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Abstract

In this paper we propose a new state observer design technique for nonlinear systems. It consists of an extension of the recently
introduced parameter estimation-based observer, which is applicable for systems verifying a particular algebraic constraint.
In contrast to the previous observer, the new one avoids the need of implementing an open loop integration that may stymie
its practical application. We give two versions of this observer, one that ensures asymptotic convergence and the second one
that achieves convergence in finite time. In both cases, the required excitation conditions are strictly weaker than the classical
persistent of excitation assumption. It is shown that the proposed technique is applicable to the practically important examples

of multimachine power systems and chemical-biological reactors.
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1 Problem Formulation

In this paper we are interested in the design of state
observers for nonlinear control systems whose dynamics
is described by

i = f(z,u), y = hz,u), (1)

where x € R" is the systems state, u € R™ is the control
signal and y € RP are the measurable output signals.
Similarly to all mappings in the paper, the mappings
iR xR™ — R* h:R" x R™ — RP are assumed
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smooth. The problem is to design a dynamical system

X:F(X,%u), §::H(x,y,u) (2)

with x € R™x, such that for allinitial conditions x(0) €
R™, x(0) € R™,

lim |&(t) — (t)] = 0, (3)

t—o00

where | - | is the Euclidean norm. We are also interested
in the case when the observer ensures finite convergence
time (FCT), that is, when there exists ¢, € [0,00) such
that

Z(t) = x(t), Vt > te. (4)
Following standard practice in observer theory [5] we
assume that u is such that the state trajectories of (1)
are bounded. Since the publication of the seminal paper
[16], which dealt with linear time-invariant (LTI) sys-
tems, this problem has been extensively studied in the
control literature. We refer the reader to [3,5,7,10] for
a review of the literature. In this paper we propose an
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extension of the parameter estimation-based observer
(PEBO) design technique reported in [21]. The main
novelty of PEBO is that it translates the task of state
observation into an on-line parameter estimation prob-
lem.

The main features of the new observer design tech-
nique proposed in the paper, called generalized PEBO
(GPEBO), are the following.

(F1) The key “transformability into cascade form”
condition of the original PEBO [21, Assumption 1] is
relazed, replacing it by a “transformability into state-
affine form” discussed in [5, Chapter 3].

(F2) We identify a class of systems for which the sec-
ond key condition of PEBO [21, Assumption 2]—which
relates with the, far from obvious, solution of the pa-
rameter estimation problem—is obviated. The class is
identified via a particular algebraic constraint.

(F3) It avoids the need of open-loop integration which
stymies the practical application of this observer for
systems subject to high noise environments—see [21,
Remark R5].

(F4) Via the utilization of the fundamental matrix of
an associated linear time-varying (LTV) system, the
signal excitation needed to estimate the parameters is
improved.

(F5) Using the dynamic regressor extension and mixing
(DREM) procedure [2], which is a novel, powerful, pa-
rameter estimation technique, we propose a variation of
GPEBO achieving FCT, that is, for which (4) holds, un-
der the weakest sufficient excitation assumption [12].*
(F6) It is proven that the conditions (F1) and (F2) are
satisfied by the practically important case of multima-
chine power systems, while (F1) is verified by chemical-
biological reactors.

For the multimachine power systems we consider the
well-know three-dimensional “flux-decay” model of a
large-scale power system [14,29], consisting of N gener-
ators interconnected through a transmission network,
which we assume to be lossy, that is, we explicitly take
into account the presence of transfer conductances. We
prove that, using the measurements of active and reac-
tive power—which is a reasonable assumption given the
current technology [13,29]—as well as the rotor angle at
each generator, the application of GPEBO allows us to
recover the full state of the system, even in the presence
of lossy lines. To the best of the authors’ knowledge, this
is the first globally convergent solution to the problem.
For the reaction problem we consider the classical dy-
namical model of the concentration components, e.g.,
equation (1.43) in [4, Section 1.5], which describes the
behavior of a large class of chemical and bio-chemical
reaction systems. We propose a state observer that, in
contrast with the standard asymptotic observers [4,8],
has a tunable convergence rate. Similarly to the case of
power systems, using DREM, we can ensure FCT for

! See [23] for an FCT version of DREM, [24] for an interpre-
tation as a Luenberger observer and [19,25] for two recent
applications of DREM+PEBO techniques.

the particular case when the reaction rates are linear in
the unmeasurable states.

