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ABSTRACT
In this work, an observer for a linear time-varying system with delayed measurements is developed. The
delay is assumed to be unknown, bounded, and it can be time-varying with no restriction on its rate of
change. The observer uses auxiliary signals related to the constructibility Gramian of the system and it con-
tains nonlinearities that provide a uniform fixed-time convergence to a bounded region in the estimation
error coordinates. This means that the convergence time can be bounded by a positive constant which is
independent from the initial conditions and the initial time. This property is new for the addressed class
of systems. The ultimate bound of the estimation error depends on the maximum difference between
the nominal output and the delayed one, and not directly on the delay size or its time derivative. These
properties are illustrated in a numerical simulation.
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1. Introduction

The internal state estimation of a given system is one of the
basic tasks in automatic control theory (Astolfi&Marconi, 2008;
Besaçnon, 2007; Crassidis & Junkins, 2012; Meurer, Graichen,
& Gilles, 2005). To develop such a task, an input–output
information of the system is needed. If the information is
carried through a network, or transmitted over long dis-
tances, it will be available but with a delay. The design
of observers to perform the estimation using delayed data
has been a topic of recent interest (Assche, Ahmed-Ali,
Hann, & Lamnabhi-Lagarrigue, 2011; Cacace, Conte, Germani,
& Palombo, 2017; Cacace, Germani, & Manes, 2010; Khos-
ravian, Trumpf, Mahony, & Hamel, 2016; Vafaei & Yazdan-
panah, 2016). In the case of linear time-invariant (LTI) sys-
tem, the approaches based on delayed output error injection
have been developed. This strategy can be used, among oth-
ers, in the case of a known constant delay (Besançon, Georges,
& Benayache, 2007), an unknown but constant delay (Cacace
et al., 2017), or a time-varying known delay (Cacace et al., 2010;
Fridman, 2014a, Sec. 5.2, Kruszewski, Jiang, Fridman, Richard,
&Toguyeni, 2012). These results can also be applied for a certain
class of nonlinear systems, as it is shown in the cited works, but
there are also specialised works that study this type of systems.
Examples of these works are Anguelova and Wennberg (2008)
where conditions for the identifiability of constant delays in
nonlinear systems are given, also Ibrir (2009) where an observer
is proposed for nonlinear systems in triangular form and the
observer gain is adapted by solving an algebraic Riccati equation
depending on a dynamic parameter, or Ghanes, Leon, and Bar-
bot (2013) where the authors present an observer that provides
a bounded estimation error in the presence of a time-varying,
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unknown, and bounded delay. The results of this last reference
are the closest in essence to the objectives of this work.

Most of these works require to check a linear matrix inequal-
ity (LMI) to establish the convergence of the observer. Appli-
cation of LMIs is common in the study of time-delay systems
(Fridman, 2014b; Sun & Chen, 2017). However, an analogue
result for linear time-varying (LTV) systems seems to be not
available. This can be related to the scarce results about the sta-
bility of time-delay LTV systems and the difficulties that arise
in their study. Among such works, one can find Alaviani (2009)
where conditions are provided in terms of LMIs involving time-
varying matrices, the stability conditions for a class of positive
system are given in Mazenc and Malisoff (2016), or in Zhou
and Egorov (2016) where the stability conditions are stated in
terms of a Lyapunov function for the nominal case, i.e. without
delay.

In this note, an LTVplant with delayedmeasurements is con-
sidered. The delay is assumed to be time-varying and bounded,
and no restriction over its speed of variation will be imposed.
The upper and lower bounds for the delay are also assumed
to be unknown, and they are not needed for the design. Also,
it is required that the system with the undelayed output be
uniformly completely observable. Under these assumptions, an
observer which provides fixed-time convergence of the estima-
tion error to a ball is proposed.An important difference between
the approaches mentioned previously and what we are propos-
ing is that the effect of the delay is not introduced in the error
dynamics. This allows to study the observer convergence by
means of standard techniques used to analyse LTV systems. The
observer also includes a nonlinearity, based on a Gramian-like
constructions, which is responsible for the accelerated rate of
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convergence. Additionally, the ball towhich the estimation error
converges depends on the difference between the delayed and
the nominal output, and not directly on the size of the delay
or its time derivative, making the approach suitable for delays
that are large in the time-scale of the system. Despite the fact
that the design of finite and fixed-time convergent observers
has been on focus recently (Andrieu, Praly, & Astolfi, 2008;
Cruz-Zavala & Moreno, 2016; Cruz-Zavala, Moreno, & Frid-
man, 2012, 2011; Lopez-Ramirez, Efimov, Polyakov, & Perru-
quetti, 2016; Polyakov, 2012; Ríos&Teel, 2016), their advantages
in the case of time-delay systems are not fully investigated yet.
A preliminary version of this work can be found in Rueda-
Escobedo, Ushirobira, Efimov, and Moreno (2018). The main
difference with the previous version is the extension to LTV sys-
tems and a refinement on the ultimate bound for the estimation
error.

The paper outline is as follows. In Section 2, the class of sys-
tem under study and the problem statement are given. Some
preliminary results regarding Riccati differential equations are
discussed in Section 3. The observer structure and its proper-
ties are given in Section 4. The analysis of the estimation error
and the proof of the results are developed in Section 5. The
properties of the observer are illustrated in a numerical exam-
ple in Section 6. Some auxiliary lemmas are established in the
Appendix.

