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ABSTRACT
The joint modeling of flow hydrodynamics and

electrokinetics is a relatively unexplored area of tur-
bulent flow research. We address a lack of available
models for electrohydrodynamic (EHD) turbulent
flow utilizing a lower-order approach, the stochastic
One-Dimensional Turbulence (ODT) model. ODT
is constructed on the principles of the direct energy
cascade of Navier–Stokes turbulence, with key em-
phasis on the accurate resolution of the small mo-
lecular transport scales within a notional line-of-
sight. We investigate two canonical flow configur-
ations to demonstrate the applicability of the model
in the simulation of EHD flows. First, we investig-
ate EHD effects in zero-pressure-gradient turbulent
boundary layers by two-way coupled model applic-
ation to plane Couette flow of a dilute electrolyte.
Second, we apply the one-way coupled model to
EHD-enhanced gas flow through a vertical pipe with
an inner concentric electrode, where electric fields
are generated by means of a corona discharge and
the corresponding effect of a continuum ionic charge
density field.

Keywords: EHD turbulence, multiphysical
boundary layers, one-dimensional turbulence,
stochastic modeling, turbulent drag

1. INTRODUCTION
Electrohydrodynamic (EHD) flows are en-

countered in various technical applications. As an
overview of research-led EHD applications we cite
examples of electrostatic precipitation [1], EHD-
enhancement of heat and mass transfer [2, 3], tur-
bulent drag [4], hydrogen production in water elec-
trolysis [5], plasma-assisted combustion [6], among
others. For numerical simulations of such devices, it
is crucial to accurately and economically model en-
tangled hydrodynamic and electrokinetic processes.
One of the key issues to resolve for accurate mod-
eling of EHD flows is the correct representation of
nonlocal and nonlinear interactions between the fluid

flow, charge-carrier distributions, and electric fields.
These interactions may cause a departure of the tur-
bulence dynamics, e.g., from K41 [7] to electrokin-
etic turbulence [8]. Indeed, on some EHD regimes,
turbulence may appear even at very low Reynolds
numbers, e.g., when the electric body forces sub-
stitute the role of external inertial forces, and the
former are in a large ratio with respect to the viscous
forces [9]. Direct Numerical Simulations (DNSs)
should be the method of preferred choice for un-
raveling the physics presents in EHD flows. How-
ever, DNSs are, even to this day, limited in terms of
their heavy computational overload, i.e., limited to
moderate Reynolds numbers [10]. Needless to say,
diffusive sub-filter-scale parameterizations used in
Reynolds-averaged Navier–Stokes (RANS) or large-
eddy simulations (LES), specifically in the pres-
ence of walls, are of limited applicability in EHD
flows. Alternative to filter-based turbulence models,
we address issues in turbulent EHD flows with a di-
mensionally reduced stochastic modeling approach,
One-Dimensional Turbulence (ODT) [11], due to its
ability to faithfully represent fluctuating simultan-
eous scalar and momentum transport in the vicin-
ity of a wall [12]. ODT aims to resolve all relev-
ant scales of the flow but only for a notional line-of-
sight. A stochastic process is used to mimic the ef-
fects of turbulent stirring motions, whereas determin-
istic molecular diffusion, electric drift currents, Cou-
lomb forces, and boundary conditions, are directly
resolved.

The rest of this paper is organized as follows.
Section 2 gives an overview of the ODT model for-
mulations for multiphysical wall-bounded flows with
an extension to EHD flows. Section 3 collects key
results partitioned into two-way coupled EHD Cou-
ette flow of dilute electrolytes and one-way coupled
EHD-enhanced vertical pipe flow with an inner con-
centric electrode. Last, in Section 4, we summarize
the two case studies.



