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A B S T R A C T   

Wide-Area Control (WAC) can be efficiently used for oscillation damping in power systems. However, to im-
plement a WAC, a communication network is required to transmit signals between the generation units and the 
control center. In turn, this makes WAC vulnerable to time-varying communication delays that, if not appro-
priately considered in the control design, can destabilize the system. Moreover, with the increasing integration of 
renewable energy resources into the grid, usually interfaced via power electronics, power system dynamics are 
becoming drastically faster and making WAC more vulnerable to communication delays. In this paper, we 
propose a design procedure for a delay-robust wide-area oscillation damping controller for low-inertia systems. 
Its performance is illustrated on the well-known Kundur two-area system. The results indicate that the obtained 
WAC successfully improves the oscillation damping while ensuring robustness against time-varying commu-
nication delays.   

1. Introduction 

1.1. Motivation and related work 

Electric power systems are frequently subjected to low-frequency 
inter-area oscillations caused by Synchronous Generator(SG), or co-
herent groups of generators, oscillating against each other in an inter-
connected system [1]. Insufficient damping of such oscillations can lead 
to increased losses, excessive strain on the mechanical components of 
generators, and in extreme cases instability. Traditionally, these un-
derdamped oscillations have been addressed by deploying decen-
tralized controllers called Power System Stabilizers (PSSs) at units 
participating in the power swing modes. Various control strategies for 
tuning of PSS parameters have been proposed in the literature, such as 
pole placement [2], root locus [3], 2 [4] and [5] norm. In par-
ticular, PSSs can improve oscillation damping by adjusting the re-
ference signal of the exciter, thus counteracting a high-gain fast re-
sponse of Automatic Voltage Regulators (AVRs). Nevertheless, relying 
solely on decentralized control might sometimes be inadequate for 
providing sufficient damping of inter-area modes, or even worsen the 
performance of the overall system [6,7]. Recently, with the 

advancements in Wide-Area Monitoring and Control (WAMC), new 
methods have been proposed that exploit WAMC capabilities to im-
prove damping by coordinating multiple units through a wide-area 
controller [8,9]. 

The deployment of a communication network to enable WAMC is 
however not problem-free and can introduce additional vulnerabilities 
to the system, one of the most prominent being communication delays. 
The latter arise in the form of transmission delays, propagation delays, 
processing delays and queuing delays [10,11]. Since the presence of 
communication delays influences the system performance and can even 
lead to instability [12], taking such delays into account is necessary in 
order to design a well-functioning WAC. 

While this problem has already been investigated for constant de-
lays in the frequency domain [13,14], the proposed analyses are not 
applicable to the case of time-varying delays. Yet, the latter are ubi-
quitous in sampled data networked control systems [15,16], such as 
WAMC. The underlying reasons are the joint presence of digital controls 
and continuous physical dynamics as well as the fact that network ac-
cess and propagation delays typically depend on the communication 
network congestion and are, hence, time-varying [17]. Therefore, fol-
lowing standard practice in sampled-data and networked control 

https://doi.org/10.1016/j.epsr.2020.106629 
Received 2 October 2019; Received in revised form 19 April 2020; Accepted 1 August 2020    

⁎ Corresponding author. 
E-mail address: smalgamdi1@kau.edu.sa (S. Alghamdi). 

Electric Power Systems Research 189 (2020) 106629

Available online 12 August 2020
0378-7796/ © 2020 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03787796
https://www.elsevier.com/locate/epsr
https://doi.org/10.1016/j.epsr.2020.106629
https://doi.org/10.1016/j.epsr.2020.106629
mailto:smalgamdi1@kau.edu.sa
https://doi.org/10.1016/j.epsr.2020.106629
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2020.106629&domain=pdf


systems, in the present work the communication delays are represented 
by bounded, time-dependent functions [15,16]. As a consequence, the 
resulting dynamical system is non-autonomous, which implies that an 
eigenvalue-based stability analysis is inconclusive [18]. A standard al-
ternative is to employ the Lyapunov-Krasovskii theory in combination 
with a Linear Matrix Inequality (LMI) approach [15,16]. This has been 
pursued for WAC synthesis in power systems with purely conventional 
generation in Li et al. [19], Wang et al. [20], Yang and Sun [21], Qiang 
et al. [22]. 

