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a b s t r a c t 

Microgrids are distributed systems with high share of inverter-interfaced renewable energy sources where 

stable and reliable system operation is realized by suitably controlling the inverters. In this work, we fo- 

cus on secondary frequency control, which is an important ancillary service provided by the inverters. In 

the literature on secondary frequency control, the effect of clock drifts has often been neglected. However, 

clock drifts are practically unavoidable parameter uncertainties in inverter-based microgrids and we show 

that the most commonly employed distributed secondary frequency controllers exhibit performance de- 

teriorations when taking clock drifts explicitly into consideration. Motivated by this, we propose a novel 

alternative control law called generalized distributed averaging integral (GDAI) control, which achieves the 

secondary control objectives of steady-state accurate frequency restoration and proportional power shar- 

ing in the presence of clock drifts. In addition, we derive a sufficient tuning criterion in the form of a set 

of linear matrix inequalities (LMIs) which guarantees robust stability of the closed-loop equilibrium point 

in the presence of uncertain clock drifts. Finally, our analysis is validated extensively via simulation with 

comprehensive comparisons to other related distributed control approaches. 

© 2019 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

.1. Motivation and related work 

Electric power systems are on the verge of a major structural

nd technological transformation; structural, because power gener-

tion is moving from a fairly small number of large central power

tations to a large number of distributed generation units; tech-

ological, because in contrast to conventional power networks, the

ew or so-called smart grid [11] has the major share of power gen-

ration coming from inverter-interfaced renewable energy sources

RESs). The physical characteristics of inverters largely differ from

hose of conventional generators. Therefore, novel control strate-

ies are needed to ensure stable and reliable power system opera-

ion. In this context, the concept of microgrids (MGs) is foreseen as
� The project leading to this manuscript has received funding from the German 

cademic Exchange Service ( DAAD ) and the European Union’s Horizon 2020 re- 

earch and innovation programme under the Marie Skłodowska-Curie grant agree- 
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 promising solution [17,25] . A MG is a locally controllable subset

f a large power system. It consists of several RESs, storage units

nd corresponding loads. A MG can typically work in islanded or

rid-tied mode [17,25] . In islanded mode, the units within the MG

re responsible for addressing control tasks such as frequency sta-

ility, voltage stability and desired power sharing at steady-state,

ee e.g., [41] . With high share of RESs, maintaining frequency sta-

ility in islanded MGs where both load and generation evolutions

re uncertain, is a challenging control task. Therefore, in this paper,

e focus on frequency control in islanded MGs. 

In conventional power systems, synchronous generators which

perate as grid forming units are employed to accomplish this con-

rol objective. In inverter-based MGs, inverter-interfaced sources or,

ore precisely, grid forming inverters (GFIs) have to replace syn-

hronous generators [27] . A GFI is a voltage source inverter con-

rolled using voltage and frequency references [27,44] . 

Inspired by conventional power systems, a hierarchical control

trategy is often advocated to control an islanded MG, see e.g.,

15,16] . This hierarchical control structure has primary, secondary

nd energy management layers. The primary control layer con-

ists of a decentralized proportional control, called droop control ,

hich is responsible for maintaining frequency stability along with

roportional power sharing [8] . Despite many advantages, a major
rved. 
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drawback of the primary droop control law is that the steady-state

frequency usually deviates from its nominal value (50 or 60 Hz).

However, since many devices are designed to operate at the nom-

inal frequency value, correcting this frequency deviation is im-

portant. Conventionally, a central integral secondary control law

[15] is advocated for this task, where a central unit communicates

with all the GFIs. Yet, considering the increasing complexity and

the huge number of generation units connected in a MG, central-

ized approaches significantly increase the communication burden

and are also vulnerable to single-point-failures. As a consequence,

distributed secondary control architectures are being increasingly

proposed for this task [5,12,36,43,48,52] . 

