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Strong Lyapunov functions for two classical problems in adaptive control and parameter identification
are presented. These Lyapunov functions incorporate in their structure the classical persistency of
excitation conditions, allowing to show global uniform asymptotic stability of the associated adaptive
systems under sufficient and necessary conditions.
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1. Introduction

Classical adaptive control deals with the identification of un-
nown and constant parameters. A good part of the classical
roblems can be studied through the following two Linear Time-
arying (LTV) systems (Narendra & Annaswamy, 1989, Sec. 2.8)

˙(t) = −Γ C⊤(t)C(t)x(t), (1)

where x(t) ∈ Rn is the state, C(t) ∈ Rm×n is the regressor and
∈ Rn×n is a design gain, and

ż(t) = A(t)z(t),

A(t) =

[
A(t) B(t)

−B⊤(t)P(t) 0

]
,

(2)

where z(t) ∈ Rn+m is the state, B(t) ∈ Rm×n is the regressor
nd A(t), P(t) ∈ Rm×m are given known matrices. The regressors
(·) and B(·) are piecewise continuous functions. The first system,
ystem (1), is the error dynamics of a parameter estimation
rocess (Anderson, 1977; Morgan & Narendra, 1977b; Narendra
Annaswamy, 1989), whereas system (2) appears, for example,
hen a linear system is subjected to an adaptive control or as
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the error dynamics of an adaptive observer (Anderson, 1977;
Morgan & Narendra, 1977a; Narendra & Annaswamy, 1989). In
such situation, A(t) and P(t) represent the gains of the adaptive
ontrol/observer and are specified by the designer.
Necessary and sufficient conditions for the Global Uniform

symptotic Stability (GUAS) of the zero equilibrium solution of
1) and (2) have been obtained in Anderson (1977) and Morgan
nd Narendra (1977a, 1977b). The proofs rely on weak Lyapunov

functions (LFs), i.e., LFs having only negative semi-definite deriva-
tives, and some geometric methods for Morgan and Narendra
(1977a, 1977b), and using the connections between uniform com-
plete observability (UCO) and GUAS in Anderson (1977). Although
for LTV systems GUAS (or equivalently Uniform Exponential Sta-
bility) implies the existence of a strong quadratic Lyapunov func-
tion (Khalil, 2002, Thm. 4.12) and (Anderson, 1977, Lem. 2), i.e., a
LF having negative definite derivative, such functions have not
been yet given explicitly for systems (1) and (2) under the most
general GUAS conditions for non-smooth regressors.

Recently, some explicit strong LFs for (1) and (2) have
een found (see e.g. Aranovskiy, Ortega, Romero, & Sokolov,
019; Loría, Panteley, & Maghenem, 2019a; Loría, Panteley, &
aghenem, 2019b; Maghenem & Loría, 2017; Maghenem & Loría,
017; Mazenc, de Queiroz, & Malisoff, 2009), but under conditions
uch more restrictive than those required by the systems to
e GUAS. The objective (and novelty) of this note is to exhibit,
xplicit, smooth and quadratic strong Lyapunov functions for
ystems (1) and (2) under necessary and sufficient conditions for
UAS, i.e., the origin of these systems is GUAS iff the corre-
ponding function is a strong LF. It is well-known that having
trong LFs is advantageous for e.g. robust analysis, study of in-
ut/output properties as Input-to-State Stability (ISS), calculation
f convergence velocity, etc.
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The note structure is as follows: In Section 2, the necessary and
sufficient conditions for GUAS of systems (1) and (2) are recalled;
this work contribution is also given in this section in item (iii) of
Theorems 1 and 3. In Section 3, the proposed LFs are discussed.
In Section 4, the results available in the literature are reviewed
and contrasted with the proposed ones; finally, in Section 5, the
proof of the main result of this work is given.