The remainder of the paper is organized as follows.
In Section 2, to place in context the contributions of
GPEBO, we briefly recall the basic principles of PEBO.
In Section 3 we give the main results. Section 4 is de-
voted to some discussion. Section 5 presents the appli-
cation of the observer to two practical problems. The
paper is wrapped-up with concluding remarks in Sec-
tion 6. The proofs of the main propositions are given in
appendices at the end of the paper.

Caveat This is an abridged version of the full paper [20].

2 Review of PEBO and Introductionto GPEBO

To make the paper self-contained, in this section we
briefly recall the underlying principle of our previous
PEBO design [21]. Then, with PEBO as the background,
we highlight the main results of GPEBO, that extend
its domain of applicability.

2.1 Basic construction of PEBO

As explained in the Introduction, the specificity of
PEBO is that the problem of state observation is trans-
lated into a problem of parameter estimation, namely
the initial conditions of the system (1). To achieve this
objective, we consider in PEBO nonlinear systems of
the form (1) that can be transformed, via a change of
coordinates, to a cascade form. Let us assume for sim-
plicity that the system is already given in this form,
namely that & = B(u,y) , where B : R™ x R — R". In
PEBO we do an open-loop integration of B(u,y), that

is we define )

£ = B(u,y), (5)
an operation that has well-known shortcomings—see [21,
Remark R5]—and make the observation that & = £,
hence z(t) = £(t) + 0 with 6 := z(0) = £(0). Then,
construct the observed state as & = & + 6, with 6 and
estimate of the unknown vector 6 using the information

of y. Except for the case when 6 enters linearly the task of
generating a consistent estimate for 0 is far from trivial.

2.2 New construction of GPEBO

A first important difference of GPEBO is that we relax
the assumption of transformability to a cascade form to
transformability to an affine-in-the-state form

& = A(u,y)x + B(u,y)

where A : R™ x RP — R™*". See [5, Chapter 3] for a dis-
cussion on these normal forms and the existing observer
designs for them.

In GPEBO the fragile step of open-loop integration of



PEBO is replaced by the construction of a “copy” of the
system via another dynamical system

&= Alu,y)é + Blu,y).

avoiding the open-loop integration. The new idea intro-
duced in GPEBO is to exploit the properties of the fun-
damental matriz of an LTV system as follows. Let us
define the signal

€= — 57 (6)

whose dynamics is described by the LTV system
ée=A(t)e (7)

where A(t) := A(u(t),y(t)). As shown in all textbooks of
linear systems theory a property of LTV systems is that
all solutions of (7) can be expressed as linear combina-
tions of the columns of its fundamental matrix, which is
the unique solution of the matrix equation

Ci)A = A(t)(I)A, (I)A(O) = @?4 e R
with ®9 full-rank, see [27, Property 4.4]. More precisely,
e(t) = ®a(t)[@%]"e(0).

Similarly to PEBO, in GPEBO we treat e(0) as an un-
known parameter 8 := ¢(0), that we try to estimate. In-
voking (6), the observed state is then generated as

& =&+ a0, (8)

where, to simplify notation and without loss of general-
ity, we set ®Y = I,,, with I,, the n x n identity matrix.
The use of the fundamental matrix is the key step of
GPEBO.

Another important advantage of GPEBO is that, if the
output mapping h(z,u) of (1), can also be expressed in
an affine in the state form,? that is,

h(x,u) = C(u,y)x—l—D(u,y), (9)

then it is possible to obtain a linear regressor equa-
tion (LRE) for the unknown vector €. Indeed, from the
derivations above we get the LRE y = 90 where we de-
fined

y =y —D(u,y) — C(u,y)§, ¥ := C(u,y)Pa.

This is also a fundamental feature since, as it is well-
known [15,28], the design of parameter estimators for
LRE is a well-understood problem.

A final advantage of GPEBO over PEBO pertains to the
excitation conditions needed for parameter estimation.

