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Abstract. We discuss several criteria for clustering graphs, and identify two cri-
teria which are not biased towards certain cluster sizes: the node-normalized cut
(also called cut ratio) and the edge-normalized cut. We present two energy mod-
els whose minimum energy drawings reveal clusters with respect to these criteria.
The energy model that corresponds to the edge-normalized cut differs from the
other energy model in that it is also useful for graphs with very nonuniform node
degrees. We show that its drawings provide insights into the structure of an airline
routing graph, a citation graph, a social network, and a thesaurus graph.

1 Introduction

Force-directed and energy-based graph drawing methods are widely used. They are ap-
plicable to general undirected graphs, adaptable to different drawing criteria, reasonably
easy to implement, and give satisfactory results for many graphs ([10, Chap. 10], [7]).

Energy-based methods generally have two parts: an energy model, and an algorithm
that searches a state with minimum total energy. In force-directed methods, the model is
a force system, and an algorithm searches for an equilibrium state where the total force
on each node is zero. Because force is the negative gradient of energy, this corresponds
to searching a local minimum of energy. This paper takes the perspective of energy
minimization, and focusses on energy models, not on minimization algorithms.

Finding clusters, i.e. subsets of nodes with many internal edges and few edges to
outside nodes, in graphs is an important problem in VLSI design [2], parallel comput-
ing [28], software engineering [25], and graph drawing [8]. This paper presents two
energy models that reveal the clusters of the drawn graph, named node-repulsion Lin-
Log and edge-repulsion LinLog. While the applicability of the node-repulsion LinLog
model (introduced in [27]) is basically limited to graphs with fairly uniform degrees,
the new edge-repulsion LinLog model removes this limitation.

Drawings of graphs are useful because their viewers can infer properties of the graph
from properties of the drawing. Therefore we define and discuss two graph clustering
criteria, and specify precisely how the minimum energy drawings of the LinLog energy
models can be interpreted with respect to these criteria.
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The clustering criteria are discussed in Sect. 2. Section 3 presents the two LinLog
energy models and their formal characterizations. Section 4 shows example drawings
of several artificial and real-world graphs.

1.1 Basic Definitions

For a set M , let |M | be the number of elements of M , and let M (2) be the set of
all subsets of M which have exactly two elements. A bipartition of a set M is a pair
(M1,M2) of sets such that M1 ∪ M2 = M , M1 ∩ M2 = ∅, M1 6= ∅, and M2 6= ∅.

A graph G = (V,E) consists of a finite set V of nodes and a finite set E of edges
with E ⊆ V (2). We only consider graphs with at least two nodes. Because layouts can
be computed separately for different components of a graph, we restrict ourselves to
connected graphs, i.e. graphs where every pair of nodes is connected by a path.

For a node v, the degree deg(v) is the number |{u | {u, v} ∈ E}| of nodes adjacent
to v. The total degree

∑

v∈V1
deg(v) of all nodes in a set V1 is denoted by deg(V1). For

two sets of nodes V1 and V2, the number of edges
∣

∣{{u, v} ∈ E | u ∈ V1, v ∈ V2}
∣

∣

between V1 and V2 is called the cut between V1 and V2 and denoted by cut(V1, V2). We
often identify a set of nodes V1 with the subgraph (V1, {e ∈ E | e ⊆ V1}) it induces.

A d-dimensional drawing of the graph G is a vector p = (pv)v∈V of node positions
pv ∈ IRd. For a drawing p and two nodes u, v ∈ V the length of the difference vector
pv − pu is called the distance of u and v in p and denoted by ||pv − pu||.

2 Graph Clustering Criteria

Many different definitions of the term cluster of a graph have been proposed (e.g. in
[31,30,13,23,32,20]). Informally, we denote by a cluster a set of nodes with many inter-
nal edges and few edges to nodes outside the set. To formalize this notion, this section
discusses several measures of the coupling between subgraphs, and identifies two mea-
sures that are not biased towards certain cluster sizes: the node-normalized cut and the
edge-normalized cut. For simplicity, the discussion is restricted to the coupling between
two subgraphs, but the generalization to more subgraphs is straightforward.

