Predicting volatile wind energy
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Motivation

Forecasting power output from wind farms is a standing challenge due to complex dynamical processes
in the turbulent Atmospheric Boundary Layer (ABL) that manifest themselves by a a notable spatio-
temporal variability of the wind. Predictions for single turbines considering ABL processes are generally
not possible. Here, we show a way to achieve such predictions based on an economical stochastic forward
model that autonomously evolves vertical profiles of the wind velocity and temperature.

Main objectives

e Short-term prediction of site-specific wind speed fluctuations governing volatility of wind energy
e Physics-based stochastic forward modeling

e Clustering analysis of turbulence events and time series for various flow conditions

Reduced order stochastic forward modeling

Fig. 1 shows the setup for application of the model, and the model rationale for the representation of turbulent
transport by velocity fluctuations (turbulent advective transport). Vertical profiles of momentary wind velocity
and temperature profiles are evolved in time for any given site (location) and initial condition by the stochastic
One-Dimensional Turbulence (ODT) model [1] . ODT is a reduced order model which aims to represent
the effects of 3-D turbulence along a 1-D physical coordinate (a vertical line of sight pointing in vertical z
direction). This is achieved by spatial mappings that punctuate deterministic diffusive advancement processes
and wind veering effects due to Coriolis forces in the stratified Atmospheric Boundary Layer (ABL) [2, 3].
The model reduction strategy implies major cost reduction making parametric studies [3, 4, 5] and real-time
predictions feasible. The model representation of overturning turbulent motions (eddies) consists of turbulent
baker’s maps [0, 7], enabling accurate and economic representation of wind fluctuations across wind turbines.
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Figure 1: (a) Sketch of the idealized ABL and the orientation of the reduced order flow domain (ODT line). H is the height of
the ODT line, D = /2v/f the Ekman boundary layer length scale, f = 2(2 is the Coriolis parameter and (2 the angular velocity of
a co-rotating frame of reference. G is the geostrophically balanced free stream velocity that acts as momentum reservoir. Tj is the
temperature of the cooled smooth surface and Tg > Ty the bulk temperature. (b) Model representation of a turbulent eddy. The
effect of stretching and folding of vortex lines is represented in ODT by triplet map f(z) applications. Figures are reproduced from [3].

Labeled data from event-based decomposition

The dynamical complexity of ODT together with the emergence of multiple time and length scales in the ABL
yield large amounts of data that contain flow-physical information. Fig. 2(a) shows the evolution of an
idealized daytime (Fr = 1000) and nighttime (Fr = 10) ABL in terms of different flow variables together with
the sequence of stochastically sampled eddy events (blue bars in bottom panel) as labeled model
output. Fig. 2(b) shows the size, position and dissipation associated to model implemented mappings. Latter
Is convenient since readily available in the reduced order model, but could be obtained also from measurements
or high-fidelity numerical simulations by reduction through filtering or machine learning algorithms (like modal
decompositions based on empirical orthogonal functions [8], among other approaches).
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Figure 2: (a) Space-time diagram of two stochastic ODT simulations of an idealized daytime (Fr = 1000, weakly stable) and nighttime
(very stable, Fr = 10) atmospheric boundary layer (Re = 500). Note that Fr = G*/(g D 3 AT), where 3 = T is the coefficient for
linearized thermal expansion of air as an ideal gas at reference temperature T, (Oberbeck—Boussinesq limit for buoyant flow). Figure
reproduced from [3]. (b) Scatter plot showing the size, position, and kinetic energy dissipation of stochastically sampled triplet maps
for the daytime ABL (colors encode the kernel density of implemented mappings).

Data analysis using machine learning algorithms

Machine Learning (ML) algorithms are versatile but require appropriate data. ODT eddy events are a con-
venient choice since they represent physically labeled data (size, location and time of occurrence, available
energy, among other eddy properties). Fig. 3 and Fig. 4 show the segregated ODT eddy event sequence due
to time—midpoint clustering of mappings using DBSCAN [9] and OPTICS [10], respectively. The inertial
period 27 /f and the corresponding laminar Ekman boundary layer thickness D are only used to scale the axes,
but are not used for clustering in order to retain most weight on temporal proximity. Each eddy event was shifted
by half of its eddy turnover time to remove the forward-in-time bias for ODT eddy event data when utilizing a
simple Euclidean norm. Successful application of the clustering algorithms also mandated careful normalization
time and location, here by scaling with reference length D and reference velocity G.
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Figure 3: DBSCAN clustering algorithm applied to physically labeled ODT eddy events selecting different values of the (dimensionless)
e-ball radius. Different values of € result in different clusters that separate eddy events by a mixing length criterion.
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Figure 4: OPTICS clustering algorithm with automatic adjustment of the e-ball radius applied to physically labeled ODT eddy events.
Distinctive causal clusters have been identified, visualized by varying the marker and color combination.

Multiscale features of turbulent fluctuations and intermittency

Fig. 5(a) shows a number of clusters, each with a different color, providing a ‘bare-bone’ perspective on
cascading effects and intermittency (qualitatively) in a temporally developing ODT solution.

Model output can also be analyzed by means of conventional statistics. A time-dependent streamwise velocity
signal located at z/D = 10 above the surface for the well-mixed near-neutral daytime simulation case (Fr = 1000,
Re = 500). In practice, this provides the stochastically modeled time-series of the fluctuating wind
speed at hub height. Last, Fig. 5(b) shows the results of a seasonal-trend decomposition procedure on
the time-dependent model-generated streamwise velocity signal. The seasonal decomposition utilizes the inertial
period (27/f) as an input. It is noted how larger frequencies and more intricate seasonal components are present
due to a rare but intense, highly dissipative mixing event that involves an eddy cascade across scales and is
representative of intermittency effects.
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Figure 5: (a) Zoom of an OPTICS-based cluster based on eddy time of occurrence and eddy midpoint location. Each color marks
a different out of a couple consecutive clusters. Vertical lines denote the eddy event size. The center of the vertical lines is the eddy
midpoint position (b) Seasonal-trend decomposition for a model generated time-dependent streamwise velocity signal at z/D = 10
above the surface.

Conclusions

e Volatility is a crucial aspect of next generation energy systems, in particular, due to wind fluctuations.

e Multiscale modeling strategies with predictive capabilities are needed in order to proceed towards real-
time analysis and short-term forecasting of wind farm power output.

e [ he combination of stochastic and machine-learning-based modeling approaches addresses predictabil-
ity and efficiency aspects.

Forthcoming research

e Realistic turbulence intensities (high Reynolds number flow)
e Coupling of ODT with blade and turbine models
e Incorporation of measured data and automated restart

e Stochastic deconvolution for detailed short-term power output forecasting
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