A Formalism for Modular Modelling
of Hybrid Systems *

Dirk Beyer and Heinrich Rust**

Lehrstuhl Software-Systemtechnik, BTU Cottbus
Computer Science Reports 10/99, October 1999

Abstract. We present a formalism for modular modelling of hybrid systems,
the Cottbus Timed Automata. For the theoretical basis, we build on work about
timed and hybrid automata. We use concepts from concurrency theory to model
communication of separately defined modules, but we extend these concepts to
be able to express explicitly read- and write-access to signals and variables.

1 Introduction

The programming of embedded systems which have to fulfill hard real-time require-
ments is becoming an increasingly important task in different application areas, e.g. in
medicine, in transport technology or in production automation. The application of for-
mal methods, i.e. of modelling formalisms and analysis methods having a sound math-
ematical basis, is expected to lead to the development of systems with less defects via
a better understanding of critical system properties (cf. [Rus94]).

In [BR98] a modelling notation is presented which allows to model hybrid systems
in a modular way. It builds on the theoretical basis used in tools like UppAal [BLL*96],
Kronos [DOTY96] and HyTech [HHWT95]. In these formalisms and tools, finite au-
tomata are used to model the control component of an automaton, and analogue vari-
ables which may vary continuously with time are used to model the non-discrete system
components of a hybrid system. Partial automata of a larger system communicate via
CSP-like synchronization labels (cf. [Hoa85]). Algorithms for these kinds of models
have been presented in [ACD93] and [HNSY94].

In [BR98], we presented a refined notation which introduces the following concepts:

— Hierarchy: Subsystem descriptions can be grouped. Interfaces and local compo-
nents are separated.

— Explicit handling of different types of communication signals: We allow to express
explicitly that an event is an input signal for an automaton, an output signal, or a
multiply restricted signal.

* This paper is a revised version of a paper which appeared in the same report series {BR99].
Printing date: October 29, 1999.
** Reachable at: BTU, Postfach 101344, D-03013 Cottbus, Germany; Tel. +49(355)69-3803,
Fax.:-3810; {db | rust}@informatik. tu-cottbus.de

— We allow to express explicitly that an analogue variable is accessed by an automa-
ton as output, as input, or that it is multiply restricted.

— Automatical completion of automata for input signals. Input signals are events
which an automaton must always admit. If there are configurations of an automa-
ton in which the reaction to an input signal is not defined, it is understood that the
automaton enters an error state.

~ Recurring subsystem components do not have to be multiply defined. They are
instantiated from a common module type.

The differentiation between different roles of signals in an automaton has been used
in the definition of I0-automata [LT87] and extended to hybrid systems in [LSVW96].
In [AH97], another approach is presented to describe modular hybrid systems. It builds
on reactive modules [AH96} and extends them with continuously changing variables.

2 Formal definition

Our semantics for the basic underlying model is similar to that of [Hen96]. We extend it
by formalizing our concepts of different types of input, output, multiply restricted and
locally defined signals and variables, and by formalizing what it means to instantiate a
module in a context module.

2.1 Hybrid automata

The basic concept in our formalization is the hybrid automaton.

Definition 1. (Value assignments, configurations, hybrid automata) A hybrid au-
tomaton consists of the following components:

— St A finite set of discrete states.

— G A finite set of signals.

— Vi A finite set of analogue variables.

Variables are used in value assignments. A value assignment for a set of variables
is a member from the set of functions A(V) =V — R.

Anelementc € C = 5 x A(V) is called configuration. It consists of a state of the
automaton and a value assignment to its variables. A set of configurations is called
aregion.

~ I C C': Aninitial condition, described as a set of configurations.

— T': A finite set of transitions.

- inv: S — 24(V): A function associating an invariant to each state. The invariant is
a set of value assignments.

— deriv : S — 24(V"): A function associating a set of admissible derivatives to
each state. In the finite set of variables V' there is for each variable v € V the
corresponding element v’ which is used to define admissible time derivatives of
the variable v. While the automaton remains in a state the continuous changes of a
variable v are defined by their first time derivative v'.

— trans : T — S x S: A function associating a starting state and a target state to each
transition.

— guard : T — 24(V): A function associating a guard with each transition.

- sync : T — GU{x}: A function associating a signal or no signal to each transition.
* Is not a signal; it is the value of sync(¢) for transitions without a signal.

- allowed : T — (A(V) = 24()): A function associating with each transition a
function which transforms a value assignment into one of a set of value assign-
ments. The aim of this function is to restrict changes which may occur in any envi-
ronment.

— initiated : T — (A(V) — 240 withVt € T,a € A(V) : initiated(t)(a) C
allowed(t)(a): A function associating with each transition a function which trans-
forms a value assignment into one of a set of value assignments. In contrast to
"allowed’ the aim of this function is to restrict changes which occur without an
environment.

Foreach t € T and a € guard(t), the set initiated(t)(a) must be nonempty. This
condition ensures that the ’initiated’ or "allowed’ component can not inhibit a dis-
crete transition to be taken.