2 In our main result we consider a more general assumption,
but here we use this simple one for the sake of clarity.

Notice that, if in PEBO the mapping h(z,u) satisfies
the assumption (9) we can also obtain a LRE y = 0,
but with ¥ = C(u,y). It is well-known that the conver-
gence of all estimators is determined by the excitation
of the regressor 1. The presence of the additional term
® 4 in the regressor of GPEBO improves the excitation
level. To appreciate this, consider the case when C(u, y)
is constant. In that case it is impossible to estimate the
parameter § with the LRE of PEBO.

3 Main Results

The GPEBO designs are based on the following two
propositions. For ease of presentation we consider the
case where we are interested in observing all state vari-
ables. In many applications it is only necessary to recon-
struct some of these state variables, a case that can be
treated with slight modifications to these propositions.
Also, we present first the version of GPEBO that ensures
asymptotic convergence and then, in Proposition 3, the
one ensuring FCT. The proofs of both propositions are
given in Appendices A and B, respectively.

3.1  An asymptotically convergent GPEBO

Proposition 1 Consider the system (1). Assume there
exist mappings

¢:R* - R", ¢*:R" x RP - R", B:R™ x R? - R",
A:R™ x RP — R™™ [ :R™ x RP — R™ ",
C:R™xRP - R"

satisfying the following;:
(i) The GPEBO partial differential equation (PDE)

Vo' (2)f(z,u) = Au, h(z,u))d(z) + Blu, h(x,u)),
(10)
where V := (Z)7.
(ii) ¢" is a “left inverse” of ¢, in the sense that it satisfies

¢ (0(@), h(z,u) = =. (11)

(i) The algebraic constraint
L(u, h(z,u))¢(z) = Clu, h(z,w)), — (12)

is satisfied.
(iv) For the given u, all solutions of the LTV system

2= Au(t), y(t))z,

with y generated by (1), are bounded.



The GPEBO dynamics

£ = Au, y)¢ + B(u,y) (13a)
Dy = A(u,y)®a, ©2(0) = I, (13b)
Y = - \Y + AU T [C(u,y) — L(u, y)¢] (13c)
Q=22+ 2Py (13d)
6 =—yAA0-D), (13e)

with A > 0 and v > 0, with the definitions

U= L(u,y)Ps (14a)
Y :=adj{Q}Y (14b)
A = det{Q2}, (14c)
the state estimate
&= M€+ 00, y), (15)

ensures (3) with all signals bounded provided

Ad Lo (16)

3.2 An GPEBO with FCT

A variation of GPEBO that ensures FCT is given in
Proposition 3. To streamline its presentation we need
the following sufficient excitation condition [12]. 3

Assumption 2 Fix a constant u € (0,1). There exists
a time t. > 0 such that

/tc A2(7)dr > — 2 In(1— p). (17)
0 0

Proposition 3 Consider the system (1), verifying the
conditions (i)-(iii) of Proposition 1. Fix v > 0 and u €
(0,1). The state observer defined by (13a)-(13e) and the
state estimate

b=t (6 4+ Part [0 - wdOLy),  (18)

C
with

W= —yA%w, w(0) =1, (19)

3 This condition may be defined taking an initial time to > 0
and integrating to tg +t.. Since we have fixed the initial time
everywhere at zero we believe it is more appropriate to leave
it like that.

and w, defined via the clipping function

w if w<l—p
We = ;
1—p if w>1—p,

ensures (4) with all signals bounded provided A verifies
Assumption 2. ooo

4 Discussion

(D1) The GPEBO PDE (10) is a generalization of
the PDEs that are imposed in the Kazantzis-Kravaris-
Luenberger observer (KKLO), first presented in [9] as
an extension to nonlinear systems of Luenberger’s ob-
server, and further developed in [1]. Indeed, in KKLO
the mapping A(u,y) is a constant, Hurwitz matrix—see
[6] for a recent extension to the non-autonomous case
where the mapping ¢ depends on time (or the systems
input). It also generalizes the PDE required in PEBO
where A is equal to zero.