2.1 The Cut

A simple measure of the coupling between two disjoint sets of nodes V1 and V2 is their
cut cut(V1, V2). There exist efficient algorithms for finding a bipartition of a given graph
with the minimum cut [37]. However, such bipartitions do not capture our intuition of
a cluster, because they mostly consist of a very small and a very large subgraph.

To make this more precise, consider the probability space G(V, p) of graphs with
the set of nodes V where the probability of an edge between each (unordered) pair of
nodes is p, and all edges are chosen independently. For a graph from this probability
space, the expected cut of a bipartition (V1, V2) of V is p|V1||V2|, and is thus much
smaller for |V1| � |V2| than for |V1| = |V2|.



2.2 The Node-Normalized Cut

Removing the bias of the cut results in an improved measure of coupling, called the
node-normalized cut:

nodenormcut(V1, V2) =
cut(V1, V2)

|V1| · |V2|

The node-normalized cut of every bipartition of a graph from G(V, p) has the same
expected value p because it is normalized with |V1| · |V2|.

This measure is also called the ratio of the cut, and has been used in VLSI design [2]
and software engineering [25]. The decision whether a graph has a bipartition with a
node-normalized cut smaller than a given constant is NP-complete [4, Problem ND23],
but efficient algorithms for approximations within guaranteed bounds exist [24,3].

The node-normalized cut still does not capture our intuition of a cluster for graphs
with very nonuniform node degrees. Consider two partitions of the set of nodes into
two sets V1 and V2 with |V1| = |V2|. In the first partition deg(V1) = deg(V2), while
in the second partition deg(V1) � deg(V2). Then we expect the cut (and therefore the
node-normalized cut) to be much larger for the first partition than for the second.

To make this more precise, consider the random graph model G(V, (pv)v∈V ) where
the probability of an edge {u, v} (including, for technical reasons, the case u = v, i.e.
loops) is pupv , and all edges are chosen independently. Then the expected cut between
two sets of nodes V1 and V2 is

∑

v∈V1
pv ·

∑

v∈V2
pv . For example, let e =

∑

v∈V pv

and e � 1, then the expected cut is e2/4 if
∑

v∈V1
pv =

∑

v∈V2
pv = e/2, and the

expected cut is only e−1 if
∑

v∈V1
pv = 1 and

∑

v∈V2
pv = e−1.

2.3 The Edge-Normalized Cut

To remove the bias observed in the previous subsection, we consider a given
graph (V,E) as element of the probability space G

(

V, (deg(v)/
√

deg(V ))v∈V

)

,
i.e. we choose the pv such that the expected degree of every node equals its actual
degree in the given graph. Then the expected cut between two disjoint sets of nodes V1

and V2 is deg(V1) deg(V2)/deg(V ). So the following measure of coupling called the
edge-normalized cut has the same expected value 1/deg(V ) for every bipartition of a
graph from G

(

V, (deg(v)/
√

deg(V ))v∈V

)

:

edgenormcut(V1, V2) =
cut(V1, V2)

deg(V1) deg(V2)

A similar measure has been introduced by Shi and Malik [32] as normalized cut:

ncut(V1, V2) =
cut(V1, V2)

deg(V1)
+

cut(V1, V2)

deg(V2)
.

Because deg(V ) edgenormcut(V1, V2) = ncut(V1, V2), the values of the two measures
differ only by a constant factor for a given graph. We prefer the name edge-normalized
cut and the earlier formula to emphasize the parallels to the node-normalized cut. The
problem of deciding whether a given graph has a bipartition with an edge-normalized
cut smaller than a given constant is NP-hard [32].



2.4 Related Work: Other Measures of Coupling

Other measures of the coupling between two nonempty disjoint sets of nodes V1 and V2

include the expansion [20] (also called quotient cut [4])

expansion(V1, V2) =
cut(V1, V2)

min(|V1|, |V2])

and the conductance [20]

conductance(V1, V2) =
cut(V1, V2)

min(deg(V1),deg(V2))
.

Minimizing the expansion is NP-complete [4, Problem ND26], but there are efficient
approximation algorithms [22].

The expansion is biased towards similarly-sized clusters for random graphs
from G(V, p): For |V1| = 1 and |V2| = |V |−1, the expected expansion between V1

and V2 is p(|V |−1), while for |V1| = |V2| = |V |/2, the expected expansion is only
0.5p|V |. The conductance has a similar bias for random graphs from G(V, (pv)v∈V ).
Therefore we prefer the node-normalized and edge-normalized cut as measures of cou-
pling.