Current developments in power systems, driven by environmental 
incentives, lead to the displacement of conventional (SGs) by 
Renewable Energy Sources (RESs). Renewable generators are usually 
interfaced to the grid via power electronic converters, which operate on 
drastically shorter timescales and electrically decouple the kinetic in-
ertia stored in rotating masses of the RES generators from the network. 
As a result, the voltage and frequency dynamics, as well as the re-
spective control interaction in low-inertia systems, become more com-
plex and harder to analyze [23]. Moreover, with the displacement of 
(SGs) the number of PSSs providing oscillation damping is also reduced. 
This issue was partially addressed in Fuchs et al. [24] with the devel-
opment of a global model predictive controller for providing power- 
oscillation damping and stabilization of large AC power systems using 
Voltage Source Converter (VSC)-based HVDC links. On the other hand, 
employing RESs for participation in the inter-area oscillation damping 
has been considered in Singh et al. [25], Zacharia et al. [26], Liu et al.  
[27]. However, none of the above studies considers time-varying 
communication delays in the WACs. 

1.2. Contribution 

The main contribution is a design procedure for a delay-robust, 
wide-area output feedback controller that regulates both conventional 
and converter-based generators to enhance oscillation damping in a 
low-inertia system with detailed dynamics and under the consideration 
of time-varying delays. 

Compared to the existing work on WAC where full state feedback 
controllers were used [8,9,28], we propose a static output feedback con-
troller which eases its practical implementation. Moreover, the proposed 
control synthesis ensures damping of low-frequency modes by minimizing 
the upper-bound of the L2-gain, which is equivalent to the norm of a 
linear time-invariant system [16,18] and has been proven to be effective in 
improving the damping of inter-area modes [5,9,19,29,30]. For this purpose 
and, as in any practical WAMC there will inevitably be a minimum nonzero 
communication delay, we model the delays as interval time-varying delays, 
i.e., assuming non-zero constant upper and lower bounds [16]. The control 
synthesis is derived by applying the augmented Lyapunov-Krasovskii 
functional(LKF) in Seuret et al. [31] together with the descriptor method. 
Subsequently, the variable transformation from [32] is employed to for-
mulate the control design problem as a convex optimization problem with 
Linear Matrix Inequality constraints. A similar approach is employed in Al-
ghamdi et al. [33] for designing a secondary frequency controller in mi-
crogrids. 

The remainder of this paper is structured as follows. In Section 2, 
the detailed dynamic model of a low-inertia system is introduced to-
gether with the model reduction approach based on first-order singular 
perturbation for alleviating the system complexity pertaining to several 
distinctive timescales. Section 3 presents a control synthesis approach 
for designing the WAC that ensures robustness with respect to time- 
varying communication delays. The effectiveness of the proposed pro-
cedure is validated on the Kundur two-area system in Section 4. Finally, 
a brief summary and potential directions for future work are provided 
in Section 5. 

2. Power system modeling 

2.1. VSC control scheme 

In this work, we consider a state-of-the-art, grid-forming VSC control 
scheme previously described in Markovic et al. [34], where the con-
verter is operated as a Virtual Synchronous Machine (VSM). In parti-
cular, the outer control loop comprises the active and reactive power 
controllers that compute the output voltage angle and magnitude re-
ferences by adjusting the predefined setpoints according to a measured 
power imbalance. Subsequently, the reference voltage vector signal is 
passed through a virtual impedance block as well as the inner control 
loop consisting of cascaded voltage and current PI controllers. The 
output is combined with the DC-side voltage in order to generate the 
pulse-width modulation signal. Due to a grid-forming mode of opera-
tion, a synchronization unit - usually in the form of a Phase-Locked 
Loop (PLL) - is omitted from the design. With inclusion of the filter 
current and voltage dynamics, the complete mathematical model 
comprises 13 state variables and is implemented in a rotating (dq)- 
frame and per unit. More details on the overall converter control 
structure, employed parametrization, potential operation modes and 
respective transient properties can be found in Markovic et al. [23],  
34], Ofir et al. [35]. 

