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ABSTRACT
High-Rayleigh-number (high-Ra) turbulent con-

vection is numerically studied in planar and spherical
confinement geometries using the one-dimensional
turbulence (ODT) model. Stochastic mapping events
are used in ODT to model turbulent advection along
a representative line of the turbulent flow. The ODT
implementation used is fully adaptive and based on a
finite volume discretisation in the Lagrangian frame
of reference. Model parameters are first optimised
for an air-filled (Prandtl number Pr = 0.7) planar
confinement at Ra = 3 × 1010. After that, convec-
tion is studied in spherical geometry for various ra-
dius ratios, gravity profiles, and Rayleigh numbers by
keeping Pr = 1 and the model parameters fixed. The
simulated thermal and viscous boundary layers ex-
hibit good agreement with reference data up to wide
gap widths even for relatively low Rayleigh numbers.
Present results suggests that ODT is mainly applic-
able for Ra & 107 (with Pr ' 1). The model for-
mulation is robust and yields reasonable results for a
broad range of physical control parameters.

Keywords: boundary layers, geophysical flows,
one-dimensional turbulence, Rayleigh–Bénard
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NOMENCLATURE
A, B [−] thermal log layer slope, offset
C [−] eddy-rate parameter
E [J] energy
J, K [m] kernel functions
L [m] gap width
Nu [−] Nusselt number
Pr [−] Prandtl number
R [m] radius
Ra [−] Rayleigh number
T [K] temperature
U [m/s] horizontal velocity

V [m3] eddy volume
Z [−] viscous-penalty parameter
b, c [1/s] kernel coeff.
g [m/s2] gravity
l [m] eddy size
r, x, z [m] radial, 1-D, vertical coord.
t [s] time
u [m/s] velocity
e [−] unit vector
α [−] isotropy parameter
β [1/K] thermal expansion coeff.
δ [m] boundary layer thickness
η [−] radius ratio
γ [−] distribution parameter
κ [m2/s] thermal diffusivity
ν [m2/s] kinematic viscosity
ρ [kg/m3] density
σ [−] standard deviation
τ [s] eddy timescale
E [−] eddy event
Θ [−] dimensionless temperature

Subscripts and Superscripts
T temperature-related
U velocity-related
b bulk
cw, hw cool, hot wall
f free-fall
i inner
kin kinetic
max maximum value
opt optimal value
o outer
pot potential
ref, 0 reference value
vp viscous penalty
i, j coordinate index
′ triplet-mapped
− temporal mean



1. INTRODUCTION
Turbulent convection denotes the chaotic flow

driven by buoyancy forces due to an unstable temper-
ature stratification. The developing flow itself influ-
ences the temperature distribution which results in a
complex interplay between the momentum and tem-
perature fields. A quantitative understanding of tur-
bulent convection is relevant for many applications
where the heat transport is of concern. These are
typically technological (like cooling systems) or geo-
physical problems (like atmospheric or mantle con-
vection; see e.g. [1] and references therein).

A model problem for such flows is Rayleigh–
Bénard (RB) convection. The classical RB setup is a
fluid-filled cylinder with a heated bottom and cooled
top as shown in Figure 1(a). For geophysical applic-
ations, the spherical confinement geometry is some-
times important (e.g. in mantle convection) so that
a spherical shell configuration seems more appro-
priate. This case is shown in Fig. 1(b) where fluid
is confined between an inner hot and an outer cold
sphere. The background gravity acts in radial direc-
tion and its strength g(r) can vary with the radius r
due to the internal mass distribution (e.g. [2]). The
spherical confinement geometry is addressed by the
radius ratio η = ri/ro, which replaces the aspect ratio
2R/L used in the planar case.

Figure 1. Schematic showing a planar (a) and a
spherical Rayleigh–Bénard setup (b).

Turbulent convection in a selected geometry is
characterised by the Rayleigh and the Prandtl num-
ber, which are given by

Ra =
g0 β∆T L3

ν κ
and Pr =

ν

κ
, (1)

where g0 is the reference gravity, ∆T = Thw − Tcw is
the imposed temperature difference between the hot
and cold wall, and L is the distance between those
walls, respectively, β is the thermal expansion coef-
ficient, ν the kinematic viscosity, and κ the thermal
diffusivity of the working fluid. Practically relev-
ant values of the Rayleigh number encompass sev-
eral orders of magnitude (106 . Ra . 1027 [1]). The
Prandtl number is, by contrast, close to one for many
gases and liquids. Therefore, the present paper fo-
cuses on the feasibility of high-Ra numerical simula-
tions of turbulent convection with Pr ' 1.