Notation: Let R>0 and R≥0 be the sets of positive and
non-negative real numbers, respectively; R

n denotes the real
Euclidean space of dimension n;Rn×m is the space of realmatri-
ces of n rows andm columns and In denotes the identity matrix
of R

n×n. For x ∈ R
n and p ≥ 1, ‖x‖p is the p-norm, defined

as (
∑n

i=1 |xi|p)1/p. For A ∈ R
n×n, ‖A‖p means the induced

matrix norm. Whenever the subscript p is omitted, ‖ · ‖ refers
to the Euclidean norm, i.e. p= 2. For two symmetric matri-
ces Q1,Q2 ∈ R

n×n, Q1 > Q2 (Q1 ≥ Q2) means that Q1 − Q2
is positive (semi-) definite. Given x ∈ R and p ∈ R≥0, �x�p
denotes |x|p sign(x), if the exponent is omitted, it correspond
to p= 1. For x ∈ R

n, �x�p is understood element-wise.

2. Problem statement andmotivation

In this note, the state estimation of a linear time-varying system
with delayed output will be investigated. To begin with, let us
consider the following nominal system:

ẋ(t) = A(t)x(t)+ B(t)u(t),

ȳ(t) = C(t)x(t), (1)

where x ∈ R
n, ȳ ∈ R

m, and u ∈ R
r are the state, the output,

and the input vectors, respectively. The matrices A(t), B(t), and
C(t) are assumed to be known, piecewise continuous in t, and
uniformly bounded in their norm. The state transition matrix
associated to A(t), which maps x(t1) → x(t2) in the absence
of inputs, will be denoted by �(t2, t1). In the following τ(t) :
R → [0, τ̄ ] will denote the delay and τ̄ its upper bound. The
state, input, and systemmatrices are assumed to be defined over
the interval [t0 − τ̄ ,∞), where t0 ≥ 0 represent the process start
time. Two kinds of delayed output will be recognised: when the
delay affect both, the outputmatrixC(t) and the state, and when
the delay only appears in the state. If only the output matrix is

delayed, one can rename it as C̄(t) = C(t − τ(t)), and address
the problem as if therewere no delay.Wewill focus our attention
in the first case, when the output is completely delayed, since the
second one can be treated by just slightly changing the notation.
Then, the system of interest is as follows:

ẋ(t) = A(t) x(t)+ B(t)u(t),

y(t) = C
(
t − τ(t)

)
x
(
t − τ(t)

)
. (2)

In order to estimate the state of (2), we would ask the
following:

Assumption 2.1: There exist positive constants T> 0, α1 ≥
α2 > 0 such that

α1In ≥ W(t, t − T)

:=
∫ t

t−T
�	(s, t)C	(s)C(s)�(s, t) ds ≥ α2In

for all t ∈ [t0 + T,∞), that is, the pair (A(t),C(t)) is uniformly
completely constructible.

Remark 2.1: Constructibility is related with the ability to
reconstruct the current state from past measurements, whereas
observability correspond to the reconstruction of the initial
conditions from future data (Casti, 1987). In linear continuous-
time systems, both properties are equivalent since �	(t +
T, t)W(t + T, t)�(t + T, t) is the observability Gramian.

One way to approach the posed problem is to propose a
delayed observer of the form

˙̂x(t) = A(t)x̂(t)+ B(t)u(t)

− L(t)
(
C
(
t − τ(t)

)
x̂
(
t − τ(t)

) − y(t)
)
, (3)

where L(t) is a piecewise continuous function denoting the
observer gain. Defining the estimation error as e(t) = x̂(t)−
x(t), its dynamics results in

ė(t) = A(t)e(t)− L(t)C
(
t − τ(t)

)
e
(
t − τ(t)

)
. (4)

If one is able to design L(t) in the nominal case, it can be
expected that this approach work for sufficient small delay.
Notice that (3) requires the knowledge of the delay in order
to be implemented. The described method has been success-
fully applied for LTI system with constant delay (Besançon
et al., 2007), and for time-varying one (Léchappé, Moulay,
& Plestan, 2016). In both cases it is required that τ̄ satisfies some
size restriction. If the delay is larger, the authors of Besançon
et al. (2007) has shown that the estimation can be handled by a
chain of n observers. Each of the observers is oriented on treat-
ment of an equivalent delay of τ/n, then if n is big enough, the
scheme will provide an accurate estimate.

Another manner to approach the problem is to apply an
undelayed output error injection, resulting in

˙̂x(t) = A(t)x̂(t)+ B(t)u(t)− L(t)
(
C(t)x̂(t)− y(t)

)
, (5)

which does no require the value of τ(t), but imposes another
source of inaccuracy. The error dynamics produced by this
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approach revels that it will depend on the difference between
y(t) and ȳ(t):

ė(t) = (
A(t)− L(t)C(t)

)
e(t)+ L(t)

(
y(t)− C(t)x(t)

)
= (

A(t)− L(t)C(t)
)
e(t)+ L(t)

(
y(t)− ȳ(t)

)
. (6)

Then, the boundedness of ‖y(t)− ȳ(t)‖ implies the bounded-
ness of ‖e(t)‖. This happens if, for example, the matrix A(t)
defines a uniformly asymptotically stable motion. Since the
delay is not needed in this case, it can be assumed uncertain,
time-varying and bounded. The ultimate bound of the error is
given in the following lemma:

Lemma 2.2: Let P(t) : R≥0 → R
n×n be a continuously dif-

ferentiable matrix function, Q(t) : R≥0 → R
n×n be a piece-

wise continuous matrix function, pL,1In ≥ PL(t) ≥ pL,2In and
qL,1In ≥ QL(t) ≥ qL,2In with positive constants pL,1 ≥ pL,2 > 0
and qL,1 ≥ qL,2 > 0, and they satisfy the differential Lyapunov
inequality for any t0 ∈ R≥0 and all t ≥ t0

ṖL(t)+ PL(t)
(
A(t)− L(t)C(t)

)
+ (

A(t)− L(t)C(t)
)	PL(t) ≤ −QL(t)

for a given piecewise continuous and bounded matrix function
L(t) : R≥0 → R

n×r. Then in (6) the error e(t) stays bounded for
all t ≥ t0 and

lim
t→∞ ‖e(t)‖ ≤ 2

√
pL,1
pL,2

· pL,1
qL,2

sup
t≥t0

‖L(t)‖ ‖y(t)− ȳ(t)‖. (7)