2.2. Synchronous generator model 

For synchronous generators we consider a round rotor model 
equipped with a prime mover and a TGOV1 governor. An AVR, based 
on a simplified excitation system SEXS, is incorporated for the purpose 
of voltage regulation, together with a PSS1A power system stabilizer. 
Detailed control configuration and tuning parameters are provided in 
ENTSO-E [36]. The internal machine dynamics are characterized by the 
flux linkage transients in the rotor circuit (field winding, two damper 
windings in the q-axis and one in the d-axis), as transients in the stator 
windings decay rapidly and can thus be neglected. The inclusion of the 
swing equation dynamics and stator circuit balance completes the re-
spective set of Differential-Algebraic Equations (DAEs). The Synchro-
nous Generator is interfaced to the grid through a transformer and 
modeled in the Synchronously-rotating Reference Frame (SRF). Internal 
machine dynamics, combined with six controller states pertaining to 
governor, AVR and PSS, as well as the electrical circuit interface yield a 
14th-order system. For more details regarding the Synchronous Gen-
erator modeling and internal parameter computation we refer the 
reader to [1]. 

2.3. Transmission network dynamics 

The transmission network comprises transmission lines modeled as 
π-sections. Moreover, loads are modeled as constant impedance RL 
loads. In order to represent all system variables in a common SRF, 
following standard practice [37,38], the terminal currents and voltages 
of each generator unit are mapped to the respective network nodes with 
generator connection, and subsequently aligned to the uniform SRF of 
an arbitrary synchronous generator or a grid-forming inverter. Finally, 
the line dynamics are captured using a conventional DAE representa-
tion of an RLC circuit. The exact mathematical formulation and the 
appropriate SRF alignment are presented in [23]. 

2.4. Model-order reduction 

Combining the network model with the individual generator dy-
namics completes the set of Ordinary-Differential Equations (ODEs). 
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The linearized model is thus defined in the general state-space form as: 

= +x Ax Bu¯ ¯ ¯ ¯ , (1) 

where x̄ k is the state variable vector, u m is the input vector, 
and ×Ā k k and ×B̄ k m are constant matrices. 

Conventional power systems are characterized by relatively slow 
voltage and frequency controllers due to large turbine and governor 
time constants of SGs (in the range of seconds). However, with the 
inclusion of fast-acting, converter-based generation, the system dy-
namics become more complex. More precisely, the time constants of the 
PI controllers and low-pass filters associated with the inner and outer 
inverter control loops are one or two orders of magnitude smaller than 
the ones of the SGs. Moreover, the transmission line dynamics, tradi-
tionally neglected in Synchronous Generator-based power system ana-
lysis due to timescale separation, become significant in low-inertia 
grids [23]. However, such dynamical systems experience a wide range 
of time constants, which increases model complexity and might lead to 
an ill-conditioned matrix Ā. 

The issues pertaining to tractability are resolved by employing a 
model-order reduction based on a first-order singular perturba-
tion [39,40]. Let us consider a system with a distinct timescale se-
paration between the fast and slow dynamics, which allows us to re-
write the formulation in (1) as 

= + +x A x A x B u,s ss s sf f s (2a)  