Notation. Along the note, R denotes the set of real numbers, Rn

the real n-dimensional Euclidean space and Rn×m the set of real
n×m matrices. In ∈ Rn×n denotes the identity matrix. For A, B ∈

Rn×n symmetric, A > B (A ≥ B) means that A−B is positive (semi)
definite. For v ∈ Rn, ∥v∥ denotes = (v⊤v)1/2 and for B ∈ Rm×n,
∥B∥ denotes the induced norm of B, defined as sup∥x∥=1 ∥B x∥. For
a A = A⊤, λmin(A) and λmax(A) denote the smallest and largest
eigenvalues of A. The function space PC

([
0, ∞

)
, Rn×m

)
is the set

of all functions mapping non negative real values into Rn×m which
are piecewise continuous, i.e., they are continuous everywhere,
except that they may have a finite number of discontinuity points
on every bounded subinterval, where the one-sided limits are
well defined and finite. Moreover, R(t) ∈ PC1

([
0, ∞

)
, Rn×m

)
if

Ṙ(t) exists almost everywhere and Ṙ(t) ∈ PC
([
0, ∞

)
, Rn×m

)
.

2. Strong Lyapunov functions for the two classical systems in
adaptive control

Here the (classical) conditions for systems (1) and (2) to be
GUAS are recalled and the proposed strong LFs are presented. The
proofs are given in Section 5.

Theorem 1. Let Γ in (1) be symmetric and positive definite, with
∥Γ ∥ = r1. Let C(·) ∈ PC

([
0, ∞

)
, Rn×m

)
be bounded, i.e., ∥C(t)∥ ≤

2 ∀ t ≥ 0. Then the following statements are equivalent.

(i) The origin of system (1) is GUAS.
(ii) There exist constants γ1 ≥ γ2 > 0 and T > 0, all independent

of t, s.t. for all t ≥ T

γ1In ≥

∫ t

t−T
C⊤(σ )C(σ )dσ ≥ γ2In . (3)

(iii) The quadratic function V (x, t) = x⊤P(t)x, with

P(t) =
1
2

(
2(T r1r2γ1)2

γ2
+ T

)
Γ −1

+

∫ t

t−T
(σ − t + T )C⊤(σ )C(σ )dσ

(4)

differentiable, is a strong Lyapunov function.

Condition (3) is known in the literature as Persistency of Excita-
tion (PE). It is equivalent to Uniform Complete Observability (UCO)
of the system

θ̇ (t) = 0, y(t) = C(t)θ (t) . (5)

This is used for the proof of the equivalence of items (i) and (ii)
of Theorem 1 in Anderson (1977, Thm. 1).

Before continuing, we recall the following GUAS stability result
for LTV systems (see, e.g., Khalil, 2002, Thm 4.12).

Lemma 2. Let F (·) ∈ PC
([
0, ∞

)
, Rm×m

)
be bounded, i.e., ∥F (t)∥

r4 for all t ≥ 0. Let Q (·) ∈ PC
( [

0, ∞
)
, Rm×m

)
be any

ymmetric, bounded and positive definite matrix, i.e., η4Im ≥ Q (t) ≥

3Im for some constants η4 ≥ η3 > 0. Then the following are
quivalent.

(a) The origin of the LTV system ẋ = F (t)x is GUAS.
 V

2

(b) There exists a symmetric, bounded and positive definite solu-
tion R(·) ∈ PC1

([
0, ∞

)
, Rm×m

)
of the Differential Lyapunov

Equation (DLE) (6), i.e., η1Im ≥ R(t) ≥ η2Im > 0 for some
constants η1 ≥ η2 > 0, and

Ṙ(t) + R(t)F (t) + F⊤(t)R(t) = −Q (t) . (6)

Theorem 3. Let B(·) ∈ PC
( [

0, ∞
)
, Rn×m

)
be bounded,

i.e., ∥B(t)∥ ≤ r3 ∀ t ≥ 0, and A(·) and P(·) in (2) satisfy the
conditions of Lemma 2 for F (t) = A(t) and R(t) = P(t) and some
Q (t). Then the following statements are equivalent.

(i) The origin of system (2) is GUAS.
(ii) There exist constants γ3 ≥ γ4 > 0 and T > 0, all independent

of t, s.t. for all t ≥ T

γ3In ≥

∫ t

t−T
K⊤(t, s)K(t, s)ds ≥ γ4In , (7)

K(a, b) :=

∫ a

b
B(σ )dσ .