2. FLOW MODEL FORMULATION

2.1. Overview of the ODT model

In decaying isotropic turbulence seen on a
line-of-sight through the turbulent flow (the ODT
line), piecewise-transformations on scalar profiles, or
triplet maps, induce an increase in the rate of strain,
which is characteristic of turbulent eddies. Symbol-
ically, the effect of the triplet map f (y) on an instant-
aneous profile of the property field ψ(y) is denoted
as the transformation ψ(y)→ ψ( f (y)) (in a y-oriented
wall-normal domain of a Cartesian coordinate sys-
tem) [11]. The triplet map microscopically models
turbulence phenomenology. It takes a property pro-
file along a selected size l interval, compresses the
profile to l/3, pastes two copies of this profile to fill
again, and flips the central copy to ensure continuity.

Such mapping events are stochastically sampled
from unknown distribution functions with the aid of a
Poisson process (e.g. [13]). Based on assumed distri-
bution functions for the mapping event size l and loc-
ation y0, an efficient thinning-and-rejection method is
used for probabilistic selection, in which the rate of
implementation of the mappings is calculated in ac-
cordance with the local turbulence time-scale (eddy
turnover time τ). The latter is obtained from the
available energy of the current flow state. Under ab-
sence of body forces, the available energy follows
from the velocity shear across a size-l interval around
location y0 [11] since the eddy kinetic energy, l2/τ2,
is proportional to the squared eddy velocity, u2

K . This
scale velocity is modified when eddy-available po-
tential energy and viscous effects are taken into ac-
count as detailed below. A factor of proportionality
that controls the rate of implemented mapping events
is included in the model as a rate parameter, C. The
kinetic energy and the rate-of-strain are related by
means of an equivalent turbulent diffusivity. The im-
plementation of a given map at fixed turbulent diffus-
ivity then favors the sampling of further mappings.
This is the model representation of the turbulent kin-
etic energy cascade [11].

The set of operations comprising the sampling
process and the mappings themselves is known as an
eddy event. For decaying isotropic turbulence, there
are still two other elements required in the model to
complete a consistent dynamic picture of turbulence.
One is a mechanism for viscous transport implement-
ation, and the other one is a mechanism for turbu-
lence kinetic energy (TKE) dissipation. Both are a
consequence of the viscous momentum flux, which
is implemented in a direct way in ODT, by resolv-
ing the corresponding numerical fluxes in the 1-D
domain after an eddy event has been sampled [11].
This leads to the formulation of a symbolic 1-D par-
tial differential equation (PDE) for a scalar velocity
component ψ in ODT. Specialized to Cartesian co-
ordinates, this is

∂ψ

∂t
= M −

∂F(ψ)
∂y

. (1)

Here, F(ψ) is the model-resolved flux of ψ, e.g.,
F(ψ) = −σ (∂ψ/∂y) for molecular diffusive gradi-
ent fluxes in which σ is a kinematic diffusion coeffi-
cient. M = M(C, y, f (y)) represents discrete mapping
effects that punctuate deterministic evolution of the
conserved scalar ψ(y, t) at discrete times. The map-
ping effects depend on the selected physical mapping
f (y), which models turbulent microstructure, and a
turbulent eddy rate parameter C.

2.2. Model formulation for temporally de-
veloping planar wall-bounded flow

The presence of walls introduces a wall-normal-
position dependence on the turbulent scalar transport.
Close to the wall, viscous transport is dominantly
one-dimensional, aligned with the wall-normal dir-
ection. Away from the wall, viscous transport may
have a more inherent 3-D character, although the tur-
bulent transport may dominate instead. The trans-
ition between the near-wall and away-from-the-wall
behavior is controlled in ODT in practical terms by
the model parameter Z. The latter defines a viscous
penalty by setting a lower limit below which eddy
implementation is suppressed [14]. This imposes the
dominance of the viscous transport.