(D2) As discussed in [21] and Section 2, a drawback
of the original PEBO is that it involves the open-loop
integration (5), which stymies the practical application
of PEBO in the presence of noise—see [21, Remark R5].
Due to the presence of A in the dynamics of £ given
in (13a), this difficulty is conspicuous by its absence in
GPEBO. It should be pointed out that, using an alter-
native technique that relies on the Swapping Lemma
[28, Lemma 3.6.5], this shortcoming of PEBO has been
overcome in [26] for a class of electromechanical systems.
(D3) It is interesting to compare the KKLO with PEBO
from the geometric viewpoint. The former generates an
attractive and invariant manifold

M= {(z,€) € R x R" | ¢ = ¢(z)},

and the state is reconstructed, via ¢t, with £&. On the
other hand, PEBO generates an invariant foliation

My = {(,€) € R x R"[¢ = ¢(x) + 0,6 € R},

that is, the sublevel sets of the function F(§,z) :=
& — ¢(x). To reconstruct the state—again via ¢t—it is
necessary to identify the leaf of My via the estimation
of 6. See Fig. 1. See also [30] where it is proposed to
combine PEBO and KKLO to extend the realm of ap-
plication of these observers.

(D4) Imposing the algebraic constraint (ii) of Propo-
sition 1 is, clearly, a strong assumption. It is interest-
ing that—as shown in Section 4—it is satisfied for the,
practically relevant, power systems example. See also
[26] where similar constraints are shown to be satis-
fied by a class of electromechanical systems and [25]
where a significant extension, to the case of adaptive
state observers—that is, systems with uncertain param-
eters and unmeasurable states—is reported.

(D5) The version of DREM utilized in Proposition 1
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Fig. 1. Geometric interpretation of KKLO and PEBO

uses the dynamic extension proposed by [11]. As dis-
cussed in [18] other versions of DREM, with different
convergence properties, are also possible. We have opted
for this variation for the sake of simplicity.

(D6) The conditions A ¢ L4 and Assumption 2 are, evi-
dently, excitation conditions necessary to ensure conver-
gence of the parameter estimators. Clearly, this kind of
assumptions are unavoidable in the problem of state (or
parameter) estimation. It is interesting that, as shown in
[18], these conditions are strictly weaker than the usual
persistent of excitation assumption imposed in standard
parameter estimation schemes [28, Theorem 2.5.1].
(D7) It is possible to obviate the parameter estimation
step of PEBO designing a KKLO-like observer. Indeed,
under assumptions (i)-(iii) of Proposition 1 the observer
of ¢ given by

¢ = Auw,y)¢ + B(w,y) + 7L  (u,)[C(u,y) — L(u, )4l
verifies the error model

¢ = [A(u,y) — vL" (u, y)L(u, y)]o.

where giN) = qg—(b. However, some additional assumptions
have to be imposed to the mappings A and L to ensure
asymptotic stability of this LTV system.

5 Applications

In this section we illustrate with two physical systems
the applicability of the proposed GPEBO. Towards this
end, we identify all the mappings required to verify some
(or all) of the conditions of Proposition 1. For additional
details of these examples see the full version of the paper
[20].

5.1  Multimachine power systems model

The dynamical model of the i—th generator of n inter-
connected machines can be described using the classical
third order model [14,29]

Si = W;
M;t; = —Dpiw; + wo(Prmi — Pei)

7B = —E; — (w4 — xy;)1ai + Efi + vi,
ien:={1,..,n},

(20)

4 To simplify the notation, whenever clear from the context,
the qualifier “¢ € n” will be omitted in the sequel.

where the state variables are the rotor angle §; € R , rad,
the speed deviation w; € R in rad/sec and the generator
quadrature internal voltage E; € Ry, I is the d axis
current, P.; is the electromagnetic power, the voltages
E¢; and v; are the constant voltage component applied
to the field winding, and the control voltage input, re-
spectively. Doy My, P, Tiy Wo, q; and m:ﬁ are positive
parameters.
The active power P,; and reactive power Q.; are defined
as

