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Introduction

Turbulent thermal convection denotes the chaotic flow driven by buoyancy forces due to an unstable
temperature stratification imposed to a layer of fluid. Convecting flows are encountered in numerous
engineering and geophysical applications (see [1] references therein). When buoyancy forces are much
larger than viscous forces, the flow may reach the ultimate regime of thermal convection [2, 3, 4].
This regime, however, has remained inaccessible to 3-D direct numerical simulations (DNSs) as it im-
poses very high resolution requirements [5, 6]. Recently 2-D DNSs [7] have reached the ultimate regime
but at the price of an inverse energy cascade in contrast to 3-D turbulence.
Accurate and efficient numerical models are needed if one wishes to study convection under

strong forcing conditions. Here we utilize the one-dimensional turbulence (ODT) model [8, 9, 10]
in which a stochastic process is used to model 3-D turbulence within a dimensionally reduced setting.
This model is able to yield, for example, a direct energy cascade [8]. Using ODT as forward model
we investigate what might happen in turbulent convection at very high Rayleigh numbers.

ODT model formulation

ODT aims to resolve all relevant scales of a turbulent flow but only for a representative 1-D domain
(ODT line) [8]. Flow variables are resolved along this notional line-of-sight on a dynamically adaptive
grid [11]. Instantaneous flow profiles are evolved by deterministic diffusion, which is resolved along
the ODT line, and a stochastic process that models the effects of 3-D turbulence. These are turbulent
advection [8], but also fluctuating pressure gradient [9] and buoyancy forces [10].

• The ODT governing equations for the velocity vector ui and a scalar T read [8, 9, 10],

∂ui
∂t
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∂2ui
∂z2

,
∂T
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∂2T
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.

• The stochastic terms Ei and ET are formulated with discrete mapping (eddy) events (Fig. 1).

• The eddy rate τ−1(�, z0; t) of a size � eddy event at location z0 depends on the locally available
specific energy, Ekin + Epot − Z Evp, for the momentary flow state at time t [8, 9, 10],

τ−1 = C
�
2 �−2

�
Ekin + Epot − Z Evp

�
.

Ekin and Epot are the map-induced changes of the kinetic and the potential energy, respectively, and
Evp is a viscous penalty energy on the scale �.

• The main ODT model parameters are C and Z [8, 10], together with α = 2/3 [9].
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Figure 1: (a) Schematic of an eddy turnover. (b) Triplet map as 1-D model for turbulent advection. Effects of an eddy
turnover are modeled by a permutation of fluid parcels along a stochastically selected ODT line interval (here 0.2 � z � 0.8).

ODT application to Rayleigh–Bénard convection

•Thin layer of fluid (aspect ratio Γ = 2R/L ≃ D/L → ∞) subject to const. gravity g (see Fig. 2).

•Oberbeck–Boussinesq approximation, ρ(T ) = ρ0
�
1 − β (T − T0)

�
, where β is the thermal

expansion coefficient, ρ the density, and T the temperature; the subscript 0 denotes reference values.

• Smooth isothermal no-slip walls with constant temperature difference ΔT .

• The flow is characterized by the Rayleigh (Ra), Prandtl (Pr) and Nusselt (Nu) number,

Ra =
g βΔT L3

νκ
, Pr =

ν

κ
, Nu = 1 +

�w ′T ′�V ,t

κΔT/L
.
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Figure 2: (a, b) Sketches of the setups considered. (c) Space-time diagram of the instantaneous vertical temperature
profile T (z , t) of an ODT solution. Black lines explicitly mark the line interval of every 10th eddy event. Reference scales
are given by the free-fall velocity, Uf =

√
g βΔT L, and the free-fall time, tf = L/Uf .