3 Energy Models for Visual Graph Clustering

In this section, we present two energy models for visual graph clustering: The node-
repulsion LinLog energy model was shown to clearly visualize clusters with respect to
the node-normalized cut in [27]. We extend this energy model to the edge-repulsion
LinLog energy model, and show that this new energy model clearly visualizes clusters
with respect to the edge-normalized cut. This makes the edge-repulsion LinLog energy
model more suitable for drawing graphs with very nonuniform degrees.

3.1 Definition of the Energy Models

The node-repulsion LinLog energy of a drawing p is defined in [27] as

UNodeLinLog(p) =
∑

{u,v}∈E
||pu − pv|| −

∑

{u,v}∈V (2)
ln ||pu − pv||

To avoid infinite energies we assume that different nodes have different positions, which
is no serious restriction because we are interested in drawings with low energy. The
first term of the difference can be interpreted as attraction between adjacent nodes, the
second term as repulsion between different nodes.

In the edge-repulsion LinLog energy model the repulsion between nodes is replaced
by repulsion between edges. More precisely, the repulsion does not act between en-
tire edges, but only between their end nodes. So the repulsion between two nodes is
weighted by the number of edges of which they are an end node, i.e. by their degrees:

UEdgeLinLog(p) =
∑

{u,v}∈E
||pu−pv||−

∑

{u,v}∈V (2)
deg(u) deg(v) ln ||pu−pv||



The basic idea behind the edge-repulsion LinLog model is that the edges cause
both attraction and repulsion. From the perspective of nodes, the total strength of the
attractive force originating from a node is its degree, and its repulsion is weighted with
its degree, too. This gives each node consistently – in terms of attraction and repulsion –
an influence on the layout proportional to its degree. By the way, this can be visualized
by setting the size of a node to its degree, as in the figures in Sect. 4.

In a node-repulsion LinLog drawing of a graph with very nonuniform degrees, the
positions of the nodes mainly reflect their degrees: The (strongly attracting) high-degree
nodes are mostly placed at the center, and the (weakly attracting, but equally repulsing)
low-degree nodes at the borders. This bias is removed in the edge-repulsion LinLog
model. For graphs with uniform node degrees, both models are equivalent up to scaling.

3.2 Separation of Clusters

Minimum energy drawings of the LinLog models separate clusters from the remaining
graph, and place nodes of the same cluster closely together. They do this by minimizing
a simple distance ratio, namely the ratio of the arithmetic mean of edge lengths to the
geometric mean of the node distances. The only difference is that for the edge-repulsion
LinLog model, the nodes are weighted according to their degree in the geometric mean.

Theorem 1. Let G = (V,E) be a connected graph, and let p0 be a drawing of G with
minimum node-repulsion or edge-repulsion LinLog energy. Then p0 is a drawing that
minimizes arithmeanp(E)

geomeanp(V (2))
, where arithmeanp(E) denotes the arithmetic mean of the

edge lengths

arithmeanp(E) =
1

|E|

∑

{u,v}∈E
||pv − pu||,

and geomeanp(V
(2)) denotes the weighted geometric mean of the node distances

geomeanp(V
(2)) =

∏

{u,v}∈V (2)
||pv − pu||

wuwv

/

∑

{u,v}∈V (2) wuwv
,

where wv = 1 for node-repulsion LinLog and wv = deg(v) for edge-repulsion LinLog.

Proof: Given in [27] for node-repulsion LinLog, similar for edge-repulsion LinLog.

3.3 Interpretable Distances between Clusters

In minimum energy drawings of the LinLog models, the distance of each cluster to
the remaining nodes is interpretable. In node-repulsion LinLog drawings, the harmonic
mean of the distances from the cluster nodes to the remaining nodes equals the inverse
node-normalized cut between the cluster and the remaining nodes. Similarly, in edge-
repulsion LinLog drawings, the harmonic mean of the distances from the cluster nodes
to the remaining nodes, weighted according to the node degrees, equals the inverse
edge-normalized cut between the cluster and the remaining nodes. This holds exactly in
all one-dimensional drawings, and approximately in most practical higher-dimensional
drawings (in particular, when the distance of a cluster to the remaining nodes is large).