(iii) The quadratic function

V (z, t) = z⊤P(t)z = z⊤

(
kΠ1(t) +Π2(t)

)
z, (8)

with P(t) differentiable and where

Π1(t) =

[
P(t) 0
0 In

]
, Π2(t) =

[
0 P12(t)

P⊤

12(t) P22(t)

]
, (9)

P12(t) = −

∫ t

t−T

(
s − t + T

)
K(t, s)ds,

P22(t) =

∫ t

t−T

(
s − t + T

)
K⊤(t, s)K(t, s)ds ,

is a strong LF for k > 0 sufficiently large.

Condition (7) is equivalent to UCO of the system

ẏ(t) = B(t)θ (t), θ̇ (t) = 0, (10)

with output y. This is used in Anderson (1977, Thm. 2) to show
the equivalence of items (i) and (ii) of Theorem 3.

Conditions (3) and (7) differ slightly from the corresponding
ones given in Morgan and Narendra (1977b, Thm. 1) and Morgan
and Narendra (1977a, Thm. 1), but they are equivalent.

Remark 4. Conditions (3) and (7) are related, but they are
in general not equivalent (if we set C(t) = B(t)). Proposition
1 in Anderson (1977) and Corollary 2 in Morgan and Narendra
(1977a) (see also the example after Corollary 2 in Morgan &
Narendra, 1977a) show that (3) is necessary for (7), but not suffi-
cient. However, if B(t) is smooth and |Ḃ(t)| is uniformly bounded,
then (3) and (7) are equivalent. Thus, Theorem 3 requires the
weakest possible conditions for GUAS of (2).

Remark 5. For simplicity, we restricted the matrix functions to
be PC . However, broader classes of functions such as regulated or
integrable functions can be considered with little to no effort.

3. Discussion of the results

Weak LF for systems (1) and (2) are well-known. The standard
weak LF and its derivative for (1) are (Maghenem & Loría, 2017;
Narendra & Annaswamy, 1989)

V (x) =
1
2
x⊤Γ −1x, V̇ (t) = −x⊤C⊤(t)C(t)x, (11)

hile for (2) is Maghenem and Loría (2017) and Narendra and
nnaswamy (1989)

(z, t) = z⊤P(t)z + z⊤z , V̇ (t) = −z⊤Q (t)z . (12)
1 1 2 2 1 1
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ithout extra conditions on the regressors they assure Global
niform Stability. For GUAS the excitation conditions (3) and (7)
re required for (1) and (2), respectively. The works Morgan and
arendra (1977a, 1977b) and Anderson (1977) show this using
he weak LF and further arguments.

We note that the strong LF for system (1) proposed in The-
rem 1 item (iii) corresponds to the weak LF (11) with an ad-
itional strictifying term related to the PE condition (3), i.e., the
bservability (UCO) condition. Similarly, the strong LF for system
2) proposed in Theorem 3 item (iii) corresponds to the weak
F (12) with additional strictifying terms P12(t) and P22(t), re-
ated to the persistency excitation condition (7), i.e., the UCO
ondition. In contrast to the previously proposed strong LFs for
oth systems (Aranovskiy et al., 2019; Loría et al., 2019a, 2019b;
aghenem & Loría, 2017; Mazenc, de Queiroz et al., 2009), these
xtra terms depend on the integral of the regressor matrix, and
herefore do not require the regressor to be differentiable.

In view of Lemma 2, finding a strong LF for system (1) or
2) amounts to obtaining a solution to the corresponding DLE
6). What is interesting though is to get an explicit solution to
he DLE. Although this may appear to be a simple task, sur-
risingly only some proposals have been recently given in the
iterature (Aranovskiy et al., 2019; Loría et al., 2019a, 2019b;
aghenem & Loría, 2017; Mazenc, de Queiroz et al., 2009), which

equire extra conditions to the ones given in Theorems 1 and 3.
numerical solution of the DLE is of course possible, but this
akes it difficult to study other system’s properties. Recently,
raly1 (Praly, 2019, Example 4) proposes a method to construct
strong LF for system (2). However, it is not explicit, since it

equires the solution of a (nonlinear) Differential Riccati Equation.
n this sense, this method is akin to integrating the DLE (6).