Another important dynamical feature in wall-
bounded flows is the anisotropy of the velocity stat-
istics. In this context, the role of the turbulent
pressure transport is the redistribution of the TKE
among the Reynolds stress components [15]. In
ODT, this pressure-scrambling effect is modeled with
the aid of a kernel function K(y) = y − f (y) [14].
Eddy events are modified to implement mappings, as
well as the kernel effects for velocity components,
such that ψ(y)→ ψ( f (y)) for a conserved scalar, and
ui(y)→ ui( f (y)) + ci(α)K(y) for the Cartesian velo-
city components ui, i = 1, 2, 3. As detailed in [14], ci
is a kernel coefficient calculated based on the avail-
able energy and a model parameter α ∈ [0, 1] that
controls the efficiency of inter-component kinetic en-
ergy redistribution, such that

ci =
1∫ y0+l

y0
ρK2 dy

[
ui,K + sgn

(
ui,K

)
×

√
(1 − α) u2

i,K +
α

2

(
u2

j,K + u2
k,K

)]
.

(2)

Here, ui,K =
∫ y0+l

y0
ρui( f (y))K(y) dy, where ρ is the

uniform density, and (i, j, k) permutations of (1, 2, 3).
The expression for τ, or in this case τ−2, consid-

ering ui,K as the available kinetic energy for redistri-
bution, as well as the viscous penalty factor, is based
on [14],

τ−2 =
2K0∫ y0+l

y0
ρK2(y) dy

×

[ K0
∑

i u2
i,K

2
∫ y0+l

y0
ρK2(y) dy

−
Z
2

µ2
eddy

ρeddyl2

∫ y0+l

y0

dy
]
.

(3)



Here, K0 =

(
l2

∫ y0+l
y0

dy
)−1 ∫ y0+l

y0
K2(y) dy, which con-

verges to 4/27 in the continuum kernel limit. Addi-
tionally, µeddy and ρeddy are weighted averages of the
dynamic viscosity and the density within the eddy
range [y0, y0 + l]. The density and dynamic viscosity
of the fluid are assumed as constants, and of uniform
value.

Eddy events are sampled in time on the basis
of an acceptance probability pa, following a Poisson
process. pa is calculated as in [11], considering the
rate parameter, as

pa = C
∆ts

τ

1
l2χ(l, y0)

< 1. (4)

Here, ∆ts is a sampling time interval which needs
to be able to resolve any possible τ, such that, in
general, ∆ts < τ (adapted dynamically, see [14]).
χ(l, y0) is a presumed joint probability density func-
tion (JPDF) of eddy event sizes and locations to ob-
tain candidate events. Oversampling and rejection
guarantees that ODT simulation results are insens-
itive to the exact choice of this JPDF.

After an eddy event is implemented, the de-
terministic evolution is comparable to that in
Eq. (1). With the model resolved viscous flux
Fi(ui) = −ν (∂ui/∂y), mapping (Mi) and kernel, as
well as momentum sources for the selected compon-
ent i, we obtain

∂ui

∂t
= Mi + Ki + S i + ν

∂2ui

∂y2 . (5)

This expression incorporates now symbolically the
effects of the kernel, and of the energy redistribution
among velocity components, by means of the term
Ki(C,Z, α, u, f (y)). S i is a source term for the i-th
velocity component to be integrated together with the
viscous flux, e.g., a fixed pressure gradient (FPG).

2.3. Extension to spatially developing flow
with variable density effects

The model formulation presented in Section 2.2
considers the temporal change of scalar profiles
along a line-of-sight through the turbulent flow, and
is generally referenced as T-ODT. An extension of
the model to capture streamwise fluxes of spatially
evolving flows (e.g., boundary-layer-type flows) has
been presented in [11, 16] and is denoted by S-
ODT. More importantly, [16] also present a variable-
density formulation for low Mach number flows. In
both variable-density T-ODT and S-ODT, a second
kernel function J(y) = |K(y)| is introduced in order to
facilitate enforcement of physical conservation prop-
erties.

