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Lumped Parameter Model for Silicon Crystal Growth
from Granulate Crucible

M. Nicolai L. Lorenz-Meyer,* Robert Menzel, Kaspars Dadzis, Angelina Nikiforova,
and Helge Riemann

In the present paper, a lumped parameter model for the novel Silicon
Granulate Crucible (SiGC) method is proposed, which is the basis for a future
model-based control system for the process. The model is analytically deduced
based on the hydromechanical, geometrical, and thermal conditions of the
process. Experiments are conducted to identify unknown model parameters
and to validate the model. The physical consistency of the model is verified
using simulation studies and a prediction error of below 2% is reached.

1. Introduction

Monocrystalline silicon is an essential material for modern tech-
nologies today and in the near future. The continuous improve-
ment of the manufacturing processes for monocrystalline silicon
is, therefore, key to meet the demand for ever-increasing device
performance and reduced production costs.
The novel SiGC method, invented at Leibniz-Institut für

Kristallzüchtung (IKZ), has the potential to produce high-quality
monocrystalline silicon comparable to the quality of crystals
grown by the Floating Zone (FZ) method.[1]

Low-cost rawmaterial in form of polysilicon granules from the
fluidized bed reactor is used. Thus, the production costs are ex-
pected to be much lower compared to the FZ method with low
oxygen contents.[2]

In the SiGC process, a melt pool contained by a layer of solid
silicon (“self-crucible”) is generated by inductive heating. The
“self-crucible” stabilizes itself in a bed of silicon granules. Then,
a crystal is pulled through a central hole in the inductor.
Themelt volume during SiGC growth is kept constant as in the

continuous Czochralski (CZ) and FZ process. This is achieved by
a continuous replenishment and melting of silicon granules.
Contact between the melt and containment is avoided, and

graphite heaters can be avoided during the crystal growth.
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Thus, the SiGC method combines the
advantages and avoids the disadvantages
of the two industrially-established pro-
cesses for monocrystalline silicon crys-
tal growth.
Manual control of the SiGC process

is complicated because the operator has
to stay in a small window of suitable
growth parameters. This windows is even
smaller for growth of crystals with larger
diameter. Thus, the automation of the

SiGC method will be a key issue in the further process de-
velopment and would be the next step towards its industrial
application.
The performance of linear control concepts using, for example,

Proportional-Integral-Derivative (PID) controllers is limited for
crystal growth.[3] As seen in the CZ as well as in the FZ method,
crystal growth processes typically show a nonlinear behavior.[4,5]

Hence, the parameters of linear controllers have to be deter-
mined individually for every phase of the growth process and
have to be set up again if the process setup is modified. This
expensive procedure can be avoided by using a control concept
based on the mathematical model of the system proposed in this
paper. Compared to linear control concepts, better performance
can be achieved using a model-based control system.
For the CZ process many models and control methods have

been proposed. For example, Zheng et al. have recently developed
a first-principle model for the industrial CZ silicon production
process for predicting crystal radius and crystal growth rate.[6]

A sketch of fundamental challenges in the automation of the
CZmethod and a review of selected control systems can be found
in a paper by Winkler.[7] The methods of feed-forward control,
feedback control and state estimation are discussed ibidem.
A recent approach to control the CZ process is presented by

Winkler and Neubert in a series of papers.[4,8–10] The crystal
growth rate and diameter is controlled using a combination of
a nonlinear model-based controller and conventional PID con-
trollers. The nonlinear model-based controller is used for parts
of the process for which the model is known with sufficient pre-
cision. System states not measured in the process are recon-
structed utilizing a nonlinear observer.
Werner developed a model-predictive control (MPC) system

for the FZ method without additional PID controllers.[5] For this
purpose, a measurement system based on visual image process-
ing is used. A nonlinear low-order model is derived consider-
ing the geometrical and thermodynamical conditions of the pro-
cess. Based on this model, an extended Kalman filter (EKF) is

Cryst. Res. Technol. 2020, 55, 2000044 2000044 (1 of 8) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcrat.202000044&domain=pdf&date_stamp=2020-06-16


www.advancedsciencenews.com www.crt-journal.org

Figure 1. Sketch of the SiGC method.

implemented. Using these techniques, a high-control precision
was achieved.
The crystal growth using the SiGC method is investigated by

Menzel using a 2D transient numerical model of the process
implemented in Comsol Multiphysics.[2] In this work, suit-
able process parameters for stabilizing the SiGC growth are
identified by simulating the crystal shape under varying growth
conditions.
The remainder of this paper is organized as follows: In Sec-

tion 2 the mathematical model for the SiGC method is derived
and a parameter identification is conduced. Section 3 presents
simulation results of test cases. Section 4 shows the results
from a auto- and cross-validation and conclusions are drawn in
Section 5.