A further restrictions is: For each s € S, there is an element £, of T" with the following
properties:

trans(ts) = (s, 5)

guard(t,) = true

sync(ts) = *

Va € A(V) : initiated(t,)(a) = {a}
- Va € A(V) : allowed(t,)(a) = A(V)

These transitions are no-op transitions. The subset of T consisting of all no-op tran-
sitions is referred to by noop’. The ’allowed’ function of no-op transitions does not
exclude any resulting value, and ’initiated’ defines that no variable value changes. O

Notational convention: A typical case to use the ’initiated’ predicate is to restrict
variables which are not restricted by any parallel transition. If there is a variable which
does not occur ticked in at least one inequation of the ALLOW clause, then this does
not mean that the whole range of IR is possible. For a variable which does not occur
ticked in ’ALLOW’ the meaning is that this transition does not change the value of
the variable. Transitions of environmental automata are allowed to restrict the variable.
But if no automaton restricts the variable z in its transition in the same point in time,
then we use the information of the ’initiated’ set which contains typically the additional
restriction ' = z. To express that the whole range of IR is possible for z after a
transition, one might use the clause ALLOW {z' > 0 OR z' < 0}. In our notation we
only use the typical case described above. Perhaps there are other useful aspects for a
more general use of the ’initiated’ set, but we did not yet find them, and thus we restrict
our notation to have an easy to use syntax. Thus, in the INITIATE clause would be only
restrictions of the form z' = x for each variable z € X (set of variables known by
the automaton), if does not occur ticked in ALLOW. The consequence for us is to
generate the ’initiated’ set automatically, i. e. we do not have a syntactical clause for
INITIATE in our notation.

Process 1 (p1):

t1
k= Assign
GUARD : k =0 INV: x1<=a

ALLOW : x1’=0 \DER(x1) =1

Start Uncritical

DER(x1) = 1

INV: false ALLOW : K'=0

ALLOW : k'=1

ALLOW :k' =0 AND x1'=0

Wait
DER(x1)=1

Critical

DER(x1) = 1

GUARD : x1>=b
AND k=1

Process 2 (p2):

Start Assign

GUARD : k=0 INV: x2<=a
ALLOW : x2'=0 \DER(x2) = 1

t2

ALLOW : k'=2
AND x2'=0

Uncritical
DER(x2) = 1

INV: false

ALLOW : k'=0

GUARD : x2>=b
ALLOW :K'=0

Critical

DER(x2) = 1

GUARD : x2>=b
AND k=2

INPUT a: CONST,; b: CONST
LOCAL x1: STOPWATCH, x2: STOPWATCH
MULTREST k: DISCRETE

Fig. 1. Fischer’s mutual exclusion protocol

Note. All variables which occur in an ’ALLOW’ clause must be declared as OUTPUT,
LOCAL, or MULTREST.

2.2 Illustration

To show the intention of the hybrid automata we display the automata for Fischer’s
timing-based mutual exclusion protocol in Fig. 1 (cf. [Lam871). In our Fischer automa-
ton a process is modelled by five states. *Start’ is the initial state for the automaton.
From here it takes a transition initializing the shared variable k to the state which mod-
els the uncritical section. From this state only one transition is possible: If the shared
variable signifies that no process is in the critical section then the process can try to
enter the critical section. It enters the state modelling the ’Assign’ statement. The clock
z; (with time derivation 1 in all states) measures the time staying in this state, and the
invariant forces to leave the state after at most time a, which models the maximal time
needed by the assign statement of the process. Then the transition to the *Wait® state
sets the variable k to the number of the process. In this state we have to wait at least

time b to give other processes a chance to set k to its process number. After time b the
process can decide to enter the critical section if £ = i. Otherwise it goes back to the
uncritical section. Leaving the critical section the automaton sets & to value 0 to signify
that the resource is free again.

’Allowed’ and ’Initiated’. Now we give an intention of our double transition pred-
icates. The ALLOW clause at transition ¢; of process p; defines both the ’allowed’
set and the ’initiated’ set. The restriction for the ’allowed’ set is z{ = 0, which de-
fines the new value of variable z, after the transition is taken. The ’initiated’ set is
additionally restricted by the notational convention given after Definition 1 above:
zy = 0OANDE' = k. Thus variable k is not changed by this transition although k
could be changed by a transition executed in parallel to this transition.

The advantage of the distinction beetween ’allowed’ and ’initiated’ is that we can
express that the value of a variable is not changed by a transition in one automaton,
but this transition allows a value change by a transition in a parallel automaton. If, for
example, p; is in state 1 and it takes transition ¢; then we have two possible situations
in process po:

~ po takes ¢, at the same point in time. The only valid value of variable k is 2 because
of the ALLOW clause of t5.

— If ps does not take ¢, in parallel, then the ’initiated’ set of process p; forces k' = 0
(because of k' = k, and k = 0 by guard).