For variable-density flow, the various integral
expressions above receive the mapped mass dens-
ity such that ρ → ρ

(
f (y)

)
. In variable dens-

ity T-ODT, the calculation of the available kin-
etic energy ui,K changes accordingly. The fractions
ui,K

/ ∫ y0+l
y0

ρK2(y) dy and u2
i,K

/(
2
∫ y0+l

y0
ρK2(y) dy

)
in

Eqs. (2) and (3), change to Pi/(2S ) or P2
i /(4S ), re-

spectively, where, as in [16],

Pi = ui,K − H
∫ y0+l

y0

[ρui]
(
f (y)

)
J(y) dy, (6)

S =
H2 + 1

2

∫ y0+l

y0

ρ
(
f (y)

)
K2(y) dy

− H
∫ y0+l

y0

ρ
(
f (y)

)
J(y) K(y) dy,

(7)

H =

∫ y0+l
y0

ρ
(
f (y)

)
K(y) dy∫ y0+l

y0
ρ
(
f (y)

)
J(y) dy

. (8)

In the S-ODT model, the streamwise change of
the scalar profiles in the line-of-sight through turbu-
lence is studied. Two variants arise in this case. One
is the conservative boundary-layer formulation [16],
and another the non-conservative wall-constrained
internal-flow formulation [17]. Essentially, in S-
ODT, all integrals in Eqs. (6–8), as well as the in-
tegrand of

∫ y0+l
y0

ρK2(y) dy in the prefactor in Eq. (3),
receive an additional multiplication by u( f (y)), the
mapped streamwise advecting velocity (see [16, 17]
for details). The time-scale τ changes to a stream-
wise length-scale ξ, and the temporal sampling ∆ts
changes to a streamwise sampling ∆xs [16]. Symbol-
ically, the S-ODT equivalent of Eq. (5) has a modi-
fied left-hand side and reads

u
∂ui

∂x
= Mi + Ki + S i + ν

∂2ui

∂y2 . (9)

2.4. Extensions to cylindrical geometry
An additional model extension, or a generaliz-

ation of the T-ODT and S-ODT formulations for
both Cartesian and cylindrical flows, considering a
dynamically adaptive mesh, was presented in [18].
The cylindrical formulation replaces the planar co-
ordinate y for the radial coordinate r, while any line-
integral

∫
(·) dy in all of the equations presented so

far, changes to a surface radial integral of the form∫
(·) r dr. Eqs. (1) and (9) also consider a change in

the form of the gradient flux. The generalized scalar
conservation equation, Eq. (1), becomes

∂ψ

∂t
= M(C,Z, r, f (r)) −

1
r
∂
(
rF(ψ)

)
∂r

, (10)

where F(ψ) = −σ (∂ψ/∂r) for the model resolved
radial molecular diffusive flux. The specific form of
the viscous flux for every velocity component in the
cylindrical coordinate system is given in [17].

Note that [17] also introduces a variable-density
formulation in which the density is treated as an act-
ive scalar, coupled with the evolution of the temper-
ature. The temperature and density states are coupled
by the ideal gas law and the divergence condition dur-
ing the deterministic evolution between subsequent
eddy events. This procedure is the equivalent of the



enforcement of mass and energy conservation.

2.5. Incorporation of EHD effects

Incorporation of EHD effects is done by the im-
plementation of the Coulomb force and the associ-
ated electrostatic potential energy in the ODT eddy
sampling. The Coulomb force density is given by
ρ f Ei, which is a body force to be incorporated in the
ODT equations, e.g., Eq. (9) (in such case, per unit
fluid density). Here, ρ f = e(n+c+ − n−c−), is the con-
tinuum density of free charges due to positive (+) and
negative (−) charged species with concentration c±
and valence n± for the unit charge e on an electron. c±
follow individual scalar conservation equations sim-
ilar to Eq. (1). Ei denotes the Cartesian compon-
ents of the electric field vector. By Faraday’s law for
non-magnetic media, i.e., Ei = −∂Φ/∂xi, where Φ
is the total electrostatic potential and (xi) = (x, y, z)T

the Cartesian coordinates. Coulomb forces in wall-
normal direction i = 2 do not directly accelerate
the flow altogether but influence turbulence proper-
ties [19, 4, 8].