2. Mathematical Model

In the following, a lumped parametermodel for the SiGCmethod
is proposed. A set of ordinary differential equations (ODEs) in the
form of a nonlinear state-space model is deduced, describing the
dynamic behavior of the the crystal radius rc, the crystal slope an-
gle 𝛼c, the melt filling level hl, the effective power of the inductor
Peff and the crystal growth rate vc. The adjustable inputs are the
pull rate vp, the silicon replenishment rate Ṁin and the generator
anode voltage Ua. The output is the measurable crystal radius.
Relevant quantities are depicted in Figure 1 and required con-

stants used in the calculations can be seen in Table 1.
The first part of themodel deals with the hydromechanical and

geometrical conditions of the SiGCmethod. ThreeODEs describ-
ing the crystal radius, the crystal slope angle and the melt filling
level are derived.

2.1. Crystal Radius

An ODE describing the crystal radius rc can be derived from the
geometric relations at the triple-point.[12] A rotationally symmet-
ric crystal and a planar crystallization interface is assumed.

ṙc = vctan(𝛼c) (1)

Table 1. Physical properties of silicon, after ref. [11].

Silicon property Symbol Value Unit

Melting point T0 1687 K

Mass density of liquid 𝜌l 2580 kg m−3

Mass density of solid 𝜌s 2329 kg m−3

Latent heat of fusion q0 1.8 × 106 J kg−1

Growth angle 𝛼0 11 ◦

Surface tension 𝛾 0.88 N m−1

Emissivity of solid at T0 𝜖0 0.46 –

Thermal conductivity of solid at T0 𝜆0 22 W (mK)−1

The crystal growth rate vc is described by the temporal rate of
change of the crystal length l

vc =
dl
dt

= vp − ḣm − ḣl, (2)

with the pull rate vp, the temporal rate of change of the meniscus
height ḣm and the melt filling level ḣl.
The crystal slope angle 𝛼c is defined as

𝛼c = 𝛼 − 𝛼0, (3)

where the melt angle 𝛼 is the angle at the triple-point line be-
tween themelt surface and a vertical line. 𝛼0 = 11◦ is the constant
growth angle of silicon.[13]

2.2. Melt Filling Level

The melt filling level hl is defined as the depth of the melt pool in
the center. It must be kept constant during SiGC growth. Strong
fluctuations of themelt filling level due to an improper silicon re-
plenishment rate Ṁin will lead to process instabilities and must
be avoided by a control system. Thus, calculation of the dynamic
behavior of the melt filling level is essential to determine the
correct amount of silicon granulate replenishment during the
whole process.
The ODE describing the melt filling level can be derived from

a mass balance. Hence, the time derivatives of the crystal mass,
the melt mass, and the meniscus mass are calculated.

2.2.1. Crystal Mass

The rate of change of the crystal mass Ṁc is calculated as

Ṁc = 𝜋𝜌sr
2
c vc, (4)

with the density of solid silicon 𝜌s. A rotationally-symmetric crys-
tal and a planar crystallization interface is assumed.

2.2.2. Melt Mass

The shape of the self-crucible, as well as the melt volume Vl it
contains, is determined by the temperature field. This field is not
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modeled in this paper. Consequently, a geometric approximation
of the shape of the crucible is derived. It is assumed that the cru-
cible is rotationally symmetric and that the outer radius rl of the
free melt surface is constant in time. To model the shape of the
self-crucible, the melt height h is approximated as a cubic func-
tion depending on the radius r. Unknown constants in this ap-
proximation are fitted to experimental data. The melt mass Ml
and its time derivative are calculated by a volume integral result-
ing in

Ml = 0.624𝜋𝜌lr
2
l hl, Ṁl =

𝜕Ml

𝜕hl
ḣl = 0.624𝜋𝜌lr

2
l ḣl (5)

This result is verified by comparison to a lateral cut of a solidified
residual melt of a SiGC crystal growth experiment.