In contrast, the explicit LFs given in item (iii) of Theorems 1
nd 3 allow to compute explicit bounds, that can be used to
ompute the convergence rate or to investigate ISS gains for the
ystems. For example, the LF V (x, t) given in Theorem 1 satisfy

1∥x∥2
≥ V (x, t) ≥ κ2∥x∥2, V̇ (t) ≤ −

γ2

2
∥x(t)∥2,

where the constants κ1 and κ2 are given in (15) and the bound
over V̇ is given at the end of Section 5.1. Using them it is
straightforward to show that

∥x(t)∥ ≤

√
κ1

κ2
∥x(t0)∥ exp

(
−
γ2

4κ1
(t − t0)

)
.

his yields, for an additive disturbance δ(t) of the form ẋ(t) =

Γ C⊤(t)C(t)x(t) + δ(t), the ISS-gain

ISS =
4κ1

√
κ1

γ2
√
κ2
.

he expression above gives the rate of convergence of system
1), a property that has been investigated in e.g. Brockett (2000)
nd Loría and Panteley (2002) by more intricate methods, obtain-
ng limited results. This shows the usefulness of explicit strong
Fs. Finally, it is worth mentioning that analogous bounds for
(z, t) in item (iii) of Theorem 3 can be derived, yielding the
orresponding rate of convergence.

. Comparison with previous works

For system (1) the most relevant result is given in Maghenem
nd Loría (2017, Lem. 1). However, it is only obtained for the case
= 1. The LF in Maghenem and Loría (2017) coincides with (4)

or n = 1.

1 Praly (2019) appeared after the first submission of our paper.
3

For system (2) several explicit strong LFs have been given
in Aranovskiy et al. (2019), Loría et al. (2019a, 2019b), Maghenem
and Loría (2017) and Mazenc, de Queiroz et al. (2009). In most
of these works a strong LF has been constructed for a more
general nonlinear version of the problem. When specialized to
the LTV system (2), they all impose the following (common)
restrictions, in contrast to the solution proposed in our paper:
(R1) The regressor B(·) is bounded and continuously differentiable
ith a bounded derivative Ḃ. For the LTV systems this restriction
revents the usage of the LFs in the case of piecewise constant
r piecewise smooth regressors, two very common classes of
ignals in adaptive control, or for switched systems. (R2) It has
o satisfy condition (3) (not (7)). (R3) The proposed LF includes
erms involving directly the regressor B(·), rendering its differ-
ntiability necessary. As a consequence, the LFs in Aranovskiy
t al. (2019), Loría et al. (2019a, 2019b), Maghenem and Loría
2017) and Mazenc, de Queiroz et al. (2009) cannot be used if
he regressor is non-smooth.

To illustrate the implications of the smoothness restriction
ver B(t), consider system (2) with n = m = 1, i.e.,

˙1(t) = −a(t)z1(t) + b(t)z2(t),
˙2(t) = −p(t)b(t),

ith the discontinuous regressor b(t) defined as

(t) =

{ √
τ 2 − (t − tn)2 + c if n is even,

−

√
τ 2 − (t − tn)2 − c if n is odd

,

or t ∈ [tn − τ , tn + τ ) and where n is a natural number, τ
nd c are arbitrary positive constants and the sequence {tn} is
onstructed as tn+1 = tn + 2τ , with t0 ≥ τ an arbitrary initial
ime. Notice that b(t) ∈ PC([0,∞),R) and it is smooth almost
verywhere. However, its derivative is unbounded. Hence, for this
articular regressor and given the unboundedness of ḃ(t), the
Fs proposed in e.g. Loría et al. (2019a) and Mazenc, de Queiroz
t al. (2009) cannot be used. Furthermore, those LFs will present
iscontinuities, hence, jumps in their level sets.
Moreover, beyond the common restrictions (R1)-(R3), in

azenc, de Queiroz et al. (2009) it is assumed that (R4) A(·) is
smooth, symmetric, bounded and negative definite. In Maghenem
and Loría (2017) it is also required that (R5) m ≥ n and (R6) B(·) is
s.t. λmin(B⊤(t)B(t)) is PE, i.e., the regressor B(t) has to be injective
‘‘periodically’’. Otherwise, the function ψ(t) in Maghenem and
Loría (2017, Eq. (14)) cannot be PE. In Aranovskiy et al. (2019),
a mechanical system is studied and put in the form of (2). In
this case, the regressor corresponds to the inertia matrix, which
is smooth, (R7) square and of full rank.