To present our notation we show the textual version of the system in Fig. 2. Implicit
invariants and guards are understood to be true. The instantiation concept used in the
module is explained in the sequel of the paper.

The semantics of a hybrid automaton will be defined formally in the next section.

2.3 Labeled transition system semantics of hybrid automata

Notation. For areal ¥ and two value assignments @ and o’ € A(V), let u*a denote the
function A(v : V) : u * a(v), and let a + o' denote the funtion A(v : V) : a(v) + a’(v).
time : C' xIR x A(V) — C is a function describing how the passage of some time u
changes a configuration (s, a) when a time derivative d € A(V) for the variable values
is fixed:
time((s,a),u,d) = (s,a + ux*d)

A hybrid automaton can perform time transitions and discrete transitions.

Definition 2. (Time transitions and discrete transitions of a hybrid automaton) Let
H be a hybrid automaton.
time(H) is the set of time transitions of 7. It is defined as the following set:

{ (s,a1),(s,a2)) € CxC
| 3d € deriv(s),u € R,u > 0:
((s,a2) = time((s,a;y),u,d)
A V' 0<uw <u): tme((s,a1),v,d) € inv(s)

)

MODULE Process {

// Constants for time bounds.

INPUT

// a is the maximal time the modelled assignment k:=1 needs.

a: CONST;

// initiated from other processes.

b: CONST;

processNo: CONST;
MULTREST

k: DISCRETE;
LOCAL

x: CLOCK;

// Parameter for significant value of k.

// k is the flag for announcement.

// b is the minimal time the process waits for assignments

// A clock to measure the time in a state.

INITIALIZATION { STATE(Fisher)

AUTOMATON Fisher {

STATE start {
STATE uncritical {
STATE assign {
STATE wait {

STATE critical {

}

MODULE System {

LOCAL
a = 3: CONST;
pNol = 1: CONST;
MULTREST
k: DISCRETE;

INV

TRANS

{

DERIV

TRANS

INV

{

DERIV

TRANS

DERIV

TRANS

TRANS

DERIV

TRANS

b =
pNo2

3:

= start; }
FALSE; }
uncritical { ALLOW
{ DER(x) = 1;}
assign { GUARD
ALLOW
x <= a; }
{ DER{x) = 1; }
wait { ALLOW
{ DER{x) = 1; }
uncritical { GUARD
critical { GUARD
{ DER(x) = 1; }
uncritical { ALLOW
CCONST;
2: CONST;

INST Processl FROM Process WITH

a AS a;
b AS b;
processNo AS pNol;
k AS k;
}
INST Process2 FROM Process WITH
a AS a;
b AS b;
processNo AS pNo2;
k AS k;

Fig. 2. Fischer’s Protocol

{

{

X'=

xR ARAX

’

>=

>=

0 AND
k’= processNo;

b AND
<>processNo;
b AND
= processNo;

0;

}

)

3

: An example for a CTA model

bl

3l
bl

}

}

discrete(H) is the set of discrete transitions of . It is defined as the following set:

{ ((s1,01),(s2,v2))
[3(:T):
(trans(t) = (sq, $2)
A vy € guard(t)
A vo € initiated(¢t)(vy)

)

a

Illustration. We illustrate these definitions with our example in Figure 1: If the
automaton pl has entered state * Assign’ then the variable x1 has the value 0 and the first
time derivative of z1 is 1. In this situation the following time transitions are possible:
For each time v in the interval (0, o] (a is the upper bound for z1 in the invariant) the
automaton may take the time transition to the configuration (Assign, a) with a(z1) =
z1 4+ u * 1 (a is the value assignment). The other possibility is to take the discrete
transition to state *Wait’ leading to the configuration (Wait, @) where a is not changed
by the transition.

Note. For discrete transitions the invariant is irrelevant. An invariant which is identi-
cally false can be used to construct urgent states, i. e. states in which time cannot pass.
The state component of the configuration may not change in a time transition.
In the definition of the set of discrete transitions, the signals and the "allowed’ func-
tion are not used. Their meaning is defined later, when we consider the parallel compo-
sition of automata. O

We will define a transition system semantics for hybrid automata.

Definition 3. (Transition system) A transition system consists of the following com-
ponents:

— A (possibly infinite) set S of states, with a subset Sy of initial states.
— AsetT C S x S of transitions.
O

Notation. We use the point notation A.z to address the component z of A. O

The transition system corresponding to a hybrid automaton is defined in the follow-
ing way:

Definition 4. Let H be a hybrid automaton. The transition system ts(#) correspond-
ing to H is defined in the following way:

- ts(H).S = H.C.
- tS(H).SO = er H.I
— ts(H).T =, time(H) U discrete(H).

Note. The state space of the transition system consists of the configurations of the hy-
brid automaton. The set of starting states in the transition system is defined via the inital
condition of the hybrid automaton. The transitions of the transition system are all time
transitions and all discrete transitions of the transition system. o

2.4 Parallel composition of hybrid automata

In this section, we define what it means for two hybrid automata to be composed paral-
lely.