2.2.3. Meniscus Mass

The meniscus massMm depends on the shape of the meniscus.
The shape of the meniscus is governed mainly by the balance
of surface tension and hydrostatic force. This is described by the
Young-Laplace equation, neglecting the impact of the electromag-
netic force on the free melt surface shape (cf. [14, 15]). To avoid
the computational cost of a numerical solution, an analytical ap-
proximation derived by Boucher[16] is used.

hm = a

√
1 − sin(𝛼0 + 𝛼c)

1 + a∕(
√
2rc)

; ḣm =
𝜕hm
𝜕rc

ṙc +
𝜕hm
𝜕𝛼c

�̇�c (6)

The capillary constant of silicon a is calculated by

a =
√

𝛾

𝜌lg
= 0.0059 m, (7)

where 𝛾 is the surface tension of the melt, 𝜌l is the density of
liquid silicon and g is the gravitational constant.
The force Fm from the meniscus acting on the crystal consists

of the vertical component of the surface tension at the triple-point
line and the hydrostatic pressure drop caused by the melt being
elevated over the free melt level in the crucible.[17,18]

Fm = 𝜋g𝜌lr
2
chm

⏟⏞⏞⏟⏞⏞⏟
vertical component
of the surface tension

+𝜋g𝜌la
2rccos(𝛼0 + 𝛼c)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
hydrostatic pressure drop

(8)

Using Newton’s second law in scalar form (F = mg), an approxi-
mation for the meniscus massMm and its time derivative is cal-
culated utilizing Equation (8). It has been shown by Johansen[19]

that this approximation is reasonable by comparing its results to
the solutions from solving the Young-Laplace equation.

Mm = Fm∕g = 𝜋𝜌lr
2
chm + 𝜋𝜌la

2rccos(𝛼0 + 𝛼c)

Ṁm = 𝜋𝜌l

(
2rchm + r2c

𝜕hm
𝜕rc

+ a2cos(𝛼0 + 𝛼c)
)
ṙc

+𝜋𝜌l
(
r2c
𝜕hm
𝜕𝛼c

− a2rcsin(𝛼0 + 𝛼c)
)
�̇�c (9)

2.2.4. Mass Balance

The mass balance of the process is written as follows, assuming
that no silicon can flow off and all replenished silicon is molten
in the melt pool

d
dt
(Ml +Mc +Mm) = Ṁin. (10)

Substituting the left-hand side of the mass balance by the Equa-
tions (5), (4) and (9) and solving for ḣl yields the ODE needed to
describe the melt filling level.

ḣl =
(Ṁin − 𝜋𝜌sr

2
c vc)

0.624𝜋𝜌lr
2
l

− cr ṙc − c𝛼�̇�c

cr =
1

0.624r2l

(
2rchm + r2c

𝜕hm
𝜕rc

+ a2cos(𝛼0 + 𝛼c)
)

c𝛼 = 1
0.624r2l

(
r2c
𝜕hm
𝜕𝛼c

− a2rcsin(𝛼0 + 𝛼c)
)

(11)

2.3. Crystal Slope Angle

The ODE describing the crystal slope angle �̇�c is derived by sub-
stituting the right-hand side of Equation (2) by the Equations (6)
and (11) and solving for �̇�c.

�̇�c =
1

−𝜕hm∕𝜕𝛼c + c𝛼

(
(Ṁin − 𝜋𝜌sr

2
c vc)

0.624𝜋𝜌lr
2
l

+ vc − vp

−
(
−
𝜕hm
𝜕rc

+ cr

)
ṙc

)
(12)

2.4. Thermal Model

In the following, ODEs describing the crystal growth rate and the
effective power of the inductor based on the thermal behavior of
the process are presented. Unknownmodel parametersΘi are in-
troduced.
The primary heat source in the process is a one-turn pancake-

shaped inductor. A high frequency (f ≈ 2 MHz) of the inductor
current is used. The effective power of the inductor Peff is not
known in SiGC growth experiments. Hence, it is estimated from
the adjustable generator anode voltage Ua using a first-order de-
lay element

Ṗeff = 1
Θ10

(KpUa − Peff ), (13)

where the gain factor is set to Kp = 1 W∕V.
The relevant heat fluxes considered in the model are shown

in Figure 2. Heat sources of the crystal, assumed to be of high
relevance for the dynamics of the thermal model, are:

• heat conduction from the melt Pc,
• latent heat released at the crystallization interface Pc,l,
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Figure 2. Assumed power balance for the crystal.