P = Eily, Qei = Eily, (21)
where I4; is the ¢ axis current.
These currents establish the connections between the
machines and are given by

n
Iqi = GniiEi + Z EjY;'j sin((Sij + Oéij)
=1 (22)
Iai = —=BniiBi — Z E;Yij cos(6ij + aij),
=Lj#i

where we defined ;5 := §; — ; and the constants Y;; =
Y;; and a;; = aj; are the admittance magnitude and ad-
mittance angle of the power line connecting nodes ¢ and
7, respectively. Furthermore, G,,;; is the shunt conduc-
tance and B,,;; the shunt susceptance at node i. Finally,
combining (20), (21) and (22) results in the well-known
compact form

51' = W;
wi = —Dijw; + P, —d; E; [GmiiEi — Z E;Yi;sin(ds; + aij)]
J=1,j#i

Ei=—a;Ei+bi Z E;Y;5 cos(dij + aij) + wi,

J=Lj#i
(23)
where we have defined the new input signal
1
ui = —(Ey, +vy)
?
and the positive constants
D, wo
D; = ]\Zl’ Py = d;Pr, di == 7
1 1
a; = —[1 — (xg; — ;) Bmii], bi = —(va; — 1).
Ti Ti

To formulate the observer problem we consider that all
parameters are known, and make the following assump-
tion on the available measurements.

Assumption 4 The signals u;, d;, P.; and Q.; of all
generating units are measurable.

It is fair to say that the assumption of knowledge of §;
is far from realistic.



5.1.1

Verifying the conditions of Proposition 1

We make the following observation. Using (21) and (22),
the rotor speed dynamics (23) may be written as

w; = —Djw; + P — d; Pe;.

Considering that P.; is measurable, while P;, D; and d;
are known positive constants, the design of an observer
for this system is trivial. For instance,

buw, = —Di@; + P — d; Po; —
Wi = &w, + kwidi, kwi >0,

kwiwi (24)

yields the LTI, asymptotically stable error dynamics

Wi =

—(D; + kui)@;.

Therefore, we concentrate in the estimation of the volt-

ages F;. Its dynamics

where E := col(Ey,...

we defined matrix

may be written as

E=A()E +u. (25)
,Epn), 6 := col(d1,...,0,), and
A(0) = (A1(9) A2(9) .. An(9)), (26)

where

An(9) :=

—ay
baYa1 cos(da1 + 1) |
bnYn1 €os(n1 + an1) |

b1Y12 COS(512 + 0412)
—az 9
bnYn2 c08(n2 + an2) |

blyln COS(51n + Oéln)
baYay, cos(02n + a2n)

—an

and we recall that J is measurable. The remaining map-
pings of (i) and (ii) of Proposition 1 are given as ¢ = E

and B = u. The fol
mappings L and C' th

Lemma 5 There exists a measurable matrix L(P,, Qc, J) €

R™*™ such that

lowing simple lemma defines the
at satisfy (12).

Consequently, selecting C' = 0, (12) is satisfied

PROOF. From (21)

P

LE =0. (27)
we have that
I —Qcly =0. (28)

Clearly, the equations (22)—which are linearly depen-
dent on E—may be written in the compact form

I, = S(O)E, I = T(5)E, (29)

for some suitably defined n x n matrices S(6), T'(d). The
proof is completed by replacing (29) in (28) and defining

P Ty (8) = Qe 57 (9)
L(PE7Q€75) = 9
PenTnT((S) - Qen‘s’v—zr((s)

where T, (5), S, () are the rows of the matrices T'()
and S(J), respectively.

This lemma completes the verification of all the condi-
tions of Proposition 1.

5.1.2  Simulations

For simulation we use the two-machine system consid-
ered in [22]. The dynamics of the system result in the
sixth-order model

51 = W1,
—Diwi + Pi — G E} — Y12 E1 Bz sin(812 + a12)

wp =

B, =—a1FE1+biEs cos(d12 + a12) + Ey, + vi;

52 = w2,

w2 = —Dows 4+ P — G22E§ + Y21 E1 Es sin(d12 + ai2)
Ey = —ayE>+hFE) cos(d21 + a21) + Ey, + v2,

(30)
with the current equations defined as
I,1 = G11E1 + ExYqasin(d12 + a2)
Iy1 = —B11Ey — E2Y15 cos(012 + 12)

I;o = GogEy + E1Yoq sin(da1 + ao1)
Ijo = —Bgs By — E1Y91 cos(d21 + aa1).