= + +x A x A x B u,f fs s ff f f (2b) 

where the subscripts s and f correspond to slow and fast states respec-
tively, and Υ is a set of parameters designating the fast dynamics. Un-
like in the traditional zero-order approach, where fast dynamics are 
completely neglected by converting the corresponding differential 
equations into algebraic ones, the first-order method removes the fast 
states by stating that the first derivative of xf is non-zero, whereas the 
second derivative is negligible. This property is especially useful in 
systems with several distinctive timescales and has a potential of better 
capturing the impact of fast states on slow system dynamics. Inserting 
such a dependence in (2b) and separating different orders of magnitude 
yields a first-order ODE system of the form [39,40]: 

= +x Ax B u,s s u (3a) 

where 

= +A I A A A A A A A A( ) ( ),sf ff ff fs ss sf ff fs
1 1 1 1 (3b)  

= +B I A A A A B A A B( ) ( )u sf ff ff fs s sf ff f
1 1 1 1 (3c) 

are the reduced state-space matrices and xs
n denotes the preserved 

slow states of interest. Understandably, the reduced-order model is only 
valid if Aff and +I A A A Asf ff ff fs

1 1 are nonsingular. 
The proposed first-order method is employed for eliminating the 

electrical states of the converter, corresponding to filter current and 
voltage dynamics, as well as the flux linkage dynamics of the syn-
chronous generator. By removing these fast states we obtain a 9th-order 
VSC model and a 10th-order Synchronous Generator model, which 
compared to the original system (1) exhibit lower complexity and, in 
the authors’ experience, result in significantly better-conditioned 
system matrices [41]. 

3. Delay-robust wide-area control design 

We now investigate the following linear MIMO system: 

= + +x Ax B u B w,s s u w (4a)  

=y C x ,y s (4b)  

= + +z C x D u D w,z s u w (4c) 

where xs
n is the state variable vector, u m is the input vector, w 

(t) ∈ L2[0, ∞)1 is the external disturbance vector, y q is the output 
vector, z p is the performance output vector, ×A ,n n ×B ,u

n m

×B ,w
n w ×C ,y

q n ×C ,z
p n ×D ,u

p m and ×Dw
p w are con-

stant matrices. We assume that the pair (A, Bu) is stabilizable. 

3.1. Controller structure 

We consider the following static output feedback controller for the 
system (4): 

= =u Ky KC x ,y s (5) 

where ×K m q is the controller gain to be designed. The controller (5) 
is simpler and easier for practical implementation than a full state 
feedback controller since it only requires the system output to be 
measurable. 

With regard to the communication delays, we assume that the in-
formation flow from the ith node to the WAMC center and vice versa is 
affected by a fast, time-varying, bounded, communication interval 
delay h h: [ , ],0 1 2 h ,1 0 >h ,2 0 h2 > h1 (where h1 and h2 are 
the lower and upper communication delay limits, respectively). For 
clarity of exposition we assume uniform delays. However, the proposed 
approach presented can be extended to heterogeneous delays at the 
expense of a more involved notation, see e.g. [42–44]. Hence, the 
closed-loop system is obtained by combining (4) with the delayed 
variant of (5), i.e., 

= +x Ax B KC x t t B w( ( )) ,s s u y s w (6a)  

= +z C x D KC x t t D w( ( )) .z s u y s w (6b)  

The objective of damping the inter-area modes is considered in our 
approach by minimizing the L2-gain >0 of (6), which is defined as 
the maximum energy amplification ratio between the disturbance input 
signal w and the performance output signal z [16,18]. For instance, 
defining the output performance matrix Cz in (6), such that z represents 
the frequencies of the generation units and then minimizing the L2-gain 
γ, should reduce the frequency oscillations in the system following a 
disturbance w. The control design objectives are summarized in the 
following problem statement. 

Problem 3.1. Consider the system (4). Given h ,1 0 h2 0 with 
h1 ≤ τ(t) ≤ h2, design a static output feedback controller (5), such that 
the origin is a uniformly asymptotically stable equilibrium point of the 
resulting closed-loop system (6) and its L2 gain is minimized. 

3.2. Main result 

We provide the following solution to Problem 3.1. 