• induction into the crystal Pc,ind.

Hence, a quasi-steady power balance for the crystal can be writ-
ten as (cf. [5])

0 = −Pc,loss + Pc + Pc,l + Pc,ind, (14)

where Pc,loss is the power loss of the crystal. The dependence on
the heat convection is neglected in this model, since it depends
to a high degree on the rotational rates of the crucible and the
crystal which are not considered. The heat balance for the melt
and the heat loss through the porous silicon were not explicitly
considered in the model. However, the influence of the melt on
the heat balance in the crystal is effectively described by the Pc.

2.4.1. Crystallization

A silicon mass M releases an amount of heat Ql, when it solidi-
fies:

Ql = q0M (15)

Where q0 is the latent heat of fusion of silicon.
The power released due to crystallization Pc,l is calculated as

the time derivative of Ql.

Q̇l = Pc,l = q0Ṁ (16)

The mass flow Ṁ is the rate of change of the crystal mass Ṁc,
which is calculated by Equation (4). By substituting Equation (4)
into Equation (16), Pc,l is expressed as

Pc,l = q0Ṁc = q0𝜋𝜌sr
2
c vc. (17)

2.4.2. Power Loss

The power loss of the crystal Pc,loss can be analytically approxi-
mated as shown byWerner,[5] based on an analytical equation for
the surface temperature of the crystal derived by Billig.[20]

The power loss of the crystal is calculated as

Pc,loss = Θ0𝜁lostr
3
2
c . (18)

The power loss constant 𝜁lost is calculated by

𝜁lost =

√
3𝜋2𝜆0T

5
0 𝜖0𝜎

2
= 340.69 × 103 W m−3∕2, (19)

where 𝜎 is the Stefan-Boltzmann constant,T0 is themelting point
of silicon and 𝜖0 is the emissivity of solid silicon at T0.

2.4.3. Heat Conduction

The power introduced into the crystal by heat conduction from
the melt Pc is assumed to increase with higher effective power
of the inductor Peff or larger crystal radius. Moreover, it is as-
sumed that less power is introduced into the crystal if the menis-
cus height hm is larger than the equilibrium meniscus height
hm,eq = hm(rc, 𝛼c = 0). This is caused by a smaller temperature
gradient at the crystallization interface. For this purpose, the vari-
able Δhm = hm − hm,eq is introduced. Hence, Pc is calculated as
follows

Pc = Θ1𝜋r
2
c

(
1 +

Peff − KpUa,0

Θ2

)Θ3(
1 −

Δhm
Θ4

)Θ5
, (20)

where Ua,0 is a reference value for the generator anode voltage.

2.4.4. Induction

The induced power into the crystal Pc,ind is assumed to depend
on the crystal radius and the effective power of the inductor and
is described as:

Pc,ind = Θ6r
Θ7
c

(
1 +

Peff − KpUa,0

Θ8

)Θ9

. (21)

2.4.5. Crystal Growth Rate

The power released due to crystallization Pc,l depends on the crys-
tal growth rate vc (see Equation (17)). Therefore, the power bal-
ance for the crystal (Equation (14)) can be solved for vc after sub-
stituting the right-hand side by the Equations (18), (20), (17), and
(21). The ODE describing the crystal growth rate is obtained by
taking the time derivative

v̇c =
1

q0𝜋𝜌s

(
d
dt

(
Pc,loss
r2c

)
− d
dt

(
Pc
r2c

)
− d
dt

(
Pc,ind
r2c

))
. (22)

2.5. Length-Dependent Mathematical Model

A length-dependent model is derived from the time-dependent
model for more accurate parameter identification. The crystal
slope angle 𝛼c and the crystal growth rate vc can be calculated
in the length-dependent domain and these reference values are
used for the identification of the unknownmodel parameters. To
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convert the model to a length-dependent domain, the ODEs are
divided by the crystal growth rate vc (cf. [4])

ẋ

vc
=

dx

dt dl
dt

=
dx

dl
= x′. (23)