In this case we have that

A(t) _ [ —aq by COS(512(t) + Oqz)
| b2 cos (621 (1) + 1) —as

S(5) = [ ‘ G Yigsin(d12 + a12)
| Ya1 sin(d21 + a21) G2

() = [ —B11 —Y12 cos(012 + a12)
| — Y51 cos(da1 + 1) — B2

For the observer design we selected the simplest filter

F(p)=li 317

p+k



with p = % and k > 0. The parameters of the model
(30) are taken from [22] and are given in the Table given
in Appendix C of [20].

Simulation results are presented in Figs. 2-5. Fig. 2 and
Fig. 3 show the observation errors for the open loop ob-
server (OLO) (13a), and for DREM for different adap-
tation gains and for FCT-DREM. For the simulations
we used A = 1 in (13c) and (13d). Simulation results
for FCT-DREM are presented for v = 107 in (13e) and
p = 0.1 for the computation w, in (18). To test the ro-
bustness of the design a 30% load change was introduced
at t = 10 sec, whose effect is impercebtible. Fig. 4 and
Fig. 5 show the observation errors for rotor speed ob-
server (24) for first and second generator for different
values of k,; in (24).

—F, — &g, OLO
6 —E, — Ey, DREM,~, = 10°]]
Ey — Ey, DREM,~, =107
4l —E, — Ey, FCT ]

0 5 10 15 20
t, sec

Fig. 2. Transients of the first voltage observation error for
the OLO (13a), DREM and FCT-DREM with a 30% load
change a t = 10 sec

— B> — &, OLO

— B, — Ey, DREM,~, = 10°
4t E, — By, DREM,~, = 107| |

—E, - By, FCT

n
T

0 5 10 15 20
t, sec

Fig. 3. Transients of the second voltage observation error for

the OLO (13a), DREM and FCT-DREM observers with a
30% load change at t = 10 sec

5.2 Chemical-biological reactors

We consider reaction systems whose dynamical model is
given by [4, Section 1.5]

¢=—uc+ Kr(c)+ x

y = {Ip : opxd] ¢ (31)

WitthRi,xeRﬁjuER+,y€RP,r:R”—>Ri,
d:=n—p, ¢ <n.ltis assumed that y,u, x and K are

—w — @y, ko =1
—w; — @, ko =10
wy — @1, k=100 4

-0.21

-0.4
-0.6 [ b
-0.8 4
R . . . | |
0 0.5 1 1.5 2 25 3
t, sec

Fig. 4. Transients of the first speed observation error for the
observer (24) for different values of k.1

0 0.5 1 1.5 2 25 3
t, sec

Fig. 5. Transients of the second speed observation error for
the observer (24) for different values of k2

known.
To simplify the notation we partition the vector ¢ as
¢ = col(y, z), and rewrite (31) as

= —uy+ Kyr(y,2) + xy
&= —ux + Kyr(y,x) + Xz- (32)

To simplify the presentation we assume that there are

more measurements than reaction rates, that is, p > ¢

and rank {K,} = ¢.°

5.2.1 Solution via GPEBO

The following lemma identifies the mappings ¢, A and B
required to satisfy conditions (i) and (ii) of Proposition
1.

Lemma 6 Consider the system (32). The mappings

¢=x— K, K]y
A= —u
B =K, K} xy+x« (33)
where : . -
K, = (Ky K,) K, ,
satisfy the PDE (10). More precisely,
¢=Ap+ B. (34)

® See [19] for a relaxation of this assumption.



PROOF. From (32) and (33) we get

¢ = —ux + K,r(y, x) + Xa
— KIK;;[—uy + Kyr(y, z) + xy)
= —UP + Xz — KmKJva

completing the proof.

Now, note that from (13a), (13b) and (34) we can, in-
voking the arguments used in the proof of Proposition
1, establish the relation

¢ =&+ Ppl, (35)

for some 6 € R?. To obtain a bona fide regressor equa-
tion, that is a linear relation between measurable signals
and 6 we would assume condition (iii) of Proposition 1.
That is, assume the existence of measurable mappings
C and L such that (12) holds, that is L¢ = C. Unfortu-
nately, in this example it is not possible to satisfy this
condition. However, we can still obtain the required lin-
ear regression, needed for the parameter estimation us-
ing DREM, as shown in the lemma below.