Proposition 3.2. Consider the system (6). Fix h1 ≥ 0, and h2 > h1. 
Suppose that there exists a parameter >¯ 0 and matrices >

×P̄ ,n n
0

3 3

>
×R̄ ,n n

1 0 >
×R̄ ,n n

2 0 >
×S̄ ,n n

1 0 >
×S̄ ,n n

2 0
×M ,q q ×N ,m q

×W ,n n and ×X̄ ,n n2 2 such that the following problem is feasible: 

1 A signal u: m
0 is in L2 if its L2-norm u ,L2 given by 

=u u t u t dt( ) ( )L2 0

is finite [18]. 
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3
2
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= = =
= + +

=

=

=

=

=

h h h R R R G G
G PG G PG

C W D NC D

G
I

I I
I I

G
I

h I
h I h I

G I I
I I I

G I I
I I I

0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0

, ˜ diag( ¯ , 3 ¯ ), [ , ] ,
¯ ( ) ¯ ¯ ( ) ( ) ¯ ¯ ,

¯ [ , , , , , , , , ],

,

( )
( ) ( )

,

2 ,

2 ,

z u y w

12 2 1 2 2 2 2 3

1 11 0 1 1 0 3

2

0

1 1

1 2

2

3

and ¯11 is given in (10). Choose the controller gain as 

=K NM .1 (11) 

Then, for all τ(t) ∈ [h1, h2], the origin is a uniformly asymptotically stable 
equilibrium point of the system (6) and the system has an L2-gain less than or 
equal to = ¯ . 

The proof is given in the Appendix. 

4. Numerical example 

The performance of the proposed WAC is assessed using the Kundur 
two-area system [1], which is prone to local and inter-area oscillations. 
The system consists of two weakly connected areas, with each com-
prising two generators. The parameters of the system are given in [1, 
Example 12.6]. Furthermore, three system configurations are con-
sidered in this work: (1) an all Synchronous Generator-based system 
serving as a benchmark for the effectiveness of the proposed WAC; (2) 
each area contains a mix of synchronous and converter-based genera-
tion, as illustrated in Fig. 1; and (3) Area 1 is all Synchronous Gen-
erator-based and Area 2 converter-based. 

Preliminary investigations using modal analysis show the presence 
of underdamped, low-frequency modes in all three configurations.  
Table 1 lists the main eigenvalues as well as the damping ratios and 
natural frequencies of these modes. Moreover, Fig. 2 illustrates the 
mode shape [1] of these modes. It also suggests that the first config-
uration exhibits two local low-frequency modes and one inter-area 
mode, while the second and third configuration are prone to one inter- 
area and one local mode, respectively. All of the underdamped modes 
and the effectiveness of the proposed WAC are studied in the sub-
sequent time-domain analysis. 

Next, to design the WAC for all considered configurations, we solve 
the optimization problem (7). We assume that the exchanged in-
formation via a communication network is affected by fast-varying, 
uniform interval delays with = =h t h80 ms ( ) 140 ms1 2 . Further-
more, we set = =D D 0u w and choose =C Cy z such that the output y 
in (4) and the performance output z in (6) describe the frequencies. The 
implementation is done in MATLAB (R2018b), using Yalmip (version 09- 

=

+ + +
+ +

+

AW WA S R W WA R B NC R B
W h R h R B NC B

S S R R

S
R

I

0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0 0

0 0 0 0
0 0 0
0 0 0

0 0

¯

¯ 4 ¯ 2 ¯ 6 ¯

* 2 ¯ ¯

* * ¯ ¯ 4 ¯ 6 ¯
* * *
* * * * ¯
* * * * * 12 ¯
* * * * * *
* * * * * * *
* * * * * * * * ¯

u y w

u y w

11

1 1 1 1

1
2

1 12
2

2

1 2 1 1

2

1

(10) 

Fig. 1. Topology of the investigated Kundur two-area system with WAC (Left: Area 1, Right: Area 2).  
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02-2018) [45] and the solver MOSEK (version 8.1.0.51) [46]. To simulate 
the communication delays, we employ the transition and variable time 
delay blocks in MATLAB/SIMULINK with a sampling time of =T 2 mss . 