Remark 6. In most of the works mentioned above, a nonlinear
system instead of a LTV system is considered. In a similar manner,
it is possible to use our proposed Lyapunov functions for (1)
and (2) to study nonlinear algorithms. The advantage is that, for
the nonlinear regressor depending on the states and/or inputs
B(t, z(t)), less restrictive conditions can be obtained.

Additionally, in the literature one can find methods to stric-
tify weak LFs such as Mazenc (2003), Mazenc and Nesic (2007)
and Mazenc, Malisoff, and Bernard (2009), summarized in Mal-
isoff and Mazenc (2009). Among these methods, the ones related
are described in Malisoff and Mazenc (2009, Chap. 6.1,Thm. 6.1).
The basic assumption of Malisoff and Mazenc (2009, Thm. 6.1) is
the availability of a weak LF V (x, t) s.t. V̇ (t) ≤ −p(t)W (x), where
p : R → R≥0 is PE, and W (x) is a positive definite function of x.
From (11), one can recognize p(t) as λmin(C⊤(t)C(t)) and W (x) as
∥x∥2. However, if there are more parameters than measurements
(n > m), λmin(C⊤(t)C(t)) = 0 ∀ t ≥ t0, and therefore p(t) is not PE.
n the case of (12), and since z2 does not appear in V̇ (t), there is
o possible candidate W . Therefore, Malisoff and Mazenc (2009,
hm. 6.1) cannot be applied to any of the systems under study.
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. Proofs of the main results

.1. Proof of Theorem 1

Equivalence of items (i) and (ii) of Theorem 1 is proved in
nderson (1977, Thm. 1) and Morgan and Narendra (1977b,
hm. 1). Since 0 ≤ σ − t + T ≤ T and C⊤(σ )C(σ ) ≥ 0 in the
ntegration interval σ ∈ [t − T , t]

γ1In ≥

∫ t

t−T
(σ − t + T )C⊤(σ )C(σ )dσ ≥ 0 . (13)

(x, t) can be bounded as

κ1∥x∥2
≥ V (x, t) ≥ κ2∥x∥2, (14)

1 =

(
2(T r1r2γ1)2

γ2
+ T

)
λmax(Γ −1) + T γ1,

2 =

(
2(T r1r2γ1)2

γ2
+ T

)
λmin(Γ −1),

(15)

o that it is a valid Lyapunov function candidate.
The derivative of V (x, t) along the trajectories of (1) results in

V̇ (x, t) = −x⊤

(
2(T r1r2γ1)2

γ2
C⊤(t)C(t)

+ 2
∫ t

t−T
(σ − t + T )C⊤(σ )C(σ )dσ Γ C⊤(t)C(t)

+

∫ t

t−T
C⊤(σ )C(σ )dσ

)
x .

The second term in V̇ (x, t) can be bounded as⏐⏐⏐⏐x⊤

∫ t

t−T
(σ − t + T )C⊤(σ )C(σ )dσ Γ C⊤(t)C(t)x

⏐⏐⏐⏐ ≤

r1 r2

∫ t

t−T
(σ − t + T )C⊤(σ )C(σ )dσ

 ∥C(t)x∥ ∥x∥ ≤

T r1 r2 γ1∥x∥ ∥C(t)x∥ ,

where we have used (13). From the Persistency of Excitation
condition (3), i.e., item (ii), we obtain

−x⊤

∫ t

t−T
C⊤(σ )C(σ )dσ x ≤ −γ2∥x∥2,

so that V̇ (x, t) satisfies

V̇ (x, t) ≤ −
2(T r1r2γ1)2

γ2
∥C(t)x∥2

− γ2∥x∥2

+ 2 T r1 r2 γ1∥x∥ ∥C(t)x∥ .

Using Young’s inequality for the last term we get

2(T r1r2γ1)2

γ2
∥C(t)x∥2

+
γ2

2
∥x∥2

≥

2 T r1 r2 γ1∥x∥ ∥C(t)x∥ ,

and then V̇ (x, t) ≤ −γ2∥x∥2/2 < 0. This shows that (ii) implies
(iii). Now, using Lyapunov’s theorem, we conclude that x = 0 is
GUAS, i.e., (iii) implies (i). □

5.2. Proof of Theorem 3

Equivalence of items (i) and (ii) of Theorem 3 is proved in
Anderson (1977, Thm. 2) and Morgan and Narendra (1977a,
Thm. 2). The upper and lower bounds of P(t) provided by Lemma 2
implies that Π (t) in (8) is bounded from above and below by
1

4

constant positive definite matrices, i.e., Π1(t) is uniformly posi-
tive definite. On the other hand and by using similar arguments
as those used for obtaining (13) we get the following boundsP12(t)

 ≤ T
∫ t

t−T

∫ t

s
∥B(σ )∥dσds ≤

r3T 3

2
,

T γ3In ≥ P22(t) ≥ 0 .