Proof: Consider the Lyapunov function candidate V(t, e) =
e	P(t)e. Its derivative along (6) can be bounded as follows:

V̇(t) ≤ −e	(t)Q(t)e(t)+ 2 e	(t)P(t)L(t)
(
y(t)− ȳ(t)

)
≤ −1

2
qL,2‖e(t)‖2 + 2

p2L,1
qL,2

∥∥L(t)∥∥2∥∥y(t)− ȳ(t)
∥∥2

≤ − qL,2
2 pL,1

V(t)+ 2
p2L,1
qL,2

∥∥L(t)∥∥2∥∥y(t)− ȳ(t)
∥∥2,

then

V(t) ≤ V(t0) exp
(

− qL,2
2pL,1

(t − t0)
)

+ 4p3L,1
q2L,2

sup
t≥t0

‖L(t)‖2‖y(t)− ȳ(t)‖2

‖e(t)‖ ≤
√
pL,1
pL,2

‖e(t0)‖ exp
(

− qL,2
4pL,1

(t − t0)
)

+ 2
√
pL,1
pL,2

· pL,1
qL,2

sup
t≥t0

‖L(t)‖ ‖y(t)− ȳ(t)‖.

From the last expression, the bound follows. �

Both of the described methods have some disadvantages. In
the case (3), not only τ(t) has to be known, but the design of L(t)
can be really challenging, being this particularly true for LTV
systems. In the second case (5), the delay can be unknown at the

price of having a bounded error, and if one require to approach
this bound faster, such boundwill increase because this can only
be achieved by increasing L(t). Based on these observations the
second approach seems to be more convenient, first, because
there is no an extension of (3) to the LTV case, and second,
because it does not require precise knowledge of the delay. To
alleviate the problemw.r.t. the convergence rate, in this note, we
will provide a methodology to modify (5) by introducing some
nonlinearities in order to obtain a uniform rate of convergence,
that is, the capability of reaching a bounded region of e(t) = 0
uniformly in t0 and in the initial error. This will be done under
the following hypothesis:

Assumption 2.3: The input is known and uniformly bounded,
i.e. ‖u(t)‖ ≤ uM < ∞ for all t ≥ t0.

Assumption 2.4: The output of the system is a Lipschitz func-
tion of time, that is, there exist a constant γ > 0 such that

∥∥y(t1)− y(t2)
∥∥ ≤ γ

∣∣t2 − t1
∣∣ ∀ t1, t2 ≥ t0 − τ̄ .

Remark 2.2: For example, the property in Assumption 2.4 is
obtained if the matrix A(t) describes a uniformly asymptoti-
cally stable motion. In such case, and because the state remains
bounded, the difference ‖y(t)− ȳ(t)‖ can be bounded indepen-
dently of τ̄ . Also, in the case of an LTI system with one pole at
zero and the rest in the open left-half complex plane, where the
system is marginally stable, Assumption 2.4 is satisfied.

Remark 2.3: If a system satisfies the Assumption 2.4, then
‖y(t)− ȳ(t)‖ ≤ γ τ(t) ≤ γ τ̄ .

Assumptions 2.3 and 2.4 are required in order to keep
the error ‖y(t)− ȳ(t)‖ bounded. On the other hand, if A(t)
describes a uniformly asymptotically stable motion, one can use
a copy of the plant as an observer, without using any kind of
correction term. In such approach, there is no control over the
convergence velocity, and one has to relay on the intrinsic prop-
erties inscribed in A(t), whereas an objective of this work is to
increase the rate of convergence. Nevertheless, the price to pay
is a bounded error. Finally, we want to remark that, in the case of
delay-independent stability, uniform asymptotic stability is nec-
essary for both, LTI (Fridman, 2014b) and LTV (Zhou&Egorov,
2016) systems. In the case of delay-dependent stability, and for
LTI systems, asymptotic stability might reduce the difficulty in
finding L (Besançon et al., 2007).

3. Preliminaries: Riccati differential equations

In this section, some properties about a Riccati differen-
tial equation (RDE), related to observation, will be discussed
togetherwith some properties related to the uniform asymptotic
stability of LTV systems. The solution of the aforementioned
RDE, which can be computed on-line, will be used to propose a
correction term for the observer.
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Consider the following RDE:

Ṅ(t) = −A	(t)N(t)− N(t)A(t)

− N(t)�(t)N(t)+ C	(t)C(t),

N(t0) = N0 = N	
0 ≥ 0, (8)

with a piecewise continuous matrix function �(t) : R≥0 →
R
n×n satisfying θ1In ≥ �(t) ≥ θ2In for some positive con-

stants θ1 ≥ θ2 > 0. This RDE is commonly associated to the
Kalman–Bucy filter. It has been proved that under Assump-
tion 2.1 and the bounds imposed to �(t), N(t) is uniformly
bounded and invertible (Anderson, 1971; Bucy, 1972). In
particular, it is shown in Anderson (1971) that N(t) and
�	(t0, t)N0�(t0, t)+ W(t, t0) share the same null space. Fur-
thermore, in Bucy (1972) the following bounds are provided:

N(t) ≤ C−1(t, t − T)+ λW(t, t − T),

N(t) ≥
(
W−1(t, t − T)+ λ C(t, t − T)

)−1
, (9)

for all t ≥ t0 + T, where C is defined as

C(t2, t1) :=
∫ t2

t1
�(t2, s)�(s)�	(t2, s) ds.