The transfer of electrostatic potential energy to
kinetic energy, or vice versa, is the mechanism for
implementation of the effects of the work performed
by the flow against Coulomb forces by a notional
eddy turnover that is represented as instantaneous ap-
plication of the triplet map f (y). This observes a
1-D reduction on the 3-D electric field that aims to
capture leading order effects while keeping the flow
model self-contained. Hence, only E2 is resolved
that acts along the ODT line in wall-normal (y) direc-
tion, which is the direction with the largest property
gradients. In that sense, there is no contribution to
the kinetic energy by ρ f Ei by direct Coulomb ac-
celeration. The effect on the mean kinetic energy
manifests itself by EHD-enhanced losses due to a
modification of the turbulent drag for a fixed mean
streamwise pressure gradient force that drives the
flow. As detailed before, fluctuating pressure trans-
port is modeled in ODT by the kinetic energy redis-
tribution, i.e., a modification in the Reynolds stress
tensor components, which is conceptually compar-
able to the discussion in [19].

The form of the change in electrostatic poten-
tial energy, ∆Epot, results from the work performed
on the fluid due to the energy release from the
pre-mapped to the post-mapped state analogous to
buoyancy [11, 20]. ∆Epot has to be added within
the square bracket of Eq. (3) for EHD-enhanced
sampling. Likewise, it requires a multiplication by
4S under the square root of Eq. (2) for potential en-
ergy redistribution due to the ODT kernel. Specializ-
ing to Cartesian coordinates, we have

∆Epot = −

∫ y0+l

y0

[
ρ f ( f (y))Φ

(
ρ f ( f (y))

)
− ρ f (y)Φ

(
ρ f (y)

)]
dy.

(11)

In addition to this and the solution of Eq. (5), the

1-D conservation equation for ρ f , and the Nernst–
Planck equation, are solved together with the 1-D
representation of Gauss’ law for the electric poten-
tial, ∂(ϵEi)/∂xi = ρ f , as well as Faraday’s law,
Ei = −∂Φ/∂xi, for the resolved component i = 2
and a known electric permittivity ϵ.

Note that we distinguish two different types of
EHD coupling. In the one-way coupling case, the
Nernst–Planck equation reduces to a zero-divergence
condition for the electric current density [21]. This
results then in a uniform electric current density
along the ODT line (planar Cartesian case). Elec-
troquasistatic fields are calculated before hand and
remain fixed during the simulation. In the case of
two-way coupling, the Nernst–Planck equations are
similar to Eq. (1). An explicit numerical solver is
used in which the model resolved instantaneous pro-
file of Φ(y) is obtained by numerical solution of a
1-D Poisson equation by application of the Thomas
algorithm whenever ρ f (y) has changed.

3. RESULTS
Turbulent electroconvection exhibits different

flow regimes that may be categorized by the rel-
ative strengths of the Coulomb, viscous, and iner-
tial forces. In addition, the relaxation processes of
free electric charges and their coupling to electric
fields within the working fluid need to be taken into
account. Typical applications are heat transfer en-
hancement (e.g. [3]) due to weak coupling and flow
control (e.g. [4]) due to strong coupling. Below,
we begin with the strongly coupled regime for plane
Couette flow of a dilute electrolyte. After that, we
turn to the weakly coupled regime for vertical pipe
flow with an inner concentric electrode.

