for which wall-normal transport is resolved by a vertical ODT line (Fig. 2)

• Uniform constant gravity g = −g ez

• Oberbeck–Boussinesq fluid: linear equation of state, ρ(T ) = ρ0
[
1 − β (T − T0)

]
, where β is

the thermal expansion coefficient, and subscript 0 denotes reference values

• Smooth adiabatic no-slip wall at bottom z = 0 and top z = H

• Heat sources/sinks: Qtot = Q(z) − 〈Q〉z , where Q(z) = (P/`) exp(−z/`) is the local heating
rate, −〈Q〉z the spatial mean cooling rate, ` a prescribed length scale, and P the power influx [2, 3].

• The flow is characterized by the Prandtl, Rayleigh, and Nusselt number,

Pr =
ν

κ
, Ra =

g β 〈∆T 〉H3

νκ
, Nu =

PH

ρ0 cp κ 〈∆T 〉
,

where ∆T = T |z=0−T |z=H/2 is a convenient definition of a wall-bulk temperature difference
with temporal average 〈∆T 〉 [2, 3].

• The flux-based Rayleigh number Ra0 = Ra Nu of the forcing is independent of 〈∆T 〉.
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Figure 2: (a) Sketch of the set-up. The fluid is heated by the profile Q(z) with total power influx P analogous to [2].
(b) Vertical profiles of the instantaneous and mean temperature, T and 〈T 〉, respectively. (c) Vertical profiles of the in-
stantaneous and (vanishing) mean horizontal velocity component, u and 〈u〉, respectively. Control parameters are Pr = 1,
Ra0 = Ra Nu = 1010, and `/H = 0.096. Reference scales are given by the flux temperature difference ∆T0 = PH/(ρ0cpκ),
the flux free-fall velocity Uf,0 =

√
g β ∆T0 H and time tf,0 = H/Uf,0.

Turbulent scaling regimes of the heat transfer

Grossmann & Lohse [12] showed that effective scalings of the heat transfer result from bulk and
boundary-layer contributions. In the current configuration the normalized absorption length
`/H is prescribed and acts a control parameter for the thermal boundary layer.

• Fig. 3(a) shows multiple scalings of the heat transfer in terms of

Nu ∼ Ra p (`/H)q for fixed Pr = 1.

Reference experimental results [2] (open symbols) are shown together with ODT simulation results
(filled symbols) that exhibit good qualitative and quantitative agreement. Dashed and solid
black lines give the classical p = 1/3 [13] and ‘ultimate’ p = 0.55 [2] scaling, respectively.

• Fig. 3(b) shows the ODT extrapolation for rescaled data Nu/NuX vs. Ra/RaX, where the
subscript ‘X’ indicates a notional transition point. Following [3], we solve for the intersection of the
classical [13] (p = 1/3, q = 0) and ‘ultimate’ [2] (p ≈ 0.55, q = 1) scaling which yields

NuX ∼ Ra
1/3
X ∼ (`/H) Ra0.55

X .

This transformation collapses the ODT and reference data equally well.
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Figure 3: Scaling regimes of the heat transfer in radiatively driven turbulent thermal convection at Pr = 1. (a) Nu vs.
Ra for `/H = 10−4 (classical) and `/H = 0.05 (‘ultimate’) showing ODT (filled) and experiments [2] (open symbols).
(b) Rescaled Nu/NuX vs. Ra/RaX for ODT covering 10−5 6 `/H 6 0.4 (blue-to-red symbols). Experiments (black
symbols) are from [2, 3].

Joint probability density of turbulent eddy size and location

ODT yields turbulence statistics as simulation result. Conditional eddy event statistics yield surrogate
turbulence spectra by a built-in wavelet transformation due to the triplet-map (Fig. 1) formulation.

• Fig. 4(a) shows the joint probability density function (jPDF) of the log-scaled ODT eddy size λ
and location z0 over the bottom wall for the classical regime with `/H = 3× 10−5, Ra0 = 1013,
Pr = 1. The broad peak at the bottom right is bulk turbulence. The narrow band on the lower
left is small-scale wall-attached turbulence.

• Fig. 4(b) shows the corresponding jPDF for the ‘ultimate’ regime (`/H = 0.096) in which only
bulk but no wall-attached turbulence can be discerned.
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Figure 4: Joint probability density function (jPDF) of ODT eddy size λ and location z0 for Ra0 = Ra Nu = 1013 and
Pr = 1. (a) Classical regime for `/H = 3× 10−5. (b) ‘Ultimate’ regime for `/H = 0.096 lacks small wall-attached eddies.

Conclusions

• ODT reproduces and extrapolates reference experiments [2, 3] with fixed model parameters.

• ODT predicts a turbulent transition from the classical (p ≈ 0.33) to the ‘ultimate’ regime with
scaling exponent p ≈ 0.55 consistent with reference measurements [2, 3].

• ODT results suggest less small-scale wall-attached eddies after transition to the ‘ultimate’
regime. This is consistent with the transition in thermal convection between permeable walls [14].

Forthcoming research

• Radial transport [15] and radial buoyancy in cylinders or spheres [16]

• Model application to Taylor–Couette flow with extension to angular momentum transport
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