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Introduction

To understand the intermittency present in scalar fields we need to address the expense of current
start-of-art DNS to probe the higher-order structure functions. These higher-order moments be-
come increasingly sensitive to increasing Reλ and much more prone to extreme events. Here, in
this work, we investigate using a Reduced order model(ODT) to simulate Homogenous Isotropic
turbulence as an initial step towards that goal by employing a linear forcing [1] proposed by
Lundgren that is proportional to local and instantaneous velocity.

ODT Model

TheODT model aims to resolve all relevant scales of a turbulent flow along a notional line-
of-sight (‘ODT line’). Flow variables are resolved along this line on a uniform grid.Instantaneous
flow profiles are evolved by deterministic diffusion along the ODT domain, and a stochastic
process that models the effects of turbulent advection and pressure fluctuations [2, 3].

•The ODT governing equations for Homogenous Isotropic Turbulence read
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where x1 denotes the spatial coordinate of the high-resultion ODT domain, t the time,
(ui) = (u, v ,w)T with i ∈ {1, 2, 3} the Cartesian components of the velocity vector, and
fi a physical forcing that is detailed below assuring convergence to a statistically stationary
flow solution.

•The stochastic term Ei represents the effects of turbulent eddy events. For each stochas-
tically sampled event, the turnover of a notional turbulent eddy (Fig. 1(a)) is modeled by the
instantaneous application of a spatial mapping, the triplet map [2] (Fig. 1(b)). In addition,
a pressure redistribution model [?] is applied instantaneously in order to induce a tendency
to isotropic turbulence efen if fi is unidirectional. The strength is controlled by the model
parameter α.

•Heree, we limit our attention to a scalar velocity representation setting u1 ̸= 0 and f1 ̸= 0,
but u2 = u3 = f2 = f3 = 0. Correspondingly, pressure-redistribution effects are neglected by
letting α = 0. This assumption will be relaxed in forthcoming research.

•The turbulent eddy rate τ−1(ℓ, z0; t) of a size-ℓ eddy event at location z0 at time t depends
on the total available eddy specific energy for the momentary flow state.

τ−1 = C
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)
,

where Ekin and Evp denote eddy specific kinetic energy and viscous penalty energy, respectively.
The latter effectively suppresses eddies below a viscous (Kolmogorov) length scale.

•The ODT model parameters C = 1.8 (eddy-rate parameter), Z = 10 (viscous-suppression
parameter) have been fixed after calibration with reference direct numerical simulation (DNS)
[4].
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Figure 1: (a) Schematic of an eddy turnover. (b) Triplet map for an eddy event that covers the interval 0.18 ⩽ z ⩽ 0.82.

Linear Forcing

In this study, we investigate the application of linear forcing within dimensionally reduced flow
models, specifically One-Dimensional Turbulence (ODT) [2] [3]. We build upon recent work by
Giddey et al. (2018) [5], utilizing a deterministic forcing that incorporates a time-dependent
forcing coefficient as proposed by Basenne et al. [4]. The forcing term for achieving constant
turbulent kinetic energy can be written as

f1 = Au1

A(t) =
ϵ(t)− G [k(t)− k0]/tℓ,∞
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are volume averaged kinetic energy and dissipation.

k0 is a the target kinetic energy (initial kinetic energy) and tl ,∞ is integral time. G is an
amplification parameter. We reproduce the results from [5] and recover an inertial scaling in
the kinetic energy cascade with the spectral exponent −5/3. We investigate the spectra and
temporal evolution of spatially averaged kinetic energy and other derived quantities. The ini-
tial conditions typically involve a synthetic, solenoidal isotropic velocity field generated from an
energy spectrum [6](Fig. 2(a)). A 1-D projection of such a synthetic flow field is given by
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•Fig. 2(b) shows the statistically stationary kinetic energy spectrum averaged over 5000
time steps.
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Figure 2: (a) Initial Energy spectrum (b) Inertial Scaling with exponent -5/3 (c) Instantaneous velocity profiles at different eddy turnover
times (d) Corresponding instantaneous energy profiles

Kinetic energy and Dissipation

We also look at the k(t) and ϵ1D. We see that the kinetic energy has relatively fewer fluctuations
and is around k0 = 17.1 which we have set as our target kinetic energy. The dissipation ϵ1D has
extreme events but the moving average is around ϵ0 = 32.3 which is per the Reλ = 110 that we
have investigated.
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Figure 3: (a) Normalised Kinetic Energy with time (b) Normalised Dissipation with time

Results and Outlook

With this work, we were able to able to achieve Homogenous isotropic turbulence using ODT in
a significantly less computational time when compared to its DNS counterpart. The next step
is to investigate passive scalar intermittency and the higher structure functions to comment on
the anomalous scaling behaviour observed in the model.
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