3.1. Drag enhancement in turbulent EHD
Couette flow

In this section we consider a simple model for
strongly coupled wall-bounded EHD turbulence in a
Couette-type flow of a dilute electrolyte. The flow
configuration is sketched in Figure 1 and corresponds
with that in [4]. The top wall is moving and held at a
different voltage relative to the bottom one. No-slip
isopotential zero-flux wall-boundary conditions are
prescribed. The T-ODT model set-up uses C = 10,
Z = 600, α = 2/3 as in [22]. The electrolytes
considered have neutral bulk charge and consist of
two identical ionic scalar species ψ = c± with the
same valence and mobility but opposite charge. The
model-resolved deterministic ion fluxes in accord-
ance with Eq. (1) thus have diffusive and drift con-
tributions so that

F±(c±) = −D
∂c±
∂y
∓

Dc±
VT

∂Φ

∂y
. (12)

Five dimensionless control parameters define the
flow state: the bulk Reynolds number, Re = Uh/ν,
the ionic Schmidt number, Sc = ν/D, the dimen-
sionless voltage, V̂ = 2V/VT , which is varied across
the range 1–40, the fixed coupling constant, β =



Figure 1. Sketch of the temporally developing
EHD Couette flow. The ODT line is fixed in space.

Figure 2. ODT prediction of the turbulent drag
enhancement as function of Sc for various Re and
voltages. DNS is from [4].

ϵV2
T /(ρνD) = 0.5, and the fixed normalized Debye

layer thickness, λD/h =
√
ϵVT /(2ρc0eh2) = 0.01.

In these expressions, U denotes the prescribed wall
velocity magnitude, h the channel half-height, VT =

kBT/e the thermal voltage, D the kinematic diffusiv-
ity of the ions in the electrolyte, and c0 the uniform
initial concentration of the univalent ion species, re-
spectively, in addition to the other physical paramet-
ers introduced above.

Figure 2 shows the skin friction drag coefficient
C f , which is, for Couette flow, evaluated based on
the Reynolds-averaged streamwise velocity profile,
ū(y) = u(y, t), as

C f = 2
u2
τ

U2 with uτ =

√
ν

∣∣∣∣∣dū
dy

∣∣∣∣∣
wall

. (13)

ODT pre-simulations conducted for V̂ = 0 (absence
of EHD effects; not shown here) agree with corres-
ponding purely hydrodynamic reference experiments
[23] within 2–5% yielding C f ,0 ≈ 5.9 × 10−3 for
Re = 3000 and C f ,0 ≈ 4.7 × 10−3 for Re = 12,000,
respectively. This level of agreement is also exhib-
ited by the EHD-enhanced cases at Sc ≃ 1 that
only mildly overestimate available reference DNS as
shown in Fig. 2. In fact, present ODT results suggest
that the turbulent drag is largely insensitive to EHD
effects for Sc ≲ 10.

A significant increase of the turbulent drag can
be seen in Fig. 2 for Sc ≳ 30 up to ≈ 30% for
Sc ≥ 300 at Re = 12,000 investigated. The mag-

Figure 3. ODT resolved mean velocity in the
boundary layer for various Re and Sc but fixed
voltage. The empirical law of the wall (e.g. [25])
for hydrodynamic flow without EHD effects is
given for orientation.

nitude of the effect increases with Sc, Re, and V̂ .
Interestingly, ODT predicts a regime change for the
critical Schmidt number Sccrit ≃ 30, which agrees
with an inferred value of Sccrit ∼ O(10) suggested by
[4] based on DNS, albeit it remained elusive if drag
increases or decreases due to enhanced coupling. In
any case, the ODT prediction suggests that Re must
be large enough so that the turbulent scaling cascade
is broad enough to be sensibly influenced by EHD
effects [24].

Figure 3 shows wall-normal profiles of the di-
mensionless mean velocity deficit ū+ over the dimen-
sionless boundary layer coordinate y+ given by

ū+ =
|ū − uwall|

uτ
, y+ =

yuτ
ν
. (14)

ODT simulation results are shown for various Re and
Sc but fixed V̂ = 4 in order to assess which region is
influenced by EHD effects. The hydrodynamic law
of the wall (e.g. [25]) is given here by the viscous
sub and log layers, ū+(y+) = y+ for y+ < 5 and
ū+(y+) = κ−1 ln y+ + B with κ = 0.39 and B = 4.2
for y+ > 30, respectively. Boundary layer similarity
is broken first in the bulk and outer layer for the ODT
simulations with Re = 12,000 and Sc = 30 shown.
For further increasing Sc, the entire log region is af-
fected. Decreasing ū+ for increasing Sc reflects the
increase in uτ due to which C f increases so that the
trend in Fig. 3 is consistent with that in Fig. 2.