Given θ1 and θ2, there always exist β1 ≥ β2 > 0 such that
β1In ≥ C(t, t − T) ≥ β2In. Taking α1 ≥ α2 > 0 as in Assump-
tion 2.1, λ can be chosen as λ = n2(α1β1)/(α2β2). In particular,
if N0 is taken definite positive, H(t) := N−1(t) exists for all
t ≥ t0 and satisfies

Ḣ(t) = H(t)A	(t)+ A(t)H(t)− H(t)C	(t)C(t)H(t)+�(t),

H(t0) = N−1
0 .

This dynamics follows from deriving the relation H(t)N(t) =
In, which results in Ḣ(t) = −H(t)Ṅ(t)H(t). These two matri-
ces, N(t) and H(t), will be of interest along the note.

Remark 3.1: Although bounds (9) are of particular importance
to establish stability results, the evaluations that they provide
are, in general, very conservative.

Now, consider the auxiliary function ψ̄(t) = N(t)x(t), which
being calculated due to the invertibility ofN(t) provides an esti-
mate for x(t) immediately. To compute ψ̄(t), let us write its time
derivative. When there is no delay, this results in

˙̄ψ(t) = Ṅ(t)x(t)+ N(t)ẋ(t)

= −(A	(t)+ N(t)�(t))ψ̄(t)

+ N(t)B(t)u(t)+ C	(t)ȳ(t). (10)

To preserve the proposed relationship, ψ̄(t0) should be taken
as N0x(t0), which require the initial condition of the system.
Since ȳ(t) and x(t0) are not available, we propose to compute
an estimate ψ(t) of the auxiliary function ψ̄(t) as

ψ̇(t) = −
(
A	(t)+ N(t)�(t)

)
ψ(t)

+ N(t)B(t)u(t)+ C	(t)y(t), ψ(t0) = ψ0, (11)

where the available output is used, and the initial condition is
left free. Now, consider the error �ψ(t) = ψ̄(t)− ψ(t) whose

dynamics yields

�̇ψ(t) = −
(
A	(t)+ N(t)�(t)

)
�ψ(t)+ C	(t)

(
ȳ(t)− y(t)

)
.

(12)
Then, if the matrix −(A	(t)+ N(t)�(t)) is uniformly asymp-
totically stable, �ψ(t) will remain bounded, meaning that
ψ(t) can be used instead of ψ̄(t) despite the lack of correct
information.

Lemma 3.1: Let η1In ≥ N(t) ≥ η2In. Then

lim
t→∞ ‖�ψ(t)‖ ≤

√
η1

η2θ2
sup
t≥t0

‖ȳ(t)− y(t)‖. (13)

Proof: Consider as a Lyapunov function candidateV(�ψ , t) =
�	
ψH(t)�ψ , which satisfies

1
η2

‖�ψ‖2 ≥ V(�ψ , t) ≥ 1
η1

‖�ψ‖2.
Its derivative along (12) results in

V̇(t) = −�	
ψ(t)

(
H(t)C	(t)C(t)H(t)+�(t)

)
�ψ(t)

+ 2�	
ψ(t)H(t)C

	(t)
(
ȳ(t)− y(t)

)
≤ −θ2‖�ψ(t)‖2 − ‖C(t)H(t)�ψ(t)‖2

+ 2 ‖C(t)H(t)�ψ(t)‖ ‖ȳ(t)− y(t)‖
≤ −θ2‖�ψ(t)‖2 + ‖ȳ(t)− y(t)‖2

≤ −η2θ2V(t)+ ‖ȳ(t)− y(t)‖2.

The last inequality implies that

V(t) ≤ V(t0) exp
( − η2θ2(t − t0)

)
+ 1
η2θ2

sup
t≥t0

‖ȳ(t)− y(t)‖2

‖�ψ(t)‖ ≤
√
η1

η2
‖�ψ(t0)‖ exp

(
−1
2
η2θ2(t − t0)

)

+
√
η1

η2θ2
sup
t≥t0

‖ȳ(t)− y(t)‖.

Taking the limit when t → ∞, the bound of the lemma follows.
�

In the next section, the term N(t)x̂(t)− ψ(t) will be used to
enhance the convergence rate.

4. Main result

The undelayed observer (5) will be taken as a starting point
for the nonlinear observer proposed in this section. The
results developed in Section 3 will be used to strengthen its
convergence rate. Denote by x̂(t) the estimate of x(t), and
define the estimation error as e(t) = x̂(t)− x(t). Recalling that
ψ(t) = N(t)x(t)−�ψ(t), we remark that N(t)x̂(t)− ψ(t) =
N(t)e(t)+�ψ(t). Then, the term N(t)x̂(t)− ψ(t) carries an
information about the estimation error and the matrix N(t) is
positive definite. Following this observation, we propose the
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following system as an observer for (2):

˙̂x(t) = A(t)x̂(t)+ B(t)u(t)− H(t)C	(t)
(
C(t)x̂(t)− y(t)

)
−

⌈
N(t)x̂(t)− ψ(t)

⌋p, (14)

where the auxiliary signals N(t), ψ(t), and H(t) are computed
following:

Ṅ(t) = −A	(t)N(t)− N(t)A(t)− N(t)�(t)N(t)+ C	(t)C(t),
(15)

ψ̇(t) = −
(
A	(t)+ N(t)�(t)

)
ψ(t)+ N(t)B(t)u(t)+ C	(t)y(t),

(16)

Ḣ(t) = H(t)A	(t)+ A(t)H(t)− H(t)C	(t)C(t)H(t)+�(t),
(17)

and p> 1 is an exponent to be chosen, whereas the matrix =
diag{λ1, λ2, . . . , λn} with λi > 0 contains tuning parameters.
In (15)–(17),�(t) has to satisfy the bounds θ1In ≥ �(t) ≥ θ2In
for some positive θ1 and θ2. Finally, the initial condition of N,
N0, has to be selected positive definite, and H(t0) = N−1

0 . The
initial conditions for x̂ and ψ are free.