Typically, distributed secondary frequency control is imple-

mented by means of consensus-based algorithms where the agents

in the network reach an agreement by communicating with their

neighbors, see e.g., [33] . Since such distributed approaches obvi-

ate the requirement for a central communication unit, the overall

communication burden in the network is reduced and the reliabil-

ity is improved [5] . Therefore, in this paper, we focus on distributed

secondary frequency control in inverter-based islanded MGs. 

An inverter-based MG involves distributed computation, which

is carried out on the digital-controller of each GFI. It is a well

known fact that the clocks used to generate time signals of these

digital-controllers are not synchronized [3,21] . This results in clock

drifts between the inverters. In MGs, clock drifts create frequency

mismatches [44] . In the context of distributed secondary frequency

control, approaches presented in the literature often neglect the

effect of clock drifts. For example, see [5,12,36,43,48,52] . How-

ever, recently it has been highlighted that clock drifts have an

adverse effect on the performance of secondary frequency con-

trol [6,7,30,31,39] . For example, in [38] , the detrimental effect of

clock drifts on the distributed averaging integral (DAI) controller

is investigated and it is shown that the DAI controller is unable

to properly achieve usual secondary frequency control objectives

in the presence of clock drifts. Moreover, in [30] , a comparative

study comprising droop-only, droop-free and various consensus-

based distributed approaches in the presence of clock drifts is pre-

sented. The authors conclude that all the approaches studied in

[30] exhibit problems in achieving secondary frequency control

objectives in the presence of clock drifts. 

In [6] , steady-state and transient performance of various decen-

tralized secondary frequency controllers in the presence of clock

drifts are compared. In a similar spirit, in [7] , a decentralized sec-

ondary control approach is studied and the robustness of this ap-

proach towards clock drifts under high load conditions is evalu-

ated experimentally. Although decentralized secondary controllers

avoid the burden of communication, they have the disadvantage

that they exhibit inefficient allocation of generation resources and

suffer from poor robustness to measurement bias [51] . In [31] ,

a droop-free controller which requires neighboring node commu-

nication is studied in the presence of clock drifts. However, in

the comparative study presented in [30] , it is shown that the

aforementioned droop-free approach does not achieve steady-state

power sharing in the presence of clock drifts. 

In [39] , a consensus-based distributed frequency controller is

studied and the authors confirm experimentally that clock drifts

induce power sharing errors and frequency deviations. However,

the approach investigated in [39] requires that each unit communi-

cates with all other units in the MG. In practice, such an all-to-all

communication is undesirable. Furthermore, in [19] , a consensus-

based power control law is designed on top of a primary angle

droop 

1 control layer. The approach presented in [19] is able to
1 In contrast to the conventional frequency droop control law, in an angle droop 

controller, the voltage phase angle is calculated in proportion to the power injected 

by the inverter [29] . 

a  

a  

p  

i

chieve frequency consensus and power sharing at steady-state.

ecently, in [20] , a modified frequency droop control scheme to

ddress power sharing issues in the presence of clock drifts has

een presented. However, the approaches proposed in [19,20] do

ot address the mandatory secondary frequency control objective,

hich is to restore the network frequency to the nominal value of

0 or 60 Hz. 

A possible remedy to alleviate the impact of clock drifts is

o use a global time synchronization strategy [15] , where a cen-

ral unit communicates a global time signal to all the GFIs. Again,

uch a central setup increases the communication burden and is

rone to single-point-failures. Another interesting option is to use

lock synchronization protocols applied in sensor networks, see

.g., [40,49] . Yet, when it comes to MGs, for implementing these

lock synchronization protocols, an additional clock synchroniza-

ion control has to be designed and should be activated before the

rimary and secondary controllers. Hence, adding such an addi-

ional control layer would increase the overall complexity of the

ierarchical control architecture used in MGs [15] . 

.2. Contributions 

The main contributions of this paper are highlighted below. 

1. We show that the most commonly employed distributed fre-

quency controllers exhibit performance deteriorations in the

presence of clock drifts. 

2. Building upon the above observation, we propose a generalized

distributed averaging integral (GDAI) control which at steady-

state achieves secondary frequency control objectives in the

presence of clock drifts. Furthermore, we derive a sufficient

tuning criterion which guarantees that the closed-loop equilib-

rium point is locally asymptotically stable. 