Lemma 7 Assume that the rate vector r(y, ) depends
linearly on the unmeasurable components of the state x,
that is, it is of the form

r(y,x) = R(y)x (36)

where R : RP — R9%? ig a known matrix. ¢ There exists
measurable signals ) € R% and A € R such that

Y = Ad. (37)

PROOF. Defining the partial coordinate yt = Kgy, we
see from (32) that its dynamics takes the form

y’r

—uy' + R(y)z + K;;Xy

—uy’ + Klxy + R(y) (¢ + Ky')

—uy’ + Klx, + R(y)(§ + ®ab + K,y')
=Uh+y (38)

where we used (33) to get the second identity, (35) in
the third identity and we defined the measurable signals

Xt = —uy" + Kix, + R(y)(€ + Kqzy')
U := R(y)®a.
A

Applying the filter m—with A > 0 a free tuning

parameter—to (38), and regrouping terms, we obtain

5 See [19] for the case of nonlinear dependence on z.

the linear regression equation ”
Y = U40. (39)
where we defined the signals

A Ap
U], Y =
v, v = 2

U= — - . (40
T oA [y'] p+>\[Xl] (40)
Multiplying (39) by adj{\I/}r\Ilf}\IJ}— we obtain the iden-

tity (37), where we defined
Yi=adj{U U, 07V, A=det{U;¥;}.  (41)

This completes the proof.

5.2.2  Simulations

To illustrate the performance of the DREM observer
proposed in the previous section we consider the model
of the anaerobic digestion reactor reported in [17]. The
dynamics, given in equations (55)-(59) of [17], may be
written in the form (32), (36) with the choicesn = 4,q =
2, p=2

—ks3 0
K, = VK, =1

ks —k
0
R I o
0 pa2(ye) us2,0

where y1, =1, yo and xo represent the organic matter
concentration (g/l), the acidogenic bacteria concentra-
tion (g/1), the volatile fatty acid concentration (mmol),
the methanogenic bacteria concentration (g/1) and w is
the dilution rate. The positive constants s g and so o de-
note the concentration of the substrate in the feed, and
k1, ks and k4 are yield positive coefficients.

The two specific growth rates pq and ps are given by

Hm,1Y1
[Ml (yl)] _ Ks .1+

Hm ,2Y2
’u2(y2) Ksa+y2+K1ys

where (i, 1, tm.2, K51, Kg2 and K7 are yield positive
coefficients.
Notice that K, is square and full rank, consequently

Y1

k3
Y2 kay1
kl + klkg

" As usual in adaptive control, we neglect an additive ex-
ponentially decaying term in (39) that is due to the filters
initial conditions.



To design the observer we first identify the signals (33)
of Lemma 6 as

A=—-u

—51,0
_ _ -1 _ k3
B= Ky Xy = —U —s20  kasio |’
k1 kiks

Consequently, (13a) and (13b) become

81,0
ks
52,0 k4810

kl k)lkg
(i)A = —’U,CI)A, (I)A(O) = In.

E=—-uE+u

Then, we follow the proof of Lemma 7 to construct the

signals
w o
vy +1 o[ +3’3;‘fé;°]
N [ pa(y)[6n — ] ]
12 ]

k
(W2)l&2 — 12 — 5

¥ — [Ml(yl) 0 ]Q

0 p2(y2)

that, together with (40) and (41), define Y and A of (37).
The design is completed with the parameter estimator
(13e).

For the simulations we used the parameters of [17], that
is, k1 = 268 mmol/g, ks = 42.14, k4 = 116.5 mmol/g,
a=1% pn1=12d" Ks1 =885¢g/l, m2 = 0.74
d_l, Kgo =232 mmol, K; = 0.0039 mmol_l, Sl,O =1,
S20=1and u=0.1.

The initial conditions for the anaerobic digester were set
to £1(0) = 0.1 g/1, y1(0) = 0.05 g/1, 22(0) = 0.5 g and
y2(0) = 4 mmol/l. We used A = 100 in the filters of (40).
Fig. 6 and Fig. 7 show the transient behavior of the state
estimation errors for different values of the adaptation
gain, with v = 0 corresponding to the OLO. Notice that,
although the convergence rate is increased with larger
v, an undesirable peak appears at the beginning of the
error transient.