Direct numerical simulations (DNSs) have
reached Ra = 2 × 1012 in three dimensions (3-D) [3]

and Ra = 1014 in 2-D [4] for Pr = O(1). Such sim-
ulations are extremely costly and in the case of long-
time simulations and/or large aspect ratios practically
limited by 109 . Ra . 1010 [1, 2, 5, 6].

Accurate and efficient modelling strategies are
needed if one wishes to increase the accessible
Rayleigh number range within the considerable fu-
ture. The difficulty is that gradient-diffusion ap-
proaches do not allow for scale interactions that can
be crucial for the flow evolution and the accuracy of
the predicted heat transfer. A fundamentally differ-
ent modelling approach is therefore used here: the
so-called one-dimensional turbulence (ODT) model
[7, 8, 9, 10]. ODT is a stochastic turbulence model
that aims to resolve all scales of the turbulent flow.
This is made feasible by dimensional model reduc-
tion.

The rest of this paper is organised as follows.
Section 2 addresses relevant aspects of the ODT
model. In Section 3, ODT results for a planar (cyl-
indrical) RB cell are shown and the selection of
model parameters is discussed. In Section 4, ODT
results for spherical geometries are shown for various
radius ratios, gravity profiles, and Rayleigh numbers
keeping the Prandtl number and the model paramet-
ers fixed. Section 5 closes with some concluding re-
marks.

2. ODT MODEL FORMULATION
Numerical simulations of convecting flows are

performed with the temporal ODT formulation [7, 8,
10]. The computational domain is a statistically rep-
resentative line of the turbulent flow along which ve-
locity and temperature profiles are evolved in time.
The ODT line (the thick ‘H’-like lines in Fig. 1)
forms a 1-D computational domain, which is approx-
imately viewed as a closed system. The line is ori-
ented in vertical (radial) direction in planar (spher-
ical) geometry so that the molecular and map-based
transport is performed in the direction of the largest
mean gradients.

2.1. Governing equations
The governing equations are the conservation of

mass, momentum, and energy plus an equation of
state. Here the Oberbeck–Boussinesq approximation
ρ(T ) = ρ0

[
1−β (T −T0)

]
is used which implies weak

density fluctuations | ρ(T )− ρ0 | � ρ0. The density is
therefore treated as constant except for the buoyancy
forces. The ODT equations read (planar; see [10])

∂ui

∂t
+ Ei(u j,T ) = ν

∂2ui

∂z2 , (2)

∂T
∂t

+ ET (u j,T ) = κ
∂2T
∂z2 . (3)

These Eqs. are closed with isothermal no-slip bound-
ary conditions at the walls.

Molecular diffusion is resolved in 1-D (along the
ODT line) but this deterministic evolution is inter-
rupted by stochastic mapping events (eddy events) E



which mimic the effect of turbulent stirring. Both Ei
and ET obtain their physical units (i.e. as a rate of
change of the velocity or the temperature, respect-
ively) from (i) the map-induced fluctuation of the
property under consideration and (ii) an inverse eddy
timescale τ−1 (see Eq. (6) below). The buoyancy
and fluctuating pressure gradient forces are modelled
within the stochastic term Ei, whereas ET is simply
advecting the temperature scalar. The forces in Ei de-
pend on the current state of the (1-D) temperature and
velocity fields in analogy to the (3-D) flow in reality.

In spherical geometry, one has to take into ac-
count that the transport along the ODT line is in ra-
dial direction. It has been suggested to view the ODT
line as a solid angle element with infinitesimal extent
in the two off-line directions [11]. The second deriv-
atives ∂2

z (·) in Eqs. (2) and (3) therefore have to be
replaced with r−2∂r

[
r2∂r(·)

]
. The mapping inside the

stochastic terms is also affected but will be addressed
below.