ODT is a high-fidelity flow model that predicts
sensible mean effects in two-way coupled EHD tur-
bulence for at least moderately high Re and Sc. This
regime is presently inaccessible to DNS and not
faithfully treatable with LES or RANS due to the
modeling involved. A 3-D extension of the stochastic
model (e.g., based on [26]) and dedicated reference
experiments are needed in order to asses the 1-D
model prediction in order to clarify its applicability
to EHD turbulence.



3.2. Drag enhancement in turbulent EHD
vertical pipe flow

In this section we present the results for a one-
way coupled EHD pipe flow simulation with an in-
ner concentric electrode, which resembles the experi-
mental electrostatic precipitator (ESP) device of [27].
The flow configuration sketch is shown in Figure 4.
In the ODT simulations, the radially oriented S-ODT
line is advected upwards with the flow through the
ESP. The cylindrical pipe flow is subject to an elec-
tric field induced by a (positive) corona discharge
originated at the electrode. We only consider one-
way coupled electric fields which are not modified
by fluctuations in ρ f , yet equally affect the stochastic
random sampling as described in Sec. 2.5. Electric
charges (positive ions in air) are assumed as a con-
tinuum phase. For details on the generation of the
electroquasistatic (EQS) fields and on the general im-
plementation, please refer to [28]. In addition to the
electrostatic potential energy formulation used dur-
ing eddy events, we also incorporate the Joule heat-
ing as a source term to resolve during the determin-
istic advancement of the temperature equation, see
[28].

The objective of the simulations is the evaluation
of the friction drag, which is represented in [27] by
the Darcy friction factor fD,

fD = −
4R
ρbU2

b

dp
dz
. (15)

For the axially symmetric mean flow, dp/dz can
be obtained from the Reynolds-averaged momentum
equations, neglecting turbulent correlations of the
molecular dynamic viscosity. Indeed, the wall pres-
sure difference, between the outlet and the inlet of the
pipe section, can be calculated as

∆pw =

−
2

R2∆

[ ∫ R

0
⟨ρu1u1⟩ r dr − R2

(
⟨µ⟩

∂⟨u2⟩

∂r

) ∣∣∣∣∣∣
R

]
−

2
R2∆

[∫ R

0
⟨µ⟩

∂⟨u2⟩

∂r
r dr

]
−

2
R

∫ BTS

0
τwdz

−
JR

β f
.

(16)

Here, ∆ refers to a difference between the out-
let (z = BTS) and the inlet (z = 0) of the simulated
device. JR is the uniform radially weighted electric
current density, which is obtained from the voltage-
current values given as an input to the simulation, and
β f is the mobility of the free ionic charges. Eq. (16)
allows an approximation of the average pressure
gradient required for Eq. (15) as dp/dz ≈ ∆pw/BTS.

Figure 5 shows the ensemble average of the in-
let profiles used in the S-ODT simulations. Two dif-
ferent types of profiles are used based on the geo-
metry of the experimental device. Unlike a tradi-
tional pipe flow, the configuration in Fig. 4 includes
an internal electrode boundary, which imposes a no-

Figure 4. Sketch of the spatially developing EHD
vertical pipe flow. The ODT line is advected up-
wards with the flow.