The previous inequalities imply that Π2(t) is bounded. Therefore,
for k > 0 large enough, it is possible to ensure that P(t) in (8)
is bounded for above and below by constant positive definite
matrices, making it uniformly positive definite. Since V (z, t) in
(8) is a quadratic form, there exist constants κ̄1 ≥ κ̄2 > 0
s.t. κ̄1∥z∥2

≥ V (z, t) ≥ κ̄2∥z∥2, making V (z, t) a valid Lya-
punov function candidate. Now, in order to obtain V̇ (t), we need
Ṗ12(t) and Ṗ22(t), which are computed using the Leibniz’s rule for
differentiation and correspond to

Ṗ12(t) = −T����⁓0
K(t, t) −

∫ t

t−T

d
dt

[(s − t + T )K(t, s)] ds

=

∫ t

t−T
K(t, s)ds −

∫ t

t−T
(s − t + T )B(t)ds∫ t

t−T
K(t, s)ds −

T 2

2
B(t),

Ṗ22(t) = T�������⁓0
K⊤(t, t)K(t, t)

+

∫ t

t−T

d
dt

[
(s − t + T )K⊤(t, s)K(t, s)

]
ds

= −

∫ t

t−T
K⊤(t, s)K(t, s)ds

+

∫ t

t−T
(s − t + T )

(
B⊤(t)K(t, s) + K⊤(t, s)B(t)

)
ds

−

∫ t

t−T
K⊤(t, s)K(t, s)ds − B⊤(t)P12(t) − P⊤

12(t)B(t).

et A(t) be as in (2). Then, V̇ (z, t) results in V̇ (z, t) = −z⊤Q(t)z,
ith Q(t) = −P(t)A(t)−A⊤(t)P(t)− Ṗ(t). Define Q(t) by blocks

as

Q(t) =

[
k Q (t) + Q11(t) Q12(t)

Q⊤

12(t) Q22(t)

]
,

Q11(t) = P12(t)B⊤(t)P(t) + P(t)B(t)P⊤

12(t) ,

Q12(t) = −A⊤(t)P12(t) + P(t)B(t)P22(t) +
T 2

2
B(t)

−

∫ t

t−T
K(t, s)ds ,

22(t) =

∫ t

t−T
K⊤(t, s)K(t, s)ds .

ecall that all these matrices are bounded. Due to the persistency
xcitation condition (7), i.e., item (ii) of Theorem 3, Q22(t) is pos-
tive definite. Thus, using the Schur complement, Q(t) is positive
efinite if the matrix k Q (t) + Q11(t) − Q12(t)Q−1

22 (t)Q
⊤

12(t) is
ositive definite. This will be the case if
⊤

(
k Q (t) + Q11(t) − Q12(t)Q−1

22 (t)Q
⊤

12(t)
)
ζ ≥(

k γ7 − ∥Q11(t)∥ −
1
γ4

∥Q12(t)∥2
)

∥ζ∥2
≥ ϵ2∥ζ∥2

is valid for some ϵ ̸= 0. Since Q11(t) and Q12(t) are bounded and
independent of k, the latter inequality is satisfied for k > 0 suf-
iciently large. Therefore, V̇ (z, t) is negative definite. This shows
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M

M

M
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hat (ii) implies (iii). From Lyapunov’s theorem we conclude that
= 0 is GUAS, i.e., (iii) implies (i). □

. Conclusions

Strong Lyapunov functions that work under necessary and
ufficient conditions that ensure GUAS of two classical systems
n adaptive control are presented for the first time. It is the hope
f the authors that the availability of these functions allows to
nalyze the effect of noise, parameter variations and nonlineari-
ies in adaptive control systems, and that they help in the design
f tuning rules to obtain specific convergence rates.
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