2.2. Discretisation strategy
Eqs. (2) and (3) are discretised with finite

volumes on an adaptive grid in the Lagrangian frame
of reference [11, 12]. Here, the smallest allowed
cell size and the resolution of the fixed statistics grid
are both about 30 times smaller than the expected
thermal boundary layer thickness (e.g. [1, 2, 3, 5]),
whereas the largest allowed cell size was set to a low
percentage of the domain size. It was checked that
the simulated flow statistics are independent of the
selected bounds for the grid cell sizes.

A low-order explicit time integration scheme
was used in this study since the stochastic map-
ping events destroy higher-order accuracy in time
and since Pr ' 1 yields comparable spatio-temporal
scales in the velocity and the temperature. The time
step is also adaptive but constrained by the sampling
of eddy events (see below) and the critical Courant
number of the scheme.

2.3. Eddy events
Eddy events are the fundamental building block

of ODT. Each eddy consists of a permutation of
fluid parcels along a randomly selected line interval.
This permutation is more generally described by a
measure-preserving map, which yields conservation
of mass, momentum, and energy in an integral sense.
For physical soundness it is required that a mapped
property profile features locally increased gradients
but is otherwise continuous. These requirements are
addressed by the triplet map (TM) [7].

The TM consists of (i) the compression of a
property profile to a third of its original length,
(ii) pasting of two copies of the compressed profiles
to fill the eddy interval, and (iii) a flip of the cent-
ral copy to ensure continuity. This algorithm is used
in the adaptive ODT implementation [11, 12] to in-
crease the resolution where the flow is turbulent.

Figure 2 shows the TM for an initially linear
profile. The number of grid points (+) has tripled

across the eddy interval. In spherical geometry, the
TM has to be adjusted to maintain the conservation
properties. The crucial point lies in the radial integ-
ration over r2 dr instead of l2 dz in the case of planar
geometry. This has to be compensated by geomet-
ric stretching of individual grid cell positions in the
map image. Here, the so-called TMA has been used
[11]. TMA is characterised by a uniform partition of
the fluid volume among the three map images (every
image carries 1/3 of the total eddy volume). An ex-
ample of the TMA is shown in Fig. 2 which shows
the geometric stretching effect.

Figure 2. Visualisation of the triplet map in axial
and radial directions, denoted planar and spher-
ical, respectively. The triplet map in spherical
geometry is TMA [11].

The energetic consequences of a TM application
need to be considered to ensure physical soundness
of the model. The present formulation uses three
velocity components (so-called ‘vector ODT’). This
yields the following effects on the temperature T and
velocity profiles ui [8, 11, 12]:

ET : T (x)→ T ′(x), (4)
Ei : ui(x)→ u′i(x) + ciK(x) + biJ(x). (5)

Here, x is the ODT line coordinate, which is either
vertical (planar case) or radial (spherical case). The
prime indicates application of the triplet map. K(x)
and J(x) = |K(x)| are kernel functions defined by
the triplet map [7, 9, 11]. The coefficients ci and bi
are obtained by enforcing conservation properties to-
gether with a maximisation of the energy exchange
between the velocity components for the ODT iso-
tropy parameter 0 < α ≤ 1. This mechanism is omit-
ted in single-velocity ODT due to α = 0. By contrast,
the change of the potential energy is always included
in ci and bi but depends on the parameters γi, which
model the distribution of the potential energy release
to (or the take-up from) the velocity components and
need to sum up to one.

2.4. Eddy selection

Eddy events are characterised by three random
variables: eddy size, position, and time of occur-
rence. These can be sampled in principle from



the eddy-rate distribution λ, where λ(l, x0, t) dl dx0 dt
gives the number of eddies in the size range [l, l + dl]
and the position range [x0, x0 + dx0] during the time
interval [t, t + dt]. (In planar (spherical) geometry
the eddy position x0 has to be replaced by z0 (r0).)
However, the eddy-rate distribution depends on the
current state of the flow and is thus unknown.