Denote by ỹ(t) = ȳ(t)− y(t). The error dynamics produced
by implementing (14) results in

ė(t) =
(
A(t)− H(t)C	(t)C(t)

)
e(t)+ H(t)C	(t)ỹ(t)

−
⌈
N(t)e(t)+�ψ(t)

⌋p. (18)

Theorem 4.1: Let Assumptions 2.1, 2.3, and 2.4 be satisfied,
p> 1, θ1In ≥ �(t) ≥ θ2In, > 0, and N0 > 0. Then there exist
η1 and η2 satisfying η1In ≥ N(t) ≥ η2In. Furthermore, the esti-
mation error converge uniformly in fixed-time to the region given
by

‖e(t)‖ ≤
√
ρ

η2
∀t ≥ t0 + T�, (19)

where ρ is the unique positive root of

P(v) = θ2
η22
η1

v + 2 λmn
1−p
2 κ1

η
p+1
2

η
p+1
2

1

v
p+1
2 −γ

2τ̄ 2

q

− 2 λmκ2
q

sup
t≥t0

‖�ψ(t)‖p+1, (20)

with q ∈ (0, 1), λm = min1≤i≤n λi, κ1 and κ2 as in CorollaryA.2,
and where the convergence time is at most T� and is given by:

T� =
2 η1
η2

θ2η2(p − 1)(1 − q)
ln

⎡
⎣1 + θ2

2 λmn
1−p
2 κ1η

p−1
2

2

(
η1

η2

) p−1
2

⎤
⎦ .

The uniform fixed-time convergence follows from the fact
that T� bounds the convergence time for any initial error and
initial time and T� does not depend on them. The structure of
T� reveals that the convergence time can be reduced by increas-
ing p, making the condition number of N(t), (η1/η2), smaller

and by increasing λm. Although θ2 seems to be free parameters,
changing it affects both, η1 and η2. The proof of Theorem 4.1 is
given in Section 5.

Remark 4.1: If N0 ≥ 0 or H(t0) �= N−1
0 for some reason, there

appears an error that vanishes exponentially fast (Kalman, 1960,
Sec. 7), leaving the qualitative result of Theorem 4.1 unaltered.

Corollary 4.2: Make the same assumptions as in Theorem 4.1,
but with p= 3. Then

‖e(t)‖ ≤ 1
η2

(
n
q

)1/4 √
η1

η2

(
1.786

√
γ τ̄

λ
1/4
m

+ 1.211 sup
t≥t0

‖�ψ(t)‖
)

∀ t ≥ t0 + T�, (21)

where q ∈ (0, 1), λm = min1≤i≤n λi, and

T� = 1
θ2η2(1 − q)

· η1
η2

ln
[
1 + 10.2

n θ2
λmη2

· η1
η2

]
.

Proof: With p= 3 and using the values of κ1 and κ2 in Table A2,
the polynomial (20) becomes

P(v) = θ2
η22
η1

v + 0.0982
λmη

4
2

n η21
v2 − γ 2τ̄ 2

q

− 0.2114
λm

q
sup
t≥t0

‖�ψ(t)‖4.

A root of this polynomial is

ρ = 5.092
λmη2

(
η1

η2

)(
− n θ2 +

√
n
q

√
n q θ22 + 0.3928 λmγ 2τ̄ 2 + 0.08304 λ2m sup

t≥t0
‖�ψ(t)‖4

)
.

Since the 1-norm is greater that the Euclidean norm (2-norm),
we have

ρ ≤
√
n
q

· η1
η22

(
3.19

γ τ̄

λ
1/2
m

+ 1.467 sup
t≥t0

‖�ψ(t)‖2
)
.

Then, the norm of the error satisfies

‖e(t)‖ ≤ 1
η2

(
n
q

)1/4
√√√√η1

η2

(
3.19

γ τ̄

λ
1/2
m

+ 1.467 sup
t≥t0

‖�ψ(t)‖2
)

≤ 1
η2

(
n
q

)1/4 √
η1

η2

(
1.786

√
γ τ̄

λ
1/4
m

+ 1.211 sup
t≥t0

‖�ψ(t)‖
)

∀ t ≥ t0 + T�.

Replacing the values of p and κ1 in the definition ofT� we obtain
the given estimate. �

In Corollary 4.2 we find the root of (20) for a particular
choice of p. This allows us to see how the size of the attraction
region behaves in this case, and it can give us an intuition on
how it probably behaves for other values of p. As can be seen
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in (21), the root can be decreased if η2 increases, or if the con-
dition number of N(t) decreases. However, these terms cannot
be directly adjusted. On the other hand, there are two terms in
(20), one depending on τ̄ and other depending on �ψ(t), that
also affects the size of the attraction region. The term depend-
ing on τ̄ can be decreased by increasing λm. The other one can
be decreased by increasing θ2 as shown in (13). Then, the size of
the final error can bemodified by varying these two parameters,
λm and θ2.

5. Convergence analysis and proof of claims

Consider as a Lyapunov function candidate V(e, t) = e	N(t)e,
which is a valid candidate given the existence of η1 and η2. Its
derivative along (18) yields

V̇(t) = e	(t)
(

− N(t)�(t)N(t)− C	(t)C(t)
)
e(t)

+ 2 e	(t)C	(t)ỹ(t)

− 2 e	(t)N(t)
⌈
N(t)e(t)+�ψ(t)

⌋p
≤ −e	(t)N(t)�(t)N(t)e(t)− ‖C(t)e(t)‖2

+ 2 ‖C(t)e(t)‖ ‖ỹ(t)‖
− 2 λm e	(t)N(t)

⌈
N(t)e(t)+�ψ(t)

⌋p
≤ −e	(t)N(t)�(t)N(t)e(t)− 2 λm e	(t)N(t)⌈

N(t)e(t)+�ψ(t)
⌋p + ‖ỹ(t)‖2

≤ −e	(t)N(t)�(t)N(t)e(t)− 2 λm e	(t)N(t)⌈
N(t)e(t)+�ψ(t)

⌋p + γ 2τ̄ 2.