ODT model parameter estimation

The ODT model parameters are estimated by matching Nu (see Fig. 3 and [12]) and the mean
temperature profile (see [13]) for a single Ra number but both Pr numbers to available reference
DNS data. Note that these reference data are not particularly well-suited for the ODT model calibration
as they are for Γ ≃ 1 and limited to low Nu numbers whereas ODT is built for the ultimate regime.
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Figure 3: Model validation for the Nusselt number Nu. (a) Pr = 0.7, Ra = (2.5± 0.5)× 1010, Nuref = 176± 5 [5, 14];
(b) Pr = 0.021, Ra = 4 × 108, Nuref = 27.5 ± 2.5 [6]. Reference values are from cylindrical samples with 0.5 � Γ � 1.
Near-optimal values for C and Z are given by Copt(Z ); the selected values are given by dotted lines (see [12]).

Rayleigh-number dependence of the Nusselt number

The Nusselt number exhibits effective scalings Nu ∝ Raγ as shown in Fig. 4. For moderately high
Ra numbers, the present ODT results exhibit approximately the classical (Malkus) scaling γ = 1/3
[15] to a degree that is comparable with the reference data. For high Ra numbers, a transition to
the ultimate regime can be discerned. The effective scaling exponent is only slightly lower than the
asymptotic value γ = 1/2, which is due to a logarithmic correction, that is, Nu ∝ Ra1/2 [ln(Ra)]−3/2

according to Kraichnan [2]. For very high Ra numbers, the few available ODT data points are quite
well described by the Kraichnan prediction up to a Pr -dependent prefactor [12, 16].
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Figure 4: (a) Scaling of the Nusselt number Nu versus Rayleigh number Ra for the Prandtl numbers Pr = 0.7 and 0.021.
(b) Same data but compensated with Ra0.32. ODT results and the corresponding scaling laws are given in blue and red.
Reference DNS data (black) is given for 1 � Γ � 3, Pr = 0.7 [17]; Γ = 1, Pr = 0.021 [6, 18]; Γ = 25, Pr = 0.7 and
0.021 [19]. Reference measurement data (EXP, gray) encompasses 0.23 � Γ � 20, 0.5 � Pr � 10 as compiled in [1]. The
Kraichnan [2] prediction is given by dash-dotted lines with a magnified prefactor (×10) for Pr = 0.021. Transitional Ra
numbers expected from the literature are marked by dotted lines [4, 6]. Thick crosses mark the calibration cases from Fig. 3.

Vertical profiles of the turbulent temperature flux

Vertical profiles of the ODT turbulent temperature flux per unit area, �w ′T ′�, are shown for the lower
half, 0 � z/L � 0.5, of the domain in Fig. 5. For moderately large Ra numbers, in the classical
regime, �w ′T ′� increases rapidly across the thermal boundary layer with thickness z � δ/L = (2Nu)−1

but levels out towards the bulk. By contrast, for large Ra numbers after transition to the ultimate
regime, �w ′T ′� increases again towards the bulk where it attains its maximum at z/L ≈ 0.18 for
both Pr numbers investigated [12, 16]. This is consistent with an assumption of Kraichnan [2].
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Figure 5: Time-averaged turbulent temperature flux per unit area �w ′T ′� for (a) Pr = 0.7 and (b) Pr = 0.021 corre-
sponding to the regimes identified in Fig. 4(b). Normalization with the maximum value emphasizes profile shape variations.

Conclusion

• The ODT model parameters for thermal convection have been estimated for Pr = 0.021 and
Pr = 0.7 using available DNS reference data for Γ ≃ 1 in the classical regime.

•ODT has good predictive capabilities. ODT exhibits the transition to the ultimate regime
close to the expected critical Ra values. Nu(Ra) is described well by the Kraichnan [2] theory.

• The ODT results obtained support Kraichnan’s [2] assumption of a relative increase of the tur-
bulent temperature flux in the bulk of the fluid for large Ra numbers.

Forthcoming Research

• Further analysis of the ODT scaling for the dependencies Nu(Ra,Pr) and Re(Ra,Pr).

• Variation of the boundary conditions (e.g. sheared convection).

•Model application to spherical-shell, non-Oberbeck–Boussinesq, and rotating convection.
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