We first investigate Configuration 1, i.e., a power system comprised 
solely of SGs. This allows us to evaluate the performance of the pro-
posed control synthesis in a conventional power system. The compar-
ison between an uncontrolled (open-loop) system, with only PSS par-
ticipating in oscillation damping, and the system with WAC and 
communication delays is conducted. The simulation results given in  
Fig. 3 clearly indicate that the groups of generators in two areas os-
cillate against each other. On the other hand, designing the WAC using  
Proposition 3.2 reduces the system’s L2-gain from = 2.2078 (without 
the WAC) to (with the WAC), while ensuring robustness against com-
munication delays. As can be seen from Fig. 3 this also results in a 
significant reduction of the oscillations. 

Table 1 
Underdamped modes of the Kundur two-area system.       

Config. Eigenvalues Damping ratio Frequency [Hz] Mode type  

1 ± i0.0846 4.82 0.0176 0.76712 Local 
± i0.0913 4.82 0.019 0.76714 Local 

± i0.142 4.04 0.035 0.6434 Inter-area 
2 ± i0.228 4.46 0.0511 0.7098 Inter-area 
3 ± i0.0846 4.82 0.0176 0.76714 Local 

Fig. 2. Mode shape of underdamped modes. Configuration 1: (a) mode 1, (b) mode 2, (c) mode 3; (d) Configuration 2; (e) Configuration 3. Note that VSCi and SGi 

denote the respective generator types connected at node i. 

Fig. 3. Configuration 1 - frequency response of a traditional power system after 
a step-change in load for two different scenarios: (i) uncontrolled system; (ii) 
controlled system with communication delays. 

S. Alghamdi, et al.   Electric Power Systems Research 189 (2020) 106629

5



Similarly, Fig. 4 shows the results of the same test case for a low- 
inertia grid with Configuration 2. We first investigate the open-loop 
behavior of the system, followed by the response with the WAC and 

including time-varying communication delays. The results confirm that 
the uncontrolled system exhibits oscillations between the two-areas, 
even if two of the generators are converter-based. The WAC im-
plementation of the static feedback control gain K improves the system 
behavior by reducing the L2-gain from = 3.019 (without the WAC) to 

= 1.7963 (with the WAC), which effectively damps the oscillations 
and, in addition, guarantees delay-robustness. 

Finally, in Configuration 3 we split the generation types between 
the two areas. As a result, there are no inter-area modes between the all 
inverter-based and the all SG-based areas. In fact, the grid-forming in-
verters are synchronized and their frequency response is very well 
damped. Nonetheless, the local oscillations between the SGs in Area 2 
are still present, as illustrated in Fig. 5. Applying the WAC design can 
also improve these oscillation by means of reducing the system’s L2- 
gain. The designed WAC reduces the L2-gain from = 2.0628 (without 
the WAC) to = 1.0965 (with the WAC). Fig. 5 shows that the controller 
significantly improves the damping of local oscillation. 

The three configurations investigated above show the effectiveness 
of the proposed delay-robust WAC. More precisely, in Configurations 1 
and 2 the proposed controller successfully damps the inter-area oscil-
lations, even in the presence of time-varying delays. Furthermore, since 
the controller aims to minimize the L2-gain of the system, it also ex-
hibits the ability to damp local oscillations, as shown in 
Configuration 3. 

5. Conclusions 

In this work, we investigate the problem of wide-area oscillation 
damping control in low-inertia systems in the presence of time-varying 
communication delays. We address these challenges by proposing a 
design procedure for a WAC that guarantees delay-robustness and si-
multaneously minimizes the L2 gain of the system. More precisely, we 
consider a detailed model of a low-inertia system and combine an 
augmented Lyapunov-Krasovskii functional with the descriptor method 
and a change of control variables to develop a static output feedback 
controller synthesis. Furthermore, the proposed control design is tested 
on the Kundur two-area system. The results demonstrate that the pro-
posed approach successfully improves oscillation damping and ensures 
robustness with respect to time-varying communication delays. 