To avoid a repeated and costly construction of
λ, an alternative, more cost-efficient thinning-and-
rejection method is used in practice for the selection
of eddies [7]. The eddy-rate distribution can be writ-
ten as λ = C τ−1 l−2 in terms of the eddy timescale
τ and the eddy length scale l. C is the eddy-rate
parameter, which is related to the turbulence intens-
ity. The eddy timescale τ depends on the extractable
eddy energy and is for a Boussinesq fluid given by

1
τ

=

√
2

ρ0l2V(l)

(
Ekin + Epot − ZEvp

)
. (6)

Ekin, Epot, and Evp denote the kinetic, potential,
and viscous penalty energy, respectively, and V(l) is
the eddy volume [11]. The kinetic energy Ekin is
given by the extractable energy due to TM applic-
ation. In vector ODT, Ekin is computed by sum-
ming all three square kernel-weighted velocity com-
ponents [8]. The viscous penalty Evp is proportional
to ν2/l2 and effectively defines a cut-off length scale
(i.e. the Kolmogorov scale) [8]. The viscous penalty
parameter Z can be used to adjust the range of scales
represented in the ODT model.

Wunsch and Kerstein [10] formulated the ODT
eddy energetics for convecting flows with a single
representative velocity scalar. A novelty of the
present formulation is the extension of the potential
energy treatment to spherical geometry [11] and vec-
tor ODT [8, 9]. Epot is obtained by computing the
total lifting work due to the rearrangement of fluid
parcels under the TM. This energy is either released
to (Epot > 0) or taken from (Epot < 0) the flow. For
a Boussinesq fluid in spherical geometry and subject
to position-dependent gravity (here g(r) < 0) one has

Epot = −ρ0 β

∫ r0+l

r0

G(r)
[
T ′(r) − T (r)

]
r2dr (7)

with G(r) =

∫ r

0
g(x) dx. (8)

Switching back to planar geometry is easily done
by replacing r with z and r2 dr with l2 dz, but the line
integral over dx remains unchanged. In both cases,
only candidate eddies with positive net extractable
energy are physically plausible and only these are
considered for implementation.

It remains to determine the model parameters C
and Z for a given flow configuration with the aid
of reference data. This is done below for turbulent
convection in a planar RB cell before moving on to
spherical geometry.

3. PLANAR GEOMETRY
The ODT model is now applied to RB convec-

tion in planar confinement geometry with uniform
gravity (g = −g0 < 0 in accord with Fig. 1(a)). Two
different ODT setups are considered. One is single-
velocity ODT (in analogy to [10]) where the kinetic
energy is contained entirely in a representative ve-
locity scalar. This case is realised in vector ODT by
selecting α = 0 and (γi) = (1, 0, 0). The other setup is
vector ODT with a tendency to small-scale isotropy
and uniform release (and take-up) of potential energy
to (from) the velocity components. This case is real-
ised with α = 2/3 and (γi) = (1/3, 1/3, 1/3). The
default values are set to C = 60 and Z = 220 which
will be discussed below.

3.1. Bulk flow

Figure 3 shows ODT results for turbulent con-
vection in a planar RB cell at Ra = 3 × 1010 and
Pr = 0.7 (air). The reference temperature, velocity,
and time scales are given by the imposed temperature
difference, the free-fall velocity Uf =

√
g0 β∆T L,

and the free-fall time tf = L/Uf , respectively.

Figure 3. Vertical profiles of the temperature and
one horizontal velocity component (a). Hovmöller
diagram of the bulk temperature with superim-
posed eddy events (b, colour online).

The vertical profiles shown in Fig. 3(a) have
been obtained with the vector formulation, whereas
the temperature distribution in Fig. 3(b) has been
obtained with single-velocity ODT. Eddy events are
also shown in Fig. 3(b) by lines (only every 10th
eddy is given due to visibility reasons). Both panels
exhibit a broad range of scales in the instantaneous
fields revealing steep temperature and velocity gradi-
ents in the whole domain. The mean temperature



shown in Fig. 3(a) exhibits strong gradients only near
the walls, but it is almost constant in the bulk of fluid.
This bulk temperature is the average of the prescribed
wall temperatures implying symmetric boundary lay-
ers discussed further in the next section.

3.2. Thermal and viscous boundary layer
ODT results are evaluated with respect to the

thermal and viscous boundary layers using the two
model setups mentioned above. The flow statistics
are symmetric to the mid plane z = L/2 (Fig. 3(a))
so that it is sufficient to consider the boundary layers
over the heated bottom wall.