6 Concluding Remarks

An extension to the PEBO technique reported in [21]
has been proposed in the paper. It allows us to simplify

8 In [17] there is a constant o = 0.5 entering into the dyamics
of x as © = —auzx + Kur(y,z) + x. To avoid cluttering
the notation, and without loss of generality, we assume this
constant is equal to one.

0.2
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- — =100
|
I 041
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Fig. 6. Transients of the error x1 — &1

— =0

I24§72

Fig. 7. Transients of the error x2 — %2

the task of solving the key PDE and avoid a, sometimes
problematic, open-loop integration required in PEBO.
Also, we have identified a condition—verification of the
algebraic equation (12)—that trivializes the task of esti-
mating the unknown parameters. In the original version
of PEBO this was left as an open problem to be solved.
It is shown that this condition is satisfied for the practi-
cally important problem of power systems.

It has been shown that combining PEBO with DREM
it is possible, on one hand, to relax the excitation con-
ditions to ensure parameter convergence. On the other
hand, it allows us to design an observer with FCT under
weak excitation assumptions.

As an additional example we show the application of
PEBO+DREM to reaction systems. Notice that the use
of DREM is necessary to solve the parameter estima-
tion problem in this example. Although there are many
ways to design an estimator from the linear regression
(39), there exists a fundamental obstacle to ensure its
convergence. Indeed, from the definition of ®,, that is
dp = —ud, with u(t) > 0, we have that ®x(t) — 0,
hence ¥(t) — 0—loosing identifiability of the parame-
ter 0. In particular the matrix ¥ cannot satisfy the well-
known persistency of excitation condition

t+kK
/ U (s)WU(s)ds > kly,
¢

which is the necessary and sufficient condition for expo-
nential convergence of the classical gradient and least-
squares estimators [28, Theorem 2.5.1].
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A Proof of Proposition 1
From (10) we have that
= A¢ + B.
Hence, defining the error signal
eimp—¢ (A1)
and taking into account the £ dynamics of the observer,

we obtain an LTV system é¢ = A(t)e where we defined
A(t) := A(u(t),y(t)). Now, from the (13b) we see that



® is the fundamental matriz of the e system, which is
bounded in view of condition (iv). Consequently, there
exists a constant vector § € R™ such that

e = ®b,

namely 0 = e(0). We now have the following chain of
implications

e=P0 = p=E(+ 00 («= (A1)
Lp=LE+LPO (<= Lx)
C—LE=LD0 (<= (12))
C—LE=V0 (< (14a))
T(C—-LE =000 (=TT x)

SRR A

A
Y =00 (<¢:i;;jXﬂ]and(l3cL(l3d))
= A=Y, (< adi{Q} x and (14b), (14c))

where we have used the fact that for any, possibly singu-
lar, n x n matrix K we have adj{ K} K = det{K}I, in
the last line.

From ¢ = £ + ®0 and (11) it is clear that, if 8 is known,
we have that

= ¢"(&+ @0, y). (A.2)
Hence, the remaining task is to generate an estimate
for 0, denoted é, to obtain the observed state via & =

¢ (€ + ®0,y). This is, precisely, generated with (13e),
whose error equation is of the form

= A2, (A.3)
where 6 := 6 — 0. The solution of this equation is given
by

B(t) = e Jo 275y, (A4)

Given the standing assumption on A we have that

6(t) — 0. Hence, invoking (15) and (A.2) we conclude
that Z(t) — 0, where Z := & — x.

B Proof of Proposition 3

First, notice that the definition of w,. ensures that z,
given in (18), is well-defined. Now, from (A.4) and the
definition of w we have that

0 = wh(0).
Clearly, this is equivalent to

(1 —w)f = 6 — wh(0).

On the other hand, under Assumption 2, we have that
we(t) = w(t), Vt > t.. Consequently, we conclude that

o .,
o[- w0 =0, Vi >t

11

Replacing this identity in (18) completes the proof.
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