We define the extension of a value assignment or a configuration by not restricting
the values for the added variables, and some further notation.

Notation. For a tuple of length n, m; with ¢ € {1,...,n} is a projection operator: it
selects the ¢’th element.

For a function f, we write dom(f) for its domain and ran(f) for its range.

For a function f with domain D and with D' C D, we write f[D' for the restriction
of f to D'. For aset F' of functions, F'[D’ is the result of applying -[D' componentwise.

Let C C S x A(V) be a set of configurations over the states S and the variable
assignments for V, let B C A(V) be a set of variable assignments for V, and let V'
be a superset of V. Then, the extensions of B and C to V', written extend(B, V') and
extend(C, V'), are defined as follows:

extend(B, V') =, {a' € A(V')|3a € B:a=(a'[V)}
extend(C, V') =4 {(s',a') € S x A(V")|3(s,a) €C:s =5 Aa=(d[V)}

Modular specification makes it necessary to combine several hybrid automata.

Definition 5. (Parallel composition of hybrid automata) Let # and H' be two hy-
brid automata. Their parallel composition P = #||H' is defined in the following way
(cf. [Hen96] for the general principle):

- PS=pHSXH.S

-PG=uHGUH G

- PV =uHVUHY

- PI =y extend(H.I,P.V) N extend(H'.I,P.V)
- PT =

{ () eHT xH.T
| H.sync(t) € H'.G —H.sync(t) = H'.sync(t')
A H'.sync(t') € H.G -H' .sync(t') = H.sync(t)
A H.sync(t) # H'.sync(t') —(t € H.noop V' € H'.noop)

- P.inv((s,s")) =4 extend(H.inv(s),P.V) N extend(H'.inv(s'),P.V)
— P.deriv((s,s')) = extend(H.deriv(s), P.V) N extend(H'.deriv(s'), P.V)

— P.trans((t,t')) =

((mi(H.trans(t)), m (H' trans(t'))) ,
) (mo(H.trans(¢)), wo (H' .trans(t')))

- P.sync((t,t')) =w
if H.sync(t) ==
then H'.sync(t')
else H.sync(t)

— P.allowed((t,t'))(a) =u

extend(#.allowed(¢)(a[H.V),P.V)
N extend(H'.allowed(t')(a[H'. V), P.V)

— For the definition of ’initiated’ we need to refer the set of variables which are not
restricted in the corresponding ’ALLOW’ clause. We call this set *Unmentioned’.
P initiated((¢, t'))(a) =4

P .allowed((t,t'))(a)
N N extend(a[{v}, P.V)

veUnmentioned
— P.guard((t,t")) =

extend(H.guard(t), P.V)
N extend(#H'.guard(t'), P.V)
N{ac A(P.V) | P.allowed((t,t"))(a) # {}}

Note. The set of transitions of the parallel composition consists of pairs of transitions
which have to be executed together. The no-op transitions defined to be in H.T ensure
that independent transitions in the two automata can be executed independently in the
parallel composition. For non-synchronizing pairs of transitions, at least one of the
paired transitions must be a no-op transition.

We include the information in the guard that the intersection of the allowed-sets
for a value assignment is empty or nonempty. In this way, the restriction for initiated-
sets and allowed-sets in hybrid automata, i.e. that they have to be nonempty for value
assignments in the guard, is trivially fulfilled for transitions with contradicting allowed-
sets.

The parallel composition allows all transformations of value assignments which are
allowed by H.allowed and #’.allowed. If we do not restrict a variable in the *allowed’-
set of a transition, this means that we do not restrict the value of this variable after
the transition has been taken. If no other automaton restricts this variable, it may get
any value from the whole range of IR. But we often want to express that any change
may happen to the variable during the transition, but that the given automaton itself on
its own would not change the value. The solution to this problem is: If no automaton
restricts a variable v and we would like to express that its value does not change, we set
a restriction in ’initiated’ that v has the same value as before the transition. o

The parallel composition of two hybrid automata is again a hybrid automaton:

Proposition 6. Let H and H' be two hybrid automata. Then P is also a hybrid automa-
ton. g

Notation. (Parallel composition of several automata) Let .4 be a nonempty finite set
of hybrid automata. Then][, . , a denotes a parallel composition of all elements of A
in some order. 0

Note. Different orders of the automata from .4 lead to different automata, but with
respect to the communication behaviour they are isomorphic.

2.5 Hybrid modules

Hybrid modules are hybrid automata with partitions of the variables and signals into
input, output, multiply restricted and local sets. Thus, hybrid modules encapsulate those
of our new concepts which concern the interface specification of a CTA modules.

Definition 7. (Hybrid modules) A hybrid module consists of the following compo-
nents:

— H: A hybrid automaton.

— G = H.G: The signals of the hybrid module are those of the hybrid automaton.
— G1I C H.G: The set of input signals.