Furthermore, a new input, vz = vz(Ṁin, vp) is defined (cf. [4]).

vz =
Ṁin∕(0.624𝜋𝜌lr2l ) − vp

vc
(24)

The length-dependent ODEs describing the crystal radius ṙc
and the crystal slope angle �̇�c are calculated as:

drc
dl

= tan(𝛼c),
d𝛼c
dl

= 1
−𝜕hm∕𝜕𝛼c + c𝛼

(
−

𝜌sr
2
c

0.624𝜌lr
2
l

+ 1 + vz

−
(
−
𝜕hm
𝜕rc

+ cr

)
drc
dl

)
. (25)

Both equations are not explicitly dependent on any of the four
remaining ODEs. Thus, the model is reduced to these two ODEs
for the following derivation.
Flatness: Following the definition given in ref. [21], the reduced

model (Equation (25)) is differentially flat. The flat output yflat = rc
can be calculated from the reduced states xreduced = [rc, 𝛼c]. The
new input vz and the reduced state vector xreduced can be calculated
from yflat and its first and second derivative without integration.

rc = yflat, 𝛼c = arctan(y′flat)

vz =
(
−
𝜕hm
𝜕𝛼c

+ c𝛼

) y′′flat
(y′flat)

2 + 1
− 1 +

𝜌s

0.624𝜌lr
2
l

y2flat

+
(
−
𝜕hm
𝜕rc

+ cr

)
y′flat (26)

Using this method, 𝛼c can be calculated from Equation (26)
and the crystal growth rate vc by solving Equation (24) for vc since
the pull rate vp and the replenishment rate Ṁin are known from
experimental data and the crystal radius rc is measured.
In the derivation of the Equations (26) and (24), only the

hydromechanical-geometrical model is utilized. This is advanta-
geous since this part of the model is very accurate and deduced
without introducing model parameters. Thus, it is reasonable to
use the calculated values of 𝛼c and vc for the identification of un-
known model parameters introduced in the thermal model.

2.6. Parameter Identification

In order to identify the unknown model parameters Θ and vali-
date their accuracy, two separate SiGC growth experiments were
conducted. In the first experiment, steps in the pull rate vp, the
generator anode voltage Ua and the silicon replenishment rate
Ṁin were realized. The step size, the direction of the steps, and
their sequencing was chosen such that the crystal radius was var-
ied within the known stability range of around 30 mm. For this

Figure 3. Crystal grown with steps in the inputs and used for the parame-
ter identification and auto-validation.

Table 2. Values and units of the model parameters.

Model parameter Value Unit Model parameter Value Unit

Θ0 1.4 – Θ6 0.47 W/mΘ7

Θ1 0.6 W/m2 Θ7 1.46 –

Θ2 7.94 W Θ8 3.05 W

Θ3 0.9 – Θ9 5.09 –

Θ4 8.23 m Θ10 0.15 –

Θ5 0.98 –

radius, suitable growth parameters were known from previous
experiments and a stable process could be ensured. The grown
crystal can be seen in Figure 3.
The whole crystal length, except for the the thin neck and the

cone, was used for the parameter identification and the auto-
validation. To generate particularly suitable data for the cross-
validation, ramp experiments were conducted in the pull rate and
the generator anode voltage in the second growth experiment.
The SiGC growth setup comprises an on-line measurement

system based on visual image processing for time-dependent
measurement of the crystal radius. Additionally, a method to
measure the crystal radius from grown crystals in dependence of
the crystal length l was developed. This was done utilizing image
analysis techniques.
Using the least squares method, values for the model parame-

ter Θ are found. The simulated crystal radius is compared to the
measurement of the crystal radius. The calculated crystal slope
angle and crystal growth rate are compared to the reference val-
ues calculated from Equations (26) and (24) using the flatness of
the reduced model.
The identified values of the model parameters are shown in

Table 2.

3. Simulation of Test Cases

To verify the physical consistency of the mathematical model and
to evaluate the influence of each input, step responses are calcu-
lated.
In Figure 4, a results for a step in the silicon replenishment

rate Ṁin are shown.
By decreasing the silicon replenishment rate Ṁin, the melt

mass and volume decreases. The melt filling level decreases,
which increases themeniscus height. This causes the triple-point
to move inward, and the crystal radius decreases. At the end of
this step response, the crystal radius, the crystal slope angle, and
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Figure 4. A step in the silicon replenishment rate Ṁin was simulated at t = 5 min. The pull rate and the generator anode voltage were kept constant at
vp = 2 mm min−1 and Ua = 5.5 kV.