Using the bounds forN(t),�(t) and the result of Corollary A.2,
the time derivative of V can be estimated as

V̇(t) ≤ −θ2η22‖e(t)‖2 − 2 λm n
1−p
2 κ1

∥∥N(t)e(t)∥∥p+1

+ 2 λmκ2‖�ψ(t)‖p+1 + γ 2τ̄ 2

≤ −θ2η22‖e(t)‖2 − 2 λm n
1−p
2 κ1η

p+1
2 ‖e(t)‖p+1

+ 2 λmκ2‖�ψ(t)‖p+1 + γ 2τ̄ 2.

κ1 and κ2 can be chosen following Tables A1 and A2. Since
V(t) ≤ η1‖e(t)‖2, the previous inequality can be transformed
into a differential inequality in terms of V(t):

V̇(t) ≤ −θ2η2
(
η2

η1

)
V(t)− 2 λmn

1−p
2 κ1η

p+1
2

2

(
η2

η1

) p+1
2

V
p+1
2 (t)

+ 2λmκ2‖�ψ(t)‖p+1 + γ 2τ̄ 2

≤ −k1 V(t)− k2 V
p+1
2 (t)+�,

with

� := γ 2τ̄ 2 + 2 λmκ2 sup
t≥t0

‖�ψ(t)‖p+1,

k1 := θ2η2

(
η2

η1

)
,

k2 := 2 λmn
1−p
2 κ1η

p+1
2

2

(
η2

η1

) p+1
2

.

The constant� is finite due to Lemma 3.1 and Assumptions 2.3
and 2.4. Let q ∈ (0, 1) and denote by ρ the unique positive root1
of k1 v + k2 v

p+1
2 − 1

q�. Then, we have that

V̇(t) ≤ −(1 − q)
(
k1V(t)+ k2V

p+1
2 (t)

)
< 0, V(t) ≥ ρ.

Consider the differential equation ż(t) = −(1 − q)(k1z(t)+
k2z

p+1
2 (t)), z(t0) ≥ 0. As in Moreno (2012, p. 134), the change

of variable w(t) = exp((1 − q)k1 (t − t0)) z(t) transform the
equation into

ẇ(t) = −(1 − q)k2 exp
(

−1
2
(p − 1)(1 − q)k1(t − t0)

)
w

p+1
2 (t).

By separation of variable, the solution for w(t) and z(t) results
in

w(t) =
[

1

w
p−1
2 (t0)

+ k2
k1

(
1 − exp

(
− 1

2
(p − 1)

(1 − q)k1(t − t0)
))]− 2

p−1 ,

z(t) =
[(

1

z
p−1
2 (t0)

+ k2
k1

)
exp

(1
2
(p − 1)

(1 − q)k1(t − t0)
)

− k2
k1

]− 2
p−1

.

Then, by the Comparison Lemma (Khalil, 2002, Lem. 3.4) we
have

V(t) ≤
[(

1

V
p−1
2 (t0)

+ k2
k1

)
e
1
2 (p−1)(1−q)k1(t−t0) − k2

k1

]− 2
p−1

.

Without loss of generality, assume thatV(t0) > ρ. Then,V(t) ≤
ρ for

t − t0 ≥ 2
k1(p − 1)(1 − q)

ln

⎡
⎣(

V(t0)
ρ

) p−1
2 k1 + k2ρ

p−1
2

k1 + k2V
p−1
2 (t0)

⎤
⎦

≥ 2
k1(p − 1)(1 − q)

ln

⎡
⎢⎢⎣ k1 + k2ρ

p−1
2

k2ρ
p−1
2 + k1

(
ρ

V(t0)

) p−1
2

⎤
⎥⎥⎦ .

Taking the limit when V(t0) → ∞ it yields

t − t0 ≥ 2
k1(p − 1)(1 − q)

ln

[
1 + k1

k2ρ
p−1
2

]

=
2 η1
η2

θ2η2(p − 1)(1 − q)
Ln

×
⎡
⎣1 + θ2

2 λmn
1−p
2 κ1η

p−1
2

2

(
η1

η2

) p−1
2

⎤
⎦ =: T�.

This bound represents the amount of time which guarantees
that the level set V(t) ≤ ρ is reached. This bound is finite and



232 J. G. RUEDA-ESCOBEDO ET AL.

does not depend on the initial time nor on the initial value
of V, then the level set is reached in finite time, uniformly in
t0 and in the initial condition. Finally, since V(t) ≥ η2‖e(t)‖2,
‖e(t)‖ ≤ √

ρ/η2 for all t ≥ t0 + T�.

6. Numerical example

To exemplify the proposed observer, the following system is
considered:

ẋ(t) =
⎡
⎣ 0 1 0

0
0 A22(t)

⎤
⎦ x(t)+

⎡
⎣0
1
1

⎤
⎦ u(t) = A(t)x(t)+ b u(t),

y(t) = [
1 0 0

]
x(t − τ(t)) = C x(t − τ(t)) = x1(t − τ(t)),

with A22(t) = −ω(t)ω	(t), ω	(t) = [cos(3 t), 1], u(t) =
cos(5 t)+ 1. It is well known that if ω(t) is of persistent exci-
tation, −ω(t)ω	(t) describes a uniformly asymptotically stable
motion (Anderson, 1977). Then, the dynamics of x2(t) and
x3(t) is uniformly asymptotically stable. However, x1(t) inte-
grates x2(t), resulting unbounded, but a Lipschitz time function,
fulfilling Assumption 2.4. For the simulation, the initial con-
ditions of the system are set in x1(t0) = 0, x2(t0) = 10, and
x3(t0) = 5. For this example, the delay is selected as τ(t) = α +

2α cos(6 t)/3 with alpha taking the values {0.1, 0.3, 0.6, 1.2}.
In the design and implementation of the observer, the value
of τ(t) is not needed. The observer parameters were chosen as
follows:

�(t) = diag
(
10, 6, 6

)
,  = 30 I3, p = 2, N0 = I3.