— GO C H.G: The set of output signals.

— GMR C H.G: The set of multiply restricted signals.

— GL C H.G: The set of locally defined signals.

— V = H.V: The variables of the hybrid module are those of the hybrid automaton.
— VI C H.V: The set of input variables.

— VO C H.V: The set of output variables.

— VMR C H.V: The set of multiply restricted variables.

— VL CH.V: The set of locally defined variables.

These components have to fulfill the following axioms:

- GI,GO,GMR and GL are a partition of H.G. This means that they are pairwise
disjoint, and their union is H.G.

— Foreach s € H.S and each g; € G1, the following holds: Let T’ C H.T be the set
of transitions of A starting at s and marked with g;. The disjunction of the guards
of T is identically true.

- VILVOVMR and V L are a partition of 1.V

— Foreach v; € VI, the following two conditions hold:

e Foreachs € H.S :

‘H.deriv(s) =
extend(H.deriv(s)[(H.V — {v;}), H.V)

10

e Foreacht € H.T and each a € H.guard(t):

H.allowed(t)(a) =
extend(H.allowed(t)(a)[(H.V — {v;}), H.V),
Va’' € H.initiated(t)(a): a’(v;) = a(v;)

Note that the operation ‘[is used in the last two formulas as componentwise do-
main restriction for a set of functions.
0

Note. These definitions encapsulate our decisions for the difference between input sig-
nals and the other signals, and between input variables and the other variables. Note that
output, multiply restricted and local signals and variables are not differentiated by these
definitions. The differences between these concepts will be defined when we consider
hybrid compositions.

The definition for input signals can be interpreted as follows: For each input signal
and each state of the automaton, some transition labeled with the signal can always be
taken. In this way the automaton does not restrict the input signal and thus it is not to
blame for a time deadlock.

The multiply restricted components are available for all access modes. A module as
well as the environment for which a signal or variable is declared as MR can restrict the
component in any way.

The definitions for input variables can be interpreted as follows:

— The derivation for an input variable may not be restricted in the deriv-set of any
state of the automaton.
— The value of an input variable after a transition may not be restricted in the allowed-
set of any value assignment in a transition.
— In difference to ’allowed’, input variables can be restricted in ’initiated’ to reflect
that the value of the input variable is not changed by this automaton.
O

2.6 Compatibility of hybrid modules

To build a composition of hybrid modules we need some restrictions to ensure that the
composition is a hybrid module again. For the definition of compatibility we need some
notation.

Notation. Let M = {my,...,m,} be a finite, nonempty set of hybrid modules
(IM| = n). Let G be a finite set of signals with G = GI W GO W GMR W GL
(we use the symbol W for the disjoint union) and V be a finite set of variables
(V=VI’gVOwVMRYVL)foreach module m € M.

Let Ginput = (U m.GI) — < U m.GOUm.GMRU m.GL) be the set of
meM meM
signals which are used at most as input signal in all the modules. These are the signals

which the product automaton must not restrict.
If £ is a tuple, then t; denotes m;(%).

11

The set of all combinations of transitions (from modules of the set M) which are
synchronized with input signal g is given by the following function:

T : Ginput — 2myHTxxma HT) defined by:
temiHT x...xm HT
Jke{l,...,n}:mp.H.sync(ty) =g
. g €m;.G = mjH.sync(tj) =g
A (V] €{l,....n}: A g &m;.G = m;H.sync(t;) = *

T(g) =u

Furthermore we need a function t to get the set of all tuples of transitions synchro-
nized with g for a given signal g and a starting state 3 :

t: Ginput X (M1 H.S X ... X mp H.S) — 2(mi-HTX e xma HT)
defined by:
t(9,5) = {t€T(g) | Vie{l,...,n}:m(m;Hirans(t;)) =s;}

Now we can define the compatibility of hybrid modules.

Definition 8. (Compatibility of sets of hybrid modules) A nonempty, finite set of
hybrid modules M is compatible if and only if there is a set G which is partitioned
into four subsets GI, GO, GM R and GL, the input, output, multiply restricted and
locally defined signals of the hybrid composition, and a set V' which is partitioned into
four subsets VI, VO, VMR and V L, the input, output, multiply restricted and locally
defined variables of the hybrid composition, such that the following conditions hold:

1. Communication through common components:
Vmom' e M m#m' - (mGNm' GCGAmYV Nm'.V CV)

2. Hiding of local components:

' _) m.GLNm'.GL={} =m.GLNG
Vm,m’ € M:m #m’ - (A mVLAm' VL={}=mVLOV

3. Usage of input components:

VInNmVO={}=VInmVMR
4. Usage of output components:

1 !
Vm,mIEM:m#m'—)(/\ m.GOﬂm.Ggm.Gl)

m.GONG C (GLUGO)

! !
Vm,m'eM:m;ém'—)</\ mVonm'VCm' VI)

m.VONV C (VLUVO)

12

5. Avoiding restriction of input signals:
Let Vou = |J m.V be the set of all variables.
meM
Vg € Ginpur : V5E€mMp.H.S x ... xmpH.S:

N extend (m; H.guard(t;), Vo)

1<ikn
N
a€ A (Va”)
U
iet(g,5) N eztend (m;. H.allowed(t;)(a[m;. V), Vay)
1<i<n
#{}

—_]RVazz
0

Note. 1. Elements of M can at most communicate through elements of G and V. This
means that for different hybrid modules in a hybrid composition, common signals
and common variables must be elements of G and V.