Figure 5. Ensemble average of initial (inlet) con-
ditions for the evaluated Re = 4000 pipe flow (see
description in text). Reference DNS data by [29]
is shown for comparison.

slip condition at the electrode. Note that the sketch
provided in Fig. 4 corresponds to the test section of
the experimental device, see [27]. The device pos-
sesses an entry section, which is supposed to provide
a fully developing flow at the inlet of the test section.
However, a verification of the hydrodynamic entry
length LH (see [30]) performed for one of the Reyn-
olds number cases in [27], Reb = 4000, shows that
LH is larger than the sum of both device entry and test
section lengths. Therefore, we evaluate both fully de-
veloped turbulent inlet profiles (generated with a cyl-
indrical T-ODT formulation), as well as equivalent
turbulent flow profiles achieving a target developing
fD value. The latter is calculated according to the ac-
tual entry and test section lengths, and the formula
provided in [30].

Figure 6 shows the results for the evalu-
ation of fD. The experimental device has radius
R = 1.6 × 10−2 m, test section length BTS = 1.02 m,
and entry section length Bentry = 1.59 m. The in-



Figure 6. ODT prediction of Darcy friction factor
enhancement with dimensionless EHD body force
(Md). Reference experiments are from [27].

ner concentric electrode of the device has radius
Relec = 1.25 × 10−4 m, and length Belec = 2.05 m.
The inlet gas flow is assumed at atmospheric pres-
sure with uniform fluid properties (Prandtl number
Prair ≃ 0.71) at a temperature T0 = 300.15 K. The
inlet flow has a bulk velocity Ub = 2 m/s, and as-
sociated Reb = 4000. We evaluate three different
Masuda numbers, Md ≈ 1.97 × 104, 1.27 × 105, and
3.17 × 105, on top of the neutral (no EHD) pipe flow
condition. Note that Md = ϵ0Φel (Φel − Φon)

/
(ρ0ν

2
0),

where ϵ0 is the vacuum electrical permittivity, Φel
the electrode operating voltage, and Φon the corona-
discharge onset voltage (both voltages are measured
in the experiments).

Despite the friction factor evaluation being
simply an integral quantity of the flow, the results
obtained by the ODT simulations (see Fig. 6) are
worth commenting due to the multiphysical nature
of the application. This is neither an application that
can be easily evaluated by DNS nor treated faithfully
with LES or RANS. ODT provides small-scale res-
olution and dynamical complexity by capturing rel-
evant physical processes at feasible cost. The relat-
ive contributions to the pressure gradient according
to Eq. (16) are thus model predictions. It has been
verified that the largest contribution to dp/dz is due
to the wall shear stress τw, and in second place, by
the average kinetic energy gradient. The latter is the
reason why the utilization of developing flow inlet
conditions are necessary to obtain a model prediction
that reasonably captures the reference experiments.

4. SUMMARY
EHD turbulence denotes a chaotic flow that is

influenced by inertial, viscous, and Coulomb forces
across a range of scales. Dynamical processes are
nonuniversal and reach down to the Kolmogorov
scale [7], ηK , and Batchelor scales [31], Sc−1/2ηK ,
placing a strong burden on numerical simulation and
modeling. Small-scale resolution is addressed by
utilizing the stochastic One-Dimensional Turbulence

(ODT) model for regime-overreaching numerical in-
vestigation of wall-bounded EHD-enhanced flows.

For two-way coupled EHD Couette flow, ODT
predicts EHD-enhanced outer layer turbulence that
nonlocally affects the entire turbulent boundary layer.
Turbulent drag increases for Re ≳ 104 and Sc ≳ 30
suggesting that charge carriers need to sample the
turbulent microstructure exhibiting

√
Sc ≳ 5 times

smaller length scales than the velocity field.
In one-way coupled vertical EHD pipe flow with

a coaxial central electrode, ODT hints at transient ef-
fects in a developing turbulent flow. Turbulent drag
is enhanced by an EHD-based amplification of the
rate of change of the turbulent kinetic energy as re-
vealed by an analysis of the contributions to the pres-
sure drop per unit pipe length.

Altogether, ODT is a self-contained, dimen-
sionally reduced flow model that combines fidelity,
predictability, and numerical efficiency. We have
demonstrated its applicability to EHD-enhanced
flows for future application as sub-filter-scale model.
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