3. The performance of the GDAI controller in the presence of

clock drifts is compared with two other distributed control

approaches in the literature. 

In contrast to [19,20,30] , we neither linearize the electrical

etwork, nor assume that the clock drift values are known (nor

eglect their effect) in the stability analysis. Instead, we work

ith a non-linear MG model and consider the fact that clock drift

alues in practice are uncertain, but bounded. We use a Lyapunov

unction with classic kinetic and potential energy terms [34,35] to

erive a stability criterion which can be verified without the

nowledge of the operating point. 

We present necessary and sufficient conditions for achieving ac-

urate steady-state frequency restoration and power sharing in the

resence of clock drifts with various distributed frequency con-

rollers. The GDAI controller is proposed based on these neces-

ary and sufficient conditions. Unfortunately, compared to an anal-

sis assuming ideal clocks [4,48] , the explicit consideration of clock

rifts in the MG dynamics hampers the skew-symmetric intercon-

ection with the GDAI controller and, hence, significantly compli-

ates the derivation of controller parametrizations, which ensure

losed-loop stability. This fact is addressed in the present paper by

sing a suitable Lyapunov function for the nonlinear MG dynamics,

hich permits to derive a sufficient stability criterion. The latter is

ast as a set of LMIs, which can be efficiently solved using standard

oftware like MATLAB 

R © with Yalmip [26] . 

The present work extends our previous works in [22,23] in the

ollowing sense. In this paper, the steady-state comparative study

n [22] and the tuning criterion in [23] are unified with respect to

 common MG model, hence making this paper self-contained. In

ddition, we provide an extensive numerical case study with com-

rehensive comparisons with other distributed control approaches

n the literature. 
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The paper is organized as follows. In Section 2 , we recall

ome preliminaries on graph theory and introduce the MG model.

n Section 3 , we introduce a general control representation of

istributed secondary frequency controllers and derive sufficient

onditions to achieve accurate frequency restoration and power

haring in the presence of clock drifts. Based on these conditions,

e propose a GDAI control law which at steady-state achieves the

forementioned control objectives in the presence of clock drifts.

n Section 4 , a tuning criterion in the form of linear matrix in-

qualities (LMIs) which ensures robust stability of the closed-loop

quilibrium point with GDAI control is presented. In Section 5 , the

erformance of GDAI control is compared with other distributed

pproaches via simulation. Finally, we summarize our work and

uggest some future research directions in Section 6 . 

. Preliminaries 

We denote by I n the n × n identity matrix, by 0 n ×m 

the n × m

atrix with all entries equal to zero, by 1 n the vector with all

ntries being equal to one and by 0 n the zero vector. Further-

ore, ‖ · ‖ 2 denotes the Euclidean norm. Let F and H be two

eal symmetric matrices of same dimension. Then, the maximum

igenvalue F is denoted by λmax ( F ) and the elements below the di-

gonal of F are denoted by ∗. If F is positive (negative) definite, we

enote this by F > 0 ( F < 0). If F is positive (negative) semidefinite,

e denote this by F ≥ 0 ( F ≤ 0). Similarly, F > H and F ≥ H represent

 − H > 0 and F − H ≥ 0 respectively. Let x = col (x i ) denote a

olumn vector with entries x i ∈ R , Y = diag (y i ) a diagonal matrix

ith diagonal entries y i ∈ R and X = blkdiag (X i ) a block-diagonal

atrix with matrix entries X i ∈ R 

n i ×n i . Finally, for a function

f : R 

n → R , ∇f denotes the gradient of f . 