2. The local signals and variables of different modules are different and the local sig-
nals and variables of a hybrid module are not used outside the hybrid module.

3. Input signals and input variables of the hybrid composition are not used as output
or multiply restricted signals or variables in the component modules.

4. Output signals of a hybrid module may at most be used as input signals in the con-
text of the hybrid module, and those of them which are members of the signals of
the containing hybrid composition must be either locally defined or output signals.
The analogue proposition is true for variables.

5. To avoid the restriction of input signals we have to ensure that at every point in
time a transition is enabled to synchronize with an input signal. Thus we have to
fulfill the condition that for each input signal in each state tuple the disjunction of
the common guards is identically true and the ’allowed’ set does not forbid any
transition. To construct this condition, we take the conjunction of the guards from
all transitions in the common transition (note that the guards from no-op transitions
are true) and then we have to subtract the guards, for which a common assignment
is not possible.

2.7 Hybrid compositions

We define hybrid compositions as parallel composition of hybrid modules.
Definition 9. (Hybrid compositions) A hybrid composition is a tuple (G,V, M),

where G is the finite set of signals, V' is the finite set of variables and M is a com-
patible set of hybrid modules. O

13

The definitions for hybrid compositions contain some of the most important of the
concepts we introduce in this work. They allow to structure a system into subsystems,
and they contain the core of the concepts used to differentiate between different kinds
of signals and variables.

What is missing is the possibility to define hierarchical systems. We allow this by
defining a hybrid module which is equivalent to a given hybrid composition. The com-
ponent modules in a hybrid composition can be combined to a hybrid automaton. This
yields a hybrid module corresponding to the hybrid composition:

Definition 10. Let C be a hybrid composition. The hybrid module described by the
function hymod(C) corresponding to C is a flattened version of this hybrid composition
C. We define the function hymod(C) in the following way:

— hymod(C).GI =, C.GI

— hymod(C).GO =, C.GO

— hymod(C).GMR =, C.GMR

- hymod(C).GL =4 C.GLU (U,pec.pe m-G) — (C.GIUC.GOUC.GMR)

- hymod(C).G =, hymod(C).GI U hymod(C).GO U hymod(C).GMR U
hymod(C).G

— hymod(C). VI = CVI

- hymod(C).VO =, C.VO

— hymod(C) VMR =,. CVMR

- hymod(C).VL = C.VLU (U, cc.prm-V) = (CVIUCVOUCVMR)
— hymod(C).V =, hymod(C).VI U hymod(C).VO U hymod(C).VMR U
hymod(C).VL

- hymod(C).H =,c] mH
meC.M 0

Note 11. The local signals and variables of the hybrid module corresponding to a given
hybrid composition consist of the local signals and variables of the hybrid composition
itself and of all signals rsp. variables of component modules which do not occur as
interface signals rsp. variables of the hybrid composition.

Note 12. To get the product automaton for the whole composition we have to generate
the product of all the sets of automata contained in the component modules.

Proposition 13. (hymod defines a hybrid module for a hybrid composition)
Let C be a hybrid composition. Then hymod(C) is a hybrid module.

Proof outline. We have to show that the function hymod(C') produces a hybrid automa-
ton which fulfills the axioms in Definition 7. The first and the third axioms are fulfilled
by the construction of the partitioned sets of signals and variables. The second axiom
requires that the construction of the product automaton has to be stable according to
the completness of the guards for input signals. It is fulfilled by the compatibility of
the hybrid modules in the composition. Item 7 of Definition 8, which ensures that no
transition is avoided by an empty allowed-intersection, makes it possible to construct
the product automaton hymod(C').H. The fourth axiom requires that no input variable

14

is restricted by neither the derivative function nor the allowed function. This is fulfilled
because the intersection of some deriv sets (rsp. allowed sets), which do not restrict the
input variable v, does not restrict v, too. For nonrestricted variables (i.e. those which do
not occur ticked in the "ALLOW’ clause) the initiated set does not change the values.
Thus the constructed sets for derivations, allowed and initiated sets fulfill the conditions
in Definition 7.]

2.8 Instantiation of hybrid modules

Often it is helpful to use several similar hybrid modules as components in a hybrid
composition. For this, we will use instantiations of an existing hybrid module.

Definition 14. (Hybrid instantiations) Let M and M’ be hybrid modules with dis-
joint sets of signals and variables. A hybrid instantiation of module M for use in
module M’ consists of the following components:

— M: The instantiated hybrid module.