The initial conditions for the observer were set to zero. For
these conditions, the norm of the estimation error for the dif-
ferent values of α is shown in Figure 1. It can be seen that the
error bound grows with the size of α. This can be attributed to
the fact that the difference |y(t)− ȳ(t)| also grows with α, as is
shown in Figures 2 and 3.

Now, to show the fixed-time convergence, the initial condi-
tion of the observer was increased to induce initial errors of 103,
105 and 107, while keepingα = 1.2. The evolution of the estima-
tion norm, under these circumstances, is shown in Figures 4 and
5 in a logarithmic scale. In Figure 4 the fast attraction it is shown.
In this figure, a logarithmic scale is also used for the time axis
since the convergence was really fast. In Figure 5 it is shown that
the three trajectories reach the same region in almost the same
time despite the difference between the orders of magnitude in
the initial condition.

In the previous scenario, the size of |y(t)− ȳ(t)| increases
with α given the marginal stability of the system. To show how

Figure 1. Evolution of the estimation error norm for the different values of α.

Figure 2. Plot of the difference |y(t)− ȳ(t)|. Increasing the value of α increases the value of τ̄ .
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Figure 3. Tracking of the nominal output ȳ(t) for the different values of α.

Figure 4. Time evolution of the error norm for different initial errors. In the plot, the fast attraction to the ultimate bound is shown in a logarithmic scale in both axes.

Figure 5. Three trajectories reach the same bounded region despite the differences in the initial condition.

the observer behaves when the systems are uniformly asymp-
totically stable, we will consider only the dynamic of x2(t) and
x3(t). The output will be y(t) = x2(t − τ(t)), leaving τ(t) as
before. For this setting, the observer was configured as follows:

N0 = I2, �(t) = 10 I2,  = 30 I2, p = 2.

The initial conditions for the observer state andψ(t)were set in
zero. The difference between y(t) and ȳ(t) in this case is shown

in Figure 7. Since the nominal output is bounded, the difference
between it and the delayed one does not grow with α. This is
reflected in the fact that the size of the convergence region is
maintained despite the increase in α, as it is demonstrated in
Figure 6. This contrasts with the previous situation where the
error grew with the delay.

As before, to show the fixed-time convergence, the initial
error was increased in orders of magnitude of 103, 105, and 107
while keeping α = 1.2. In Figure 8 it is shown how the three
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Figure 6. Evolution of the estimation error norm for the different values of α when the system is UAS.

Figure 7. Plot of the difference |y(t)− ȳ(t)|when the system is UAS. Increasing the value of α does not affect significantly this difference.

Figure 8. Timeevolution of the error norm for different initial errorswhen the systems is UAS. In theplot, the fast attraction to the ultimate bound is shown in a logarithmic
scale in both axes.

trajectories converge to the same. Logarithmic scale was used
in both axes to show the transient phase. In Figure 9 it can be
observed how in the three cases, the same error is achieved.

With these two examples, we have illustrated the two main
properties of (14). First, the delay size and its rate of variation do
not affect directly the ultimate bound for the estimation error.

For a systemwhere the output asymptotically remains in a com-
pact region, the error bounds will depend on the size of that
region. Second, when the estimation error is large, its rate of
convergence is accelerated due to the nonlinearity. These prop-
erties make the algorithm suitable when the delay and the initial
error are uncertain and large.
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Figure 9. Three trajectories reach the same bounded region despite the differences in the initial condition when the system is UAS.

In the case of a linear time-invariant system, a comparison of
the proposed observer with a delayed Luenberger observer (3)
and the undelayed version (5) can be found in Rueda-Escobedo
et al. (2018).

7. Conclusion

In the note, an observer for marginally stable time-varying sys-
tems with delayed measurements is presented. The observer
provides an estimate that converges to the internal state of the
system up to a bounded error. The convergence time can be
bounded by a constant independent from the initial error and
the initial time, meaning that the ultimate bound of the error is
reached in uniformfixed-time. The proposed observer proves to
be useful when the knowledge about the delay is scarce, or when
it is large with respect to the time-scale of the system. Also, if the
convergence time of the observer is crucial for the application,
the proposed approach is helpful due to the fixed-time conver-
gence since it guarantees the time needed to trust the estimate.
This time can be adjusted by means of the observer parameters.

Note

1. For v ≥ 0, k1 v + k2 v
p+1
2 is a strict positive monotonic function of v,

then its image is R≥0.
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Appendix. Some inequalities
Lemma A.1: Let x, δ ∈ R and p> 0. Then, for any κ1 ∈ (0, 1) there exists
κ2 > 0 such that

x�x + δ�p ≥ κ1 |x|p+1 − κ2 |δ|p+1.

In particular, one can select κ2 = max{1 + κ1, κ1/(1 − κ
(1/p)
1 )p}.