Theorem 2. Let G = (V,E) be a connected graph, and let p be a one-dimensional
drawing of G. Let (V1, V2) be a bipartition of V such that the nodes of V1 have smaller
positions than the nodes in V2 (i.e. ∀v1 ∈ V1∀v2 ∈ V2 : pv1

< pv2
).

If p has minimum node-repulsion LinLog energy, then

|V (2)[V1, V2]|
∑

{u,v}∈V (2)[V1,V2]
1

||pv−pu||

=
1

nodenormcut(V1, V2)
.

If p has minimum edge-repulsion LinLog energy, then
∑

{u,v}∈V (2)[V1,V2]
deg(u) deg(v)

∑

{u,v}∈V (2)[V1,V2]
deg(u) deg(v)
||pv−pu||

=
1

edgenormcut(V1, V2)
.

Here V (2)[V1, V2] contains all pairs of nodes {u, v} with u ∈ V1 and v ∈ V2.

Proof: Given in [27] for node-repulsion LinLog, similar for edge-repulsion LinLog.

3.4 Algorithms for Energy Minimization
As usual in force- and energy-based graph drawing (with the exception of Hall’s energy
model [17]), we have no practical algorithm that finds global minima of the LinLog en-
ergy models. In our experiments we use the hierarchical energy minimization algorithm
of Barnes and Hut [5], which was introduced to graph drawing by Tunkelang [34] and
Quigley [29]. Its runtime is in O(|E| + |V | log |V |) per iteration. The overall runtime
grows somewhat faster because the number of iterations needed for convergence tends
to grow with n. Some other efficient minimization algorithms are not expected to find
good energy minima for dense graphs or graphs with small diameter [16,18,35].

Besides being efficient, the algorithm has to find good energy minima. Our expe-
rience is encouraging: We have computed drawings of several graphs with known but
difficult to find clusters, and the results indeed reflect the cluster structure (see Sect. 4).

3.5 Related Work
Force and Energy Models. In contrast to the LinLog models, the well-known energy
models of Eades [11], of Fruchterman and Reingold [15], of Davidson and Harel [9],
of Kamada and Kawai [19], of Hall [17], and multidimensional scaling [21] do not
isolate clusters (with respect to the node-normalized and edge-normalized cut) well, as
discussed in [26,27], and illustrated for the Fruchterman-Reingold model in Sect. 4.

Evaluation of Force and Energy Models. Force and energy models have been
evaluated mainly empirically (e.g. in [6]). We complement the empirical evaluation of
the edge-repulsion LinLog model in Sect. 4 with theoretical results in this section.

Drawing Clustered Graphs. Force-directed methods have been applied to draw
graphs with an explicitly given hierarchical structure [36,12]. In contrast, our goal is to
visualize clusters without requiring knowledge of clusters as input.

Clustering by Minimizing Distance Ratios. The relationship between clustering
and minimizing distance ratios has been exploited in approximation algorithms for bi-
partitions with small node-normalized cuts [24,3]. However, the minima used in these
algorithms are not intended to be interpretable to human viewers. Our work stresses the
equivalence of minimizing such ratios to minimizing energy models, which enables the
application of algorithms from energy based graph drawing for their minimization.



4 Examples

This section shows example drawings of the edge-repulsion LinLog energy model,
and, for comparison, of the node-repulsion LinLog energy model and the well-known
Fruchterman-Reingold force model [15]. The first subsection illustrates the differences
between the models with drawings of two pseudo-random graphs. The second subsec-
tion shows that drawings of the edge-repulsion LinLog model can provide new, non-
trivial, and useful insights into the structure of real-world graphs.

In all drawings, the diameter of the nodes is proportional to their degree, with the
exception that there is a minimum size to ensure visibility. In most drawings, the edges
are omitted to avoid clutter. All node colors and textual annotations were added manu-
ally. Some drawings were rotated manually. (Rotation does not change the energy.)