In future work, we plan to extend the study by applying the pro-
posed controller synthesis to large-scale low-inertia systems. In addi-
tion, we intend to introduce a sparsity-promoting feature in the control 
design, in order to reduce the required information exchange of the 
WAC. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.   

Appendix A 

Proof of Proposition 3.2.. The proof is based on a combination of the stability analysis conducted in Seuret et al. [31] with the control design 
approach using the descriptor method in Fridman [16] and the change of variables proposed in Crusius and Trofino [32]. Consider the positive 
definite augmented Lyapunov-Krasovskii functional [31] 

Fig. 4. Configuration 2 - frequency response of a low-inertia system after a step- 
change in load for two different scenarios: (i) uncontrolled system; (ii) con-
trolled system with communication delays. 

Fig. 5. Configuration 3 - frequency response of a low-inertia system after a step- 
change in load for two different scenarios: (i) uncontrolled system; (ii) con-
trolled system with communication delays. 
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where P > 0, S1 > 0, S2 > 0, R1 > 0, and R2 > 0 and =h h h ,12 2 1 see (7). Then, by invoking [16, Lemma 4.3], the design objectives in Problem 3.1 
are equivalent to the following constraint optimization problem 

+
V x x t w t z t

x t w t

min
subject to

( , , ) ( ( ) ( ) )
( ( ) ( ) ),

s s

s

2
2
2

2
2

2
2

2
2

where V denotes the time-derivative of the LKF V in (12), ‖ · ‖2 is the Euclidean norm and ϱ is some positive constant. 
As shown in Seuret et al. [31], the differentiation of V along the trajectories of the system (6) yields 

= + +V V V V ,1 2 3 (13) 

with 

=

+

V

x
x s ds

x s ds
P

x
x x t h

x t h x t h

x
x x t h

x t h x t h
P

x
x s ds

x s ds

( )

( )
( )

( ) ( )

( )
( ) ( )

( )

( )
,

s

t h
t

s

t h
t h

s

s

s s

s s

s

s s

s s

s

t h
t

s

t h
t h

s

1 1

1 2

1

1 2

1

2
1

1

2
1

=
+

= +

V x S x t x t h S x t h
x t h S x t h x t h S x t h

V h x t R x t h x t R x t

h x s R x s ds h x s R x s ds

( ) ( ) ( )
( ) ( ) ( ) ( ),
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

s
t

s s s

s s s s

s s s s

t h

t
s s t h

t h
s s

2
( )

1 1 1 1

1 2 1 2 2 2

3 1
2

1 12
2

2

1 1 12 2
1 2

1

Inspired by Seuret et al. [31], we introduce the vector 

=t x t x t x t h x t x t h

x s ds x s ds

x s ds w

( ) [ ( ), ( ), ( ), ( ), ( ),

( ) , ( ) ,

( ) , .

s s s s s

h t h
t

s h t
t h

s

h t h
t

s

1 2
1 1

1

1 1 1
1

2 2 (14) 

Then, by using G0 and G1(τ) from (7), we obtain 

=

=

x
x s ds

x s ds
G t

x
x x t h

x t h x t h
G t

( )

( )
( ) ( ),

( )
( ) ( )

( )

s

t h
t

s

t h
t h

s

s

s s

s s

1

1

1 2

0

1

2
1

(15) 

and V1 can be compactly written as 

= +V G PG G PG( ( ) ( ) ) .1 0 1 1 0 (16) 
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Next, consider V3 in (14). Applying the improved integral inequality, i.e., [31, Lemma 2.1] gives 

+

+

h x s R x s ds

x x t h
x x t h x s ds

R
R

x x t h
x x t h x s ds

0
0

( ) ( )

( )
( ) ( ) 3

( )
( ) ( ) .