Proof: For x= 0 or δ = 0, the inequality is satisfied trivially with any
κ2 ≥ 0, then consider the case with x �= 0 and δ �= 0. Now, by homogeneity

we have

x�x + δ�p = 1
εp+1

(
(ε x)�(ε x)+ (ε δ)�p

)

κ1 |x|p+1 − κ2 |δ|p+1 = 1
εp+1

(
κ1 |ε x|p+1 − κ2 |ε δ|p+1

)
,

for any ε > 0. Set ε = 1/|δ| and define z = x/|δ|. The inequality then is
equivalent to z �z + �δ�0�p ≥ κ1 |z|p+1 − κ2. We will only consider the
case �δ�0 = 1 since the other one is analogous. For �δ�0 = 1 we have
z�z + 1�p ≥ κ1 |z|p+1 − κ2, or

z�z + 1�p − κ1 |z|p+1 ≥ −κ2. (A1)

This reduces the problem to prove that the left hand side of the inequal-
ity has a lower bound. For z> 0, we have that �z + 1�0 = 1 and |z +
1| > |z|, then z�z + 1�p > |z|p+1. Since κ1 < 1, z�z + 1�p − κ1 |z|p+1 > 0
and (.1) holds for any κ2 ≥ 0 on this interval. Now, for z ∈ (−1, 0), we
must show −|z| |z + 1|p − κ1 |z|p+1 ≥ −κ2. In this interval, we have that
|z| < 1 and |z + 1| < 1, then −|z| |z + 1|p − κ1 |z|p+1 ≥ −1 − κ1, which
implies that (.1) holds with κ2 ≥ 1 + κ1. Last, we consider the interval
z ∈ (−∞,−1], where now we must check |z| |z + 1|p − κ1|z|p+1 ≥ −κ2.
Notice that |z| > |z + 1| in this case. To find a lower bound, consider the
following auxiliary function:

|z| |z + 1|p − κ1|z|p+1 ≥ |z + 1|p+1 − κ1|z|p+1 := g(z).

Now,we proceed to look for theminimumof g(z). Taking its derivative, this
results in g′(z) = −(p + 1)(κ1|z|p − |z + 1|p), which has a unique zero at
z0 = −1/(1 − κ

1/p
1 ). The second derivative of g(z) evaluated at z0 is pos-

itive, revelling that g(z) has a minimum at this point. Then g(z0) can be
taken as κ2. This gives us κ2 ≥ κ1/(1 − κ

1/p
1 )p. Finally, looking at the three

conditions we get that

κ2 ≥ max

{
κ1 + 1,

κ1(
1 − κ

1/p
1

)p
}
.

�

Remark A.1: In the proof of LemmaA.1, a value for κ2 is given analytically
as a function of κ1 and p. However, the ratio κ2/κ1 can be really large for
κ1 close to one and p> > 1. A sharp value for κ2 can be found numerically
by looking at the minimum of z�z + 1�p − κ1|z|p+1 on z ∈ (−∞, 0). This
is discussed latter in this appendix.

Corollary A.2: Let x, δ ∈ R
n and p> 0. Then, for any κ1 ∈ (0, 1) there is

κ2 > 0 such that

x	⌈
x + δ

⌋p ≥ κ1‖x‖p+1
p+1 − κ2‖δ‖p+1

p+1.

In particular, for p> 1 we have

x	⌈
x + δ

⌋p ≥ κ1n
1−p
2 ‖x‖p+1 − κ2‖δ‖p+1.

In both cases, κ2 can be taken as in Lemma A.1.

Table A2. Suggested values of κ1 and κ2 for some p, continuation.

p 3 3.4 3.8 4 4.4 4.8 5

κ1 0.049 0.0353 0.0256 0.0218 0.0159 0.0117 0.00997
κ2 0.1057 0.0946 0.0858 0.0819 0.0757 0.0697 0.0671

(κ2/κ1)
1

p+1 1.212 1.251 1.286 1.303 1.333 1.361 1.374

Table A1. Suggested values of κ1 and κ2 for some p.

p 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

κ1 0.297 0.219 0.173 0.1407 0.1162 0.097 0.08134 0.0685 0.0579
κ2 0.300 0.232 0.1946 0.1703 0.1529 0.1396 0.1288 0.1199 0.1123

(κ2/κ1)
1

p+1 1.005 1.024 1.046 1.071 1.096 1.121 1.145 1.168 1.190
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Figure A1. Values of κ2 for different values of κ1 and p.

Proof: First, the product x	�x + δ�p is developed and bounded using
Lemma A.1:

x	�x + δ�p =
n∑

i=1
xi�xi + δi�p ≥ κ1

n∑
i=1

|xi|p+1 − κ2

n∑
i=1

|δi|p+1.

Each of the sum represent the (p + 1)-norm raised to p+1. From here, the
first statement of CorollaryA.2 follows.Now, p > 1 =⇒ p + 1 > 2. Then,
using the equivalence between norms in R

n, we have

κ1‖x‖p+1
p+1 − κ2‖δ‖p+1

p+1 ≥ κ1n
1−p
2 ‖x‖p+1 − κ2‖δ‖p+1.

This concludes the proof. �

Discussion
To obtain a sharp value for κ2, the minimum of f (z) := z�z + 1�p −
κ1|z|p+1 on the interval (−∞, 0) is required. This can be done by looking

at its derivative:

f ′(z) = �z + 1�p + p z�z + 1�p−1 − (p + 1)κ1�z�p,
f ′(z) = |z + 1|p + (p + 1)κ1|z|p − p |z| |z + 1|p−1, z ∈ (−1, 0),

f ′(z) = (p + 1)κ1|z|p − |z + 1|p − p |z| |z + 1|p−1, z ∈ (−∞,−1].

Since |z + 1|p, |z|p, and |z| |z + 1|p−1 are monotonically increasing func-
tions of z, there are two critical points, one in each sub-interval. The zeros
of f ′(z) can be found numerically and then used to find the minimum for
f (z). In Figure A1, we present the values of κ2 found using this approach
for some values of p.

Beside the value of κ1 and κ2, one may be interested in the best selec-
tion of these parameters for a given p. To chose some κ�1 and its associated

κ�2 , we propose to take the ones that minimise the ratio (κ2/κ1)
1

p+1 . From
the data generated for Figure A1 we got the values presented in Table A1
and A2.
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