— M'’: The context module in which M is instantiated.

— ident: An identification function assigning to each element of a subset of the signals
and variables of M a signal or a variable of M'. ’ident’ has to fulfill the following
conditions:

o Signals are mapped to signals and variables are mapped to variables.
o The function’s domain does not contain local signals or variables of the instan-
tiated hybrid module:

dom(ident)
c
(M.G-MGLYU(M.V —MVL)

o The function identifies different signals and variables of the context module
M’ with different signals and variables of the instantiated hybrid module:

ident is injective

¢ Output signals and variables of the instantiated module may at most be identi-
fied with local or output signals rsp. variables of the containing module:

ran(identf M.GO) C M'.GL U M'.GO

ran(identf M.VO) C M'VLUM' VO

e Multiply restricted signals and variables of the instantiated module may not be
identified with input signals rsp. input variables of the containing module:

ran(identf M.GMR)N M'.GI = {}

ran(identf MVMR)N M' VI = {}

15

If M, and M, are both instantiated in a module M’, different output signals of M
and M3 may not be identified with the same signal in M’, because this would mean
that the signals are in fact multiply restricted. The same holds for variables. Outputs
may only be identified with inputs of parallel modules. We encapsulate this observation
in another definition.

Definition 15. (Consistency of sets of hybrid instantiations) A set sz of hybrid in-
stantiations for which the context module is identical is said to be consistent if for
different elements Z; and 7, of sz, the following two properties hold:

ran(Z; .ident| Z; . M.GO)
N
ran(Zy.ident[Z2. M.G)
c
ran(Z,.ident[Z,.M.GI)

and
ran(Z; .ident[Z; . M.VO)
N
ran(Zy.ident[Z3. M.V)
c
ran(Z,.ident[Z,. M.V 1)

]

Notation. (Renaming signals and variables of a hybrid automaton) Let H be a hy-
brid automaton and M be a hybrid module. Let the signals and variables of H and of
M be disjunct. Let f be a function from a subset of H.G U H.V to M.GU M.V,

We denote the renaming of H by f by H.rename(f). This is the hybrid automaton
resulting from H by replacing each signal and variable in the domain of f by the value
f yields for it. 0

Note. Regarding Definition 8 (different modules have different local signals and vari-
ables) we do not need to rename the local signals and variables. Note that we speak
about the signals and variables but not about their identification strings in the notation.

Definition 16. (The hybrid module for a hybrid instantiation) Let 7 denote a hy-
brid instantiation. We define the hybrid module corresponding to Z, hymod(Z), in the
following way:

- hymod(Z).GI =, ran(Z.ident{Z.M.GI)

- hymod(Z).GO =, ran{Z.ident[Z.M.GO)

~ hymod(Z).GMR =, ran(Z.ident[Z.M.GMR)

- hymod(7).GL =, IM.G - (IMGI U IMGO U I.MGMR)
— hymod(Z).VI =, ran(Z.ident[Z.M.VI)

- hymod(Z).VO =, ran(Z.ident[Z.M.VO)

- hymod(Z).V MR =, ran(Z.ident[Z.M.V M R)

- hymod(Z) VL = MV —(I.MVI U IT.MVO U I.MVMR)
— hymod(Z).H =,. H.rename(Z.ident)

16

0O

Note 17. The function hymod interpretes hybrid instantiations as hybrid modules. With
the help of this interpretation function, we can use consistent sets of hybrid instantia-
tions as the components of a hybrid composition. O

Note 18. 1f the function ’ident’ is not total then the variables and signals which are not
in the domain of "ident’ should be local.

Proposition 19. (hymod defines a hybrid module for a hybrid instantiation)
Let T denote a hybrid instantiation. Then hymod(T) is a hybrid module.

Proof outline. Because of the injectivity of ’ident’ the sets GI, GO, GMR, VI, VO
and VM R are constructed as disjoint sets. To the set of locals (GL and V' L) we only
add components which are not in the domain of "ident’. The renaming of automata does
not violate any condition of Definition 7. a

’hymod’ is the name of several functions yielding hybrid modules. One of them
yields a hybrid module for a given hybrid composition, and another yields a hybrid
module for a hybrid instantiation. With the help of these functions, we can use a hybrid
instantiation or a hybrid composition in place of an explicitly given hybrid module
wherever this is more convenient.

Another use of the hymod-functions is to fix semantics. We interprete hybrid com-
positions and hybrid instantiations in terms of hybrid modules. The hybrid automaton
component of a hybrid module is interpreted as a transition system via the function ts.
Thus, the only irreducible concepts we introduce are the partition of the signals and
variables of a hybrid automaton into input, output, multiply restricted and local compo-
nents.