t h
t

s s

s s

s s h t h
t

s

s s

s s h t h
t

s

1 1

1

1
2

1

1

1

1
2

1

1 1

1 1 (17) 

Furthermore, as shown in Seuret et al. [31], combining [31, Lemma 2.1] and [31, Lemma 2.2] allows to obtain 

h x s R x s ds( ) ( ) ,
t h

t h
s s12 2 2

2

1

(18) 

where Γ is given in (7), X is a matrix variable and 

= =R X
R

R R
R

^

* ^ , ^ 0
0 3 .2

2

2
2

2

2 (19) 

Then, differently from the analysis conditions presented in Seuret et al. [31], for the purpose of deriving a controller synthesis we employ the 
descriptor method, see [16, Chapter 3]. Let P2 and P3 be matrix variables and introduce the following expression 

= + +x P x P Ax B KC x t B w x0 2[ ][ ( ) ].s s s u y s w s2 3 (20) 

Then, summing up (20), (16), V ,2 the first two terms in V3 in (14) and (18), considering the output performance z in  (6) and following the procedure 
in [16, Section 4.3.2] gives 

+ + +
V x x t w t z t

G PG G PG
( , , ) ( ( ) ( ) )
( ( ) ( ) ) ,

s s
2

2
2

2
2

11 0 1 1 0 3 2 2 (21)  

=

+ + +
+ +

+

P A A P S R P A P R P B KC R P B
P P h R h R P B KC P B

S S R R

S
R

I

0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0 0

0 0 0 0
0 0 0
0 0 0

0 0

4 2 6
*
* * 4 6
* * *
* * * *
* * * * * 12
* * * * * *
* * * * * * *
* * * * * * * *

u y w

u y w

11

2 2 1 1 2 3 1 2 1 2

3 3 1
2

1 12
2

2 3 3

1 2 1 1

2

1

2 (22) 

where ζ is given in (14), ψ11 is defined in (22), G0(τ), G1 and Γ are given in (7), ψ3 is defined in (19) and = C D KC D0 0 0 0 0 0[ , , , , , , , , ]z u y w2 . The 
right hand-side of (21) being negative for ζ ≠ 0 is, by using the Schur complement [16], equivalent to 

<
I

( )
*

0.1 2

(23) 

where = + +G PG G PG( ) ( )1 11 0 1 1 0 3 . 
Due to the terms P B KCu y2 and P3BuKCy, the matrix ψ11 in (22) is bilinear in the decision variables P2, P3 and K. To overcome this drawback, we 

choose 

= =P P W P, ,3 2 2
1 (24) 

where ϵ is a tuning scalar. Then, we perform a congruence transformation on the matrix in (23) by multiplying it by diag(W, W, W, W, W, W, W, W, I, 
I) and its transpose from the right and left, respectively. We also define the matrices 

=
=

=

S S R R W S S R R W
P W W W P W W W
X W W X W W

[ ¯ , ¯ , ¯ , ¯ ] [ , , , ] ,
¯ diag( , , ) diag( , , ),
¯ diag( , ) diag( , )

1 2 1 2 1 2 1 2

(25) 

and, following [32, W-Problem], introduce new matrix variables M and N satisfying 

= =MC C W K NM, .y y
1 (26) 

By defining =¯ ,2 we then obtain (7), which is a Linear Matrix Inequality in the auxiliary controller variables N and M as well as in the variables ¯,
P̄, R̄ ,1 R̄ ,2 X̄ , S̄1 and S̄2 with additional (fixed) tuning parameter ε. 

Finally, since ¯ ( )1 in (7) is affine with respect to τ, a necessary and sufficient condition for <¯ ( ) 01 for all τ ∈ [h1, h2] is that = <h¯ ( ) 01 1 and 
= <h¯ ( ) 01 2 hold simultaneously, see e.g. [31]. Hence, under the made assumptions, all conditions of [16, Lemma 4.3] are satisfied. This com-

pletes the proof. □  
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