.1. Algebraic graph theory 

A weighted undirected graph of order n > 1 is a triple G =
(N , E, W) with set of vertices N = { 1 , . . . , n } . The set of edges is

enoted by E ⊆ [ N ] 2 , E = { e 1 , . . . , e s } where s = |E| and [ N ] 2 rep-

esents the set of all two-element subsets of N . Furthermore, W :

 → R > 0 is a weight function. By assigning a random orientation to

he edges, the incidence matrix B ∈ R 

n ×s can be defined element-

ise as h jl = 1 if node j is the source of the l th edge e l , h jl = −1 if

ode j is the sink of the l th edge e l and h jl = 0 otherwise. Then, the

aplacian matrix of the undirected weighted graph G is given by

 C = B W B 

� where W = diag (w l ) ∈ R 

s ×s and w l > 0 is the weight

f the l -the edge, l = { 1 , . . . , s } . A path is an ordered sequence of

odes such that any pair of consecutive nodes in the sequence is

onnected by an edge. The graph G is called connected if there ex-

sts a path between every pair of distinct nodes. The matrix L C has

 simple zero eigenvalue if and only if G is connected. Then, a cor-

esponding right eigenvector is 1 n , i.e., L C 1 n = 0 n , yielding L C ≥ 0 .

he reader is referred to [9,13,32] for more details on graph theory.

.2. Primary droop-controlled MG model with clock drifts 

We consider a Kron-reduced representation [24] of an inverter-

ased MG and denote its set of network nodes by N = { 1 , . . . , n } ,
 > 1. As customary in secondary frequency control design, we

ssume that all voltage amplitudes are constant and that the

ine admittances are purely inductive [24] . The latter assumption

s generally satisfied for MGs in which the inductive output

mpedance of the converter filter and/or transformer dominates

he resistive part of the line impedances [45] , and we only con-

ider such MGs. Thus, if there is a power line between nodes

 ∈ N and k ∈ N , then this is represented by a nonzero suscep-

ance B ik ∈ R < 0 . Furthermore, the electrical network is assumed

o be connected and the set of neighboring nodes of the i -th
ode is denoted by N i = { k ∈ N | B ik � = 0 } . The phase angle and

oltage magnitude at each bus i ∈ N are denoted by δi : R ≥0 → R ,

espectively V i ∈ R > 0 . Note that voltage magnitudes are assumed

o be constant. In this work we focus solely on aspects related

o frequency control in MGs in the presence of clock drifts. In

requency-related studies in power systems, the assumption of

onstant voltage amplitudes is often made, see e.g., [43,47] . 

Under the explicit consideration of clock drifts, the model of a

FI connected at the i -th node, i ∈ N can be modeled as an AC

oltage source given by [44,46] 

(1 + μi ) ̇ δi = u 

δ
i , (2.1)

here u δ
i 

: R ≥0 → R is the primary control input and μi ∈ R is the

onstant, but uncertain relative drift of the clock of the i th unit. 

Following standard practice [8,15] , we assume that u δ
i 

is ob-

ained by the standard frequency droop control law given by 

 

δ
i = ω 

d − k P i (P m 

i − P d i ) , (2.2)

here ω 

d ∈ R > 0 is the desired electrical frequency, k P i ∈ R > 0 is the

roop coefficient, P d 
i 

∈ R is the desired active power set point and

 

m 

i 
: R ≥0 → R is the active power measured using a first order low

ass filter given by 

(1 + μi ) τP i 
˙ P m 

i = −P m 

i + P i (δ) + G ii V 

2 
i , (2.3)

here τP i 
∈ R > 0 is the time constant of the low pass filter and

 ii V 
2 
i 

∈ R ≥0 represents the constant impedance load connected at

he i th node. The active power flow P i : R 

n → R at the i th node is

iven by [24] 

 i (δ) = 

∑ 

k ∈N i 
| B ik | V i V k sin (δi − δk ) , (2.4)

here δ = col (δi ) ∈ R 

n is the vector of phase angles. 

Due to the consideration of clock drifts, it is convenient to in-

roduce the internal frequency ω̄ i : R ≥0 → R > 0 of the inverter at

he i th node which is related to the actual electrical frequency

 i = 

˙ δi by [44,46] 

¯  i = (1 + μi ) ̇ δi = (1 + μi ) ω i , ∀ i ∈ N . (2.5)

n the literature, the effect of clock drifts is often neglected,

.e., it is assumed that μi = 0 and ω̄