3 Discussion

With respect to HyTech, UppAal and Kronos, we introduced additional concepts into
the formalism of hybrid automata. This has to be justified somehow. We claim that it
helps to express some information explicitly in the formalism which is simple to grasp
for amodeller and which can help to simplify formal analyses. It belongs to what we call
“cheap and helpful redundancy”: Classification of signals and variables as input, output,
multiply restricted and local should be easy for the modeller, and wrong suppositions
about the use of a given signal or variable in one module can be checked syntactically
by comparing its declaration with its use.

The CTA formalism is an extension of existing notations for modelling timed and
hybrid systems. It extends the existing notations in order to better model different types
of communication patterns several modules can use for interaction. Thus, we can for
example express that a given variable or signal can never be restricted in a given module,
which means that this module only reads this signal. Nevertheless, we can further use
the synchronous semantics of CSP-like communication. One important consequence
of the introduction of the new concepts is that it is now possible to explicitly specify

17

that a given module only functions as an observer of a set of other modules. Other
extensions with respect to existing notations allow to instantiate several times a module
defined once, they introduce the usage of different name spaces for different modules,
and they explain how interface components of an instantiated module are identified with
components of the enclosing module.

For the newly introduced concepts, formal definitions have been given. These con-
cepts fit well into the semantics of hybrid systems given as communicating automata
which is used in UppAal or HyTech, but they extend these concepts considerably with
respect to more specific fixing of properties of the interface signals and variables, and
for defining name spaces for different modules and their connection in instantiations.
In UppAal and HyTech all the variables are global and the set of automata has no hi-
erarchical structure. We do not have new algorithms, but we have a better support for
modularly modelling large systems.

Another difference to HyTech is that in our semantics we support the following
situation: One automaton sets a variable to some value such that the invariant of a state
of another automaton becomes false. In HyTech this behavior leads to a deadlock and
the modeller has to avoid such a situation. In a CTA, invariants have the meaning that
no time can pass if the invariant is false, but the automaton with the false invariant
can take a discrete transition and thus, the automaton can react on situations with false
invariants.

We support our formalism with a tool performing automatical reachability analysis
and implementation checks on it, but only for systems for which the algorithm termi-
nates (cf. [AHWT97]).

Acknowledgements

We thank Claus Lewerentz for discussions and comments on the work presented in this
paper.

References

[ACD93] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in dense real-
time. Information and Computation, 104:2-34, 1993.

[AH96] Rajeev Alur and Thomas A. Henzinger. Reactive modules. In Proceedings of the
11th Annual IEEE Symposium on Logic in Computer Science (LICS 1996), pages
207-218, 1996.

[AH97] Rajeev Alur and Thomas A. Henzinger. Modularity for timed and hybrid systems.
In Proceedings of the 8th International Conference on Concurrency Theory (CON-
CUR’97), LNCS 1243, pages 74-88, Berlin, 1997. Springer-Verlag.

[AHWT97] Rajeev Alur, Thomas A. Henzinger, and Howard Wong-Toi. Symbolic analysis
of hybrid systems. In Proceedings of the 36th International IEEE Conference on
Decision and Control (CDC 1997), 1997.

[BLL*™96] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Petersson, and Wang Yi. Up-
paal — a tool suite for automatic verification of real-time systems. In Rajeev Alur,
Thomas A. Henzinger, and Eduardo D. Sontag, editors, Hybrid Systems III, LNCS
1066, pages 232-243, Berlin, 1996. Springer-Verlag.

18

[BR98} Dirk Beyer and Heinrich Rust. Modeling a production cell as a distributed real-time
system with cottbus timed automata. In Hartmut Konig and Peter Langendorfer,
editors, FBT'98: Formale Beschreibungstechniken fiir verteilte Systeme, pages 148—
159, June 1998.

[BR99] Dirk Beyer and Heinrich Rust. A modular hybrid modelling notation. Technical
Report 1-3/1999, BTU Cottbus, 1999.

[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Rajeev
Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors, Hybrid Systems IlI,
LNCS 1066, pages 208-219, Berlin, 1996. Springer-Verlag.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science (LICS 1996), pages 278—
292, 1996.

[HHWT95] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. A user guide to
HyTech. In Proceedings of the First Workshop on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), LNCS 1019, pages 41-71. Springer-
Verlag, 1995.

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic
model-checking for real-time systems. Information and Computation, 111:193-244,

1994,
[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, Hemel Hemp-
stead, 1985.

[Lam87] Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer
Systems, 5(1):1-11, 1987.

[LSVW96] N. Lynch, R. Segala, F. Vaandrager, and H.B. Weinberg. Hybrid I/O automata. In
Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors, Hybrid Systems
I, LNCS 1066, pages 496-510, Berlin, 1996. Springer-Verlag.

[LT87] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed
algorithms. In Proceedings of the 6th Annual ACM Symposium on Principles of
Distributed Computing, pages 137-151. ACM, August 1987.

[Rus94] Heinrich Rust. Zuverldssigkeit und Verantwortung. Vieweg, Braunschweig, Wies-
baden, 1994.

19