Figure 4 shows profiles of low-order statistical
quantities for the thermal and the viscous boundary
layer. ODT results are shown together with reference
DNS data for Ra = 3 × 1010 for a cylindrical RB cell
with aspect ratio one [5]. This reference provides
results for the thermal and the viscous boundary layer
along the axis of the RB cell. Another reference data
set was obtained at somewhat smaller Ra = 2 × 1010

and aspect ratio 1/2 [3].
Profiles of the dimensionless mean temperature

are shown in Fig. 4(a). This temperature is given by

Θ(z/L) =
T̄ (z/L) − Tb

∆T
, (9)

where Tb = (Thw + Tcw) /2 only for a Boussinesq
fluid in planar geometry with uniform gravity. One
can see that all ODT setups and the two reference
data sets yield virtually the same temperature gradi-
ent at the wall. This implies that all configurations
exhibit the same local heat transfer (Nusselt number).
The near-wall temperature gradient is visualised by
a linear extrapolation, which is shown as dash-dotted
line that appears curved in the semi-logarithmic axes.

Further away from the wall, the mean temper-
ature exhibits a logarithmic region [3] (thin dashed
lines in Fig. 4(a)). This is captured by ODT, in par-
ticular for the model parameters C = 60, Z = 220.
The fits shown have been obtained for the interval
10−2 ≤ z/L ≤ 10−1 assuming

Θ(z/L) = A ln (z/L) + B. (10)

Figs. 4(b) and (c) show normalised wall-normal
profiles of the standard deviation of the temperature
(σT ) and the horizontal velocity (σU) fluctuations,
respectively. These standard deviations are given by

σT =

√
T 2 − T̄ 2 and σU =

√
u2

1 + u2
2. (11)

One can see in Fig. 4 that the profile of σT is
quite well captured near the wall and towards the
bulk, but it also experiences a local minimum, which
is absent in the reference DNS [5]. A similar, but
less severe structure is also exhibited by σU . These
local fluctuation minima are a known modelling er-
ror of ODT related to the self-similarity of the triplet
map [12]. The modelling error remains localised in
the mixing layer at small but finite distance from the
wall. This is very similar in forced convection [13].

Figure 4. Boundary layer profiles over the heated
wall showing the mean temperature (a) and the
standard deviations of the temperature (b) and
the horizontal velocity fluctuations (c), respect-
ively. Three ODT setups are compared with refer-
ence data from [3] (− · −) and [5] (+), respectively.

Also shown in Fig. 4 are ODT results for an al-
ternative set of model parameters (C = 12, Z = 9;
solid grey line). These parameters yield substantially
more small-scale mixing. The flow statistics differ
notably from those obtained with the other set of
parameters, especially with increasing distance from
the wall. Two points are worth to be noted. One
is that smaller values of C and Z yield mean tem-
perature profiles that are more representative for the
vertical boundary layer flow near the outer wall of
a cylindrical RB cell [3]. Another is the absence of
the local fluctuation minima which suggests that the
imprint of the triplet map is only notable near the
wall when the scale range is sufficiently truncated.
This truncation is used in ODT to improve the fluctu-
ation statistics thus mimicking presence of 3-D vor-
tical structures (like plumes), which are not resolved
directly in ODT.

Altogether, ODT statistics of RB convection in
planar geometry are representative for a cylindrical
cell. However, ODT does not reproduce the centre-
line statistics. This is likely due to the unresolved
small-scale structures (plumes) and large-scale cir-
culation (LSC, e.g. [1, 5]).



3.3. Selection of model parameters
The ODT model parameters need be selected

such that the flow statistics are reasonably well re-
produced for a given flow configuration. The aim is
to find a set of model parameters, which minimises
the error in relevant statistical quantities while main-
taining computational efficiency. These parameters
should also yield reasonable results for a large range
of physical control parameters (as e.g. in [10, 13]).

Here, high-Ra turbulent convection in planar
geometry with 2 × 1010 ≤ Ra ≤ 3 × 1010 and Pr =

0.7 has been selected as test case. Various statist-
ical quantities are available from measurements and
DNSs (e.g. [1, 3, 5]). Some of these quantities are
sensible to the near-wall flow (like the Nusselt num-
ber or the boundary layer thickness) and others to the
flow further away from the wall (like the logarithmic
region or the bulk temperature). All the quantities
mentioned were investigated.