4.1 Pseudo-Random Graphs

The graph in Fig. 1 is a pseudo-random graph with eight clusters of 50 nodes each.
The probability of an edge {u, v} is 1 if u and v belong to the same cluster and 0.2
otherwise. In contrast to the Fruchterman-Reingold drawing, the LinLog drawings show
the clusters clearly. They are similar because the degrees of the nodes are fairly uniform.

The graph in Fig. 2 is a pseudo-random graph with eight cluster of 50 nodes each.
The probability of an edge {u, v} is

– 1 if u and v belong to the same of the first four clusters,
– 0.5 if u and v belong to the same of the second four clusters,
– 0.2 if u and v belong to different of the first four clusters,
– 0.05 if u and v belong to different of the second four clusters, and
– 0.1 if u belongs to one of the first and v belongs to one of the second four clusters.

Both LinLog models reveal the clusters, but their drawings differ because the degrees
of the nodes are nonuniform. The node-repulsion LinLog drawing places the first four
clusters more closely than the second four clusters, which reflects that node-normalized
cuts between the first four clusters are higher than between the second four clusters. In
the edge-repulsion LinLog drawing the distances between all clusters are similar, which
reflects that the edge-normalized cuts between all pairs of clusters are similar.

4.2 Real-World Graphs

Table 1 gives an overview of the graphs in Fig. 3 to 6. In all graphs, the edges were
considered as undirected, and only the largest connected component was drawn. (It
always contained more than 90 percent of the nodes and 98 percent of the edges.)

In the drawings of the Fruchterman-Reingold model (Fig. 3a and 6a) and the node-
repulsion LinLog model (Fig. 3b and 6b), nodes with high degree are placed in the
center, and nodes with low degree near the borders. So the positions of the nodes mainly
reflect their degree.

In Fig. 3, only the edge-repulsion LinLog drawing clearly shows that there are two
groups of friends – the left group around Chris and Rick and the right group around
Steve and Irv – which are mainly connected by Upton and Dan.



Table 1. Graphs in Fig. 3 to 6

Fig. Description Node Edge # nodes # edges Source
3 friendship network person is friend of 33 911 Pajek project2

4 GD citations 1994-2002 GD paper cites 314 772 GraphAEL project3

5 Roget’s thesaurus category references or 994 5058 The Stanford
is related to GraphBase4

6 US airline routing airport direct flight 332 2126 Pajek project2

In the edge-repulsion LinLog drawing of the Graph Drawing citations in Fig. 4, the
positions of the nodes roughly reflect the topics of the papers. (This is hard to show
in a single figure because we could only annotate the nodes with the highest degrees.)
For example, papers 1 to 5 and 26 to 28 deal with orthogonal graph drawing, papers
7 to 9 with 3D orthogonal graph drawing, papers 10 to 14 with 3D graph drawing,
papers 15 to 17 with visibility representations, and papers 19 to 21 with force-directed
methods. The difficulty of visualizing this graph is shown by an earlier drawing in [14].

The edge-repulsion LinLog drawing of Roget’s thesaurus in Fig. 5a provides a nice
map of (parts of) the English language, because semantically related categories are
grouped together. This is exemplified by the two zoomed areas in Fig. 5b and c.

Figure 6c shows that the edge-repulsion LinLog model discovers (roughly) the rel-
ative geographical locations of the US airports from the airline routing graph. This is
possible because close airports are more likely to be connected by a direct flight. In all
drawings in Fig. 6 the airports in Alaska and the South Sea (e.g. Guam) are omitted to
improve the readability of the remaining drawing.

5 Conclusion

When graphs with very nonuniform degrees are drawn with the node-repulsion LinLog
energy model, the positions of the nodes mainly reflect their degree. We identified a
measure of coupling, called edge-normalized cut, that is normalized against degrees,
and introduced an energy model, called edge-repulsion LinLog, whose drawings reveal
clusters with respect to this coupling measure. Examples drawings of this energy model
provided useful insights into practical graphs. Because many real-world graphs have
clusters and nonuniform degrees [33,1], we expect the edge-repulsion LinLog model to
be widely applicable.

We see two main directions for future work. Firstly, the development of new energy
minimization algorithms and the adaption of existing algorithms specifically for the
LinLog models and their addressed graphs is largely unexplored. Secondly, the edge-
repulsion LinLog model is only suitable for graphs where the degree of a node can
be interpreted as its importance. Other graphs with nonuniform degrees, like graphs of
module uses in software systems, require other energy models.