Figure 5. A step in the pull rate vp was simulated at t = 5 min. The silicon replenishment rate Ṁin was adjusted to match the rate of change of the crystal
mass. The generator anode voltage was kept constant at Ua = 5.5 kV.
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Figure 6. A step in the generator anode voltage Ua was simulated at t = 5 min. The silicon replenishment rate Ṁin was adjusted to match the rate of
change of the crystal mass. The pull rate was kept constant at vp = 2 mm min−1.

the meniscus height return to a new equilibrium state with a re-
duced crystal radius.
In the special case of a permanently depleting melt pool, the

mathematical model of the SiGC process shows similar behavior
as expected for CZ growth. During CZ growth no raw material is
added and, hence, the melt level is constantly decreasing.
For the simulated steps in the pull rate (Figure 5) and in

the generator anode voltage (Figure 6), the rate of change
of the silicon replenishment rate was adjusted to match the
rate of change of the crystal mass calculated by Equation (4)
(Ṁin = Ṁc = 𝜋𝜌sr

2
c vc). Increasing the pull rate yields an increas-

ing meniscus height and a decreasing melt angle and the crystal
radius decreases. Adjusting the generator anode voltage changes
the temperature field in the process. The temperature in themelt
increases slowly, which temporarily reduces the crystal growth
rate. After the crystal growth rate reaches its minimal value, the
conditions are comparable to the ones during increased pull
rate. In both simulations the system returns to an equilibrium
state with a reduced crystal radius after the crystal growth rate is
equal to the pull rate.
The results seen in all three step responses are physically con-

sistent and agree with experimental observations.

4. Auto- and Cross-Validation

The model predictions are compared to experimental data from
the first crystal growth experiment, which are involved in the
parameter identification (auto-validation) and to data from the
second experiment, which are not involved in the parameter
identification (cross-validation). To quantify the accuracy of the
model prediction in comparison with the experimental results,

Table 3.Mean absolute percentage error of the crystal radius.

Experiment adjusting Error rc

Auto-validation vp 1.74%

Ua 0.49%

Ṁin 0.17%

Cross-validation vp 0.6%

Ua 0.71%

themean absolute percentage error is calculated for the crystal ra-
dius and can be seen in Table 3. In the second experiment, which
is used for the cross-validation, only the pull rate and the gen-
erator anode voltage were adjusted, thus no error value for the
silicon replenishment rate is given.
The maximum error of 1.74% for the auto-validation is small.

The values for the cross-validation are in similar range as for the
auto-validation. This good agreement is seen in the plots of the
experimental and simulation data, shown in Figure 7. Hence, the
mathematical model provides a general description of the SiGC
method is suitable for use in a futuremodel-based control system
for the process.

5. Conclusions

For the first time, a lumped parameter model was derived and
validated for SiGC growth. The coupled ODEs have the form of a
nonlinear state space model and were analytically deduced from
the fundamental physical properties of the SiGC method.

Cryst. Res. Technol. 2020, 55, 2000044 2000044 (7 of 8) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



www.advancedsciencenews.com www.crt-journal.org

Figure 7. Model Validation.

The physical consistency of the model was verified and the in-
fluences of the inputs were evaluated by simulation studies. The
validity of the model was successfully shown by auto- and cross-
validation. A high accuracy, with a prediction error below 2%, was
calculated for the crystal radius. This is an important result since
the control of the crystal radius is the main goal of a future au-
tomation of the SiGC method. A reliable prediction of the crys-
tal radius, which can be obtained by the mathematical model is,
thus, essential.
Using the derived lumped parameter model, the behavior of

the relevant quantities of the SiGC method:
• the crystal radius rc,
• the crystal slope angle 𝛼c,
• the melt filling level hl,
• the effective power of the inductor Peff ,
• the crystal growth rate vc,

can be predicted with high accuracy for given initial conditions
and sequence of inputs.
The model is, thus, suitable to be used as the basis for a future

model-based control system for the SiGC process.
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