Figure 5 gives an overview of the simulations
conducted for various C and Z. Each marker repres-
ents a single simulation continued until the mean and
fluctuation statistics were converged. The markers
vary in contrast and size to visualise the deviations
in the logarithmic region (by means of the slope A in
Eq. (10)) and the Nusselt number, respectively. Lat-
ter is computed here via the mean temperature gradi-
ent at the heated or cooled wall,

Nu =
∣∣∣ (dT̄/dz) cw/hw

∣∣∣ / (∆T/L) . (12)

Figure 5. Relative error as function of the model
parameters C and Z for vector ODT in compar-
ison to reference data [1, 3, 5] using the Nus-
selt number Nu (marker size) and the thermal
log layer slope A (shading) as indicator. Single-
velocity ODT gives similar results.

It is interesting that the optimal C and Z with the
smallest deviations in Nu and A fall approximately
on the curve Copt(Z) ≈ 4

√
Z. This is similar to a

previous study of Wunsch and Kerstein [10].
The ODT results are further evaluated by using

additional criteria like the thermal log layer offset B
in Eq. (10) or the thermal δT and viscous bound-
ary layer thickness δU . Both thicknesses have been
computed with the slope method (see annotations in

Fig. 4). Details are given in Table 1, where values in
brackets give the error margin (±) for the last digit.

Table 1. Statistical quantities for Ra = 3 × 1010,
Pr = 0.7 and C = 60, Z = 220: From the top,
the rows contain the reference value (margin), the
single-velocity, and the vector ODT result.

Nu δT /L δU/L −A −B
176(5) 0.0030(3) 0.0027(3) 0.010(5) 0.020(5)
173 0.00288 0.00251 0.0143 0.0154
180 0.00277 0.00253 0.0143 0.0205

4. SPHERICAL GEOMETRY
This section presents ODT results for thermal

convection in spherically confined geometry (see
Fig. 1(b)). The Prandtl number is fixed at Pr = 1, but
the Rayleigh number, the radius ratio, and the grav-
ity are varied. To reduce the complexity, only single-
velocity ODT is considered here selecting C = 60,
Z = 220 (optimal parameters in planar geometry).

The gravity profile g(r) results from the mass
distribution in the spherical configuration. It is con-
sidered to remain unaffected by the convecting flow.
The following gravity profiles are of practical rel-
evance (e.g. [2]): g/g0 ∈ {r/ro, 1, (ro/r)2, (ro/r)5},
where g0 is the reference gravity at the outer radius.

In contrast to the planar setup, one is now facing
a geometry parameter in ODT. This is the radius ra-
tio 0 < η = ri/ro ≤ 1. Small values correspond to
wide-gap configurations, whereas η → 1 yields the
limiting case of an infinite planar domain.

4.1. Variation of radius ratio and gravity
The dependencies of thermal convection on the

radius ratio and the background gravity are invest-
igated by comparing ODT with reference DNS res-
ults. The Rayleigh number is varied across the range
7× 105 ≤ Ra ≤ 107 in accord with the reference data
[2] to keep Nu ∼ 10 constant.

Figure 6 shows radial profiles of the mean tem-
perature for various radius ratios in the case of g(r) ∝
r−2. This gravity profile compensates exactly the
geometric stretching along the radius and is there-
fore of fundamental interest [2]. One can see in
Fig. 6 that the bulk temperature and boundary lay-
ers are notably affected by the radius ratio. This de-
pendency is quite well captured by ODT even though
the Rayleigh number is much smaller than 1010 for
which the optimal model parameters have been ob-
tained in planar geometry. One can therefore expect
a decrease of the modelling error with increasing Ra
and η → 1. Latter is indeed observed for the bulk
temperature.

Figure 7 shows radial profiles of the mean tem-
perature for various gravity profiles in the case of a
wide gap (η = 0.6). A larger bulk temperatures is ob-
tained for a smaller exponent in the background grav-
ity profile when Nu is approximately constant. Inter-
estingly, the modelling error is smallest for g(r) ∝ r−5



Figure 6. Mean temperature profiles for various
radius ratios η and 3 × 106 ≤ Ra ≤ 107 comparing
ODT (lines) with DNS [2] (symbols).

Figure 7. Mean temperature profiles for various
gravity profiles g(r) and 7 × 105 ≤ Ra ≤ 5 × 106

comparing ODT (lines) with DNS [2] (symbols).

and largest for g(r) ∝ r. This suggests that the in-
ner and outer thermal boundary layers are more sym-
metric to each other in the case of a stronger radial
decrease of the gravity. The consequence is that, in
the case of g(r) ∝ r−5 , the temperature distribution
is closer to the planar RB results (see Fig. 3(a)) for
which the model parameters C and Z have been ob-
tained. Hence the smaller modelling error.

Looking more carefully at both Figs. 6 and 7 re-
veals systematically shallower temperature gradients
near the confinement walls. This is most prominent
at the inner wall, but also present at the outer wall.
This is due to conservation of the mean heat flux in
stationary statistic under the absence of heat sources
within the fluid (no internal heating). The heat trans-
fer (Nusselt number) is thus somewhat underestim-
ated at present by ODT whereas the (thermal) bound-
ary layer thickness is overestimated.

4.2. Asymmetry of the boundary layers
Figs. 6 and 7 exhibit the reduced bulk temperat-

ure Tb < (Tcw + Thw)/2 in comparison to the planar
case. This implies that the boundary layers at the
inner and outer sphere are asymmetric. The asym-
metry is captured by ODT for 107 ≤ Ra ≤ 1010,
0.2 ≤ η ≤ 0.8, and the four gravity profiles studied.

For Pr = 1, the ratio of the outer and inner
boundary layer thicknesses is expected to be the
same for the thermal and the viscous boundary layer.
It can be shown that this ratio depends only on the
shell geometry and the background gravity, but not
on the Rayleigh number. Boundary layer theory
yields [2]

δT,o

δT,i
=
δU,o

δU,i
=
χ1/6

η1/3 with χ =
g(ri)
g(ro)

. (13)

Figures 8(a) and (b) show the ratios of the
outer and inner thermal and viscous boundary layer
thicknesses for various flow configurations. The
thicknesses were obtained with the slope method
(cf. Fig. 4). A comparison of ODT results to the
theoretical expectation given by Eq. (13) (lines) re-
veals that the asymmetry of the boundary layers is
captured by the ODT model. The modelling error is
smaller for the thermal boundary layers. However,
the order-of-magnitude of the effect and the trends
are correctly predicted by the ODT model for both
boundary layers and the values of η > 0.2 investig-
ated.

Figure 8. Outer-to-inner ratio of the thermal (a)
and viscous boundary layer thicknesses (b)
for various radius ratios, gravity profiles, and
Rayleigh numbers 107 ≤ Ra ≤ 1010 at Pr = 1.

It is worth to note that there is no systematic Ra-
dependency in the results shown in Fig. 8. This sug-
gests that ODT results are in principle consistent with
theory. The reference DNS results [2] follow Eq. (13)
with notable variance (≈ 30% for small η) but more
closely than the present ODT results. ODT can give
similarly robust results as the reference DNS, in par-
ticular with respect to the trends, but exhibits also a
systematic modelling error.



5. CONCLUSION
Stochastic simulations of turbulent thermal con-

vection have been conducted with an adaptive imple-
mentation of the one-dimensional turbulence (ODT)
model for planar and spherical geometries [11, 12].
For the present study, the formulation of this model
was developed further to account for buoyancy.

There are only two main model parameters in
ODT which are related to the flow physics. These
parameters need to be determined with the aid of
reference data which was done here for an air-filled
planar geometry of aspect ratio one and Ra ∼ 1010

[3, 5]. The optimal parameters were then kept fixed
and used to study spherical cell geometry.

It was shown that ODT captures the structure
of the thermal and viscous boundary layers over the
cooled and heated wall. In spherical geometry, these
boundary layers are asymmetric so that the bulk tem-
perature drops. This is captured by ODT even for
rather low values of the Rayleigh number (Ra . 107).
The flow is rather well organised in 3-D for example
due to the large-scale circulation [1], plumes [2], and
superstructures [6]. All these flow features are not
directly resolved in ODT which seems to explain
most of the observed differences.

In conclusion, ODT is mainly applicable for tur-
bulent convection at Ra & 107 (with Pr ' 1). Nev-
ertheless, it could be shown that ODT yields reason-
able predictions of flow statistics for a broad ranges
of the Rayleigh numbers, gravity profiles, and radius
ratios using fixed model parameters. While single-
velocity ODT is computationally more efficient, the
vector formulation seems to exhibit a higher fidelity.
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