1 includes reciprocated and nonreciprocated relationships
2 http://vlado.fmf.uni-lj.si/pub/networks/data/
3 http://graphael.cs.arizona.edu/
4 http://www-cs-faculty.stanford.edu/˜knuth/sgb.html



(a) Fruchterman-Reingold model

(b) Node-repulsion LinLog model

(c) Edge-repulsion LinLog model

Fig. 1. First random graph

(a) Fruchterman-Reingold model

(b) Node-repulsion LinLog model

(c) Edge-repulsion LinLog model

Fig. 2. Second random graph



(a) Fruchterman-Reingold model

(b) Node-repulsion LinLog model

(c) Edge-repulsion LinLog model

Fig. 3. Friendship network



1. Fößmeier, Kaufmann: Drawing High Degree Graphs with Low Bend Numbers (95)
2. Biedl, Madden, Tollis: The Three-Phase Method: A Unified Approach to Orthogonal Graph Drawing (97)
3. Fößmeier, Kant, Kaufmann: 2-Visibility Drawings of Planar Graphs (96)
4. Garg, Tamassia: On the Computational Complexity of Upward and Rectilinear Planarity Testing (94)
5. Papakostas, Tollis: Improved Algorithms and Bounds for Orthogonal Drawings (94)
6. Wood: Multi-dimensional Orthogonal Graph Drawing with Small Boxes (99)
7. Eades, Symvonis, Whitesides: Two Algorithms for Three Dimensional Orthogonal Graph Drawing (96)
8. Papakostas, Tollis: Incremental Orthogonal Graph Drawing in Three Dimensions (97)
9. Wood: An Algorithm for Three-Dimensional Orthogonal Graph Drawing (98)

10. Bruß, Frick: Fast Interactive 3-D Graph Visualization (95)
11. Garg, Tamassia: GIOTTO3D: A System for Visualizing Hierarchical Structures in 3D (96)
12. Patrignani, Vargiu: 3DCube: A Tool for Three Dimensional Graph Drawing (97)
13. Webber, Scott: GOVE Grammar-Oriented Visualisation Environment (95)
14. Cohen, Eades, Lin, Ruskey: Three-Dimensional Graph Drawing (94)
15. Fekete, Houle, Whitesides: New Results on a Visibility Representation of Graphs in 3D (95)
16. Alt, Godau, Whitesides: Universal 3-Dimensional Visibility Representations for Graphs (95)
17. Bose, Di Battista, Lenhart, Liotta: Proximity Constraints and Representable Trees (94)
18. Purchase: Which Aesthetic has the Greatest Effect on Human Understanding (97)
19. Frick, Ludwig, Mehldau: A Fast Adaptive Layout Algorithm for Undirected Graphs (94)
20. Gansner, North: Improved Force-Directed Layouts (98)
21. He, Marriott: Constrained Graph Layout (96)
22. Eades, Feng: Multilevel Visualization of Clustered Graphs (96)
23. Brandenburg: Graph Clustering 1: Circles of Cliques (97)
24. Himsolt: The Graphlet System (96)
25. Lauer, Ettrich, Soukup: GraVis – System Demonstration (97)
26. Bridgeman, Tamassia: Difference Metrics for Interactive Orthogonal Graph Drawing Algorithms (98)
27. Papakostas, Tollis: Issues in Interactive Orthogonal Graph Drawing (95)
28. Brandes, Eiglsperger, Kaufmann, Wagner: Sketch-Driven Orthogonal Graph Drawing (02)
29. Graph-Drawing Contest Reports 1995-2002
30. Binucci, Didimo, Liotta, Nonato: Labeling Heuristics for Orthogonal Drawings (01)

Fig. 4. Citation graph of the Graph Drawing Symposia 1994-2002, drawn with the edge-
repulsion LinLog model



(a) Complete thesaurus

(b) Zoom into the central part (c) Zoom into the right part

Fig. 5. Roget’s thesaurus, drawn with the edge-repulsion LinLog model



(a) Fruchterman-Reingold model (b) Node-repulsion LinLog model

(c) Edge-repulsion LinLog model

Fig. 6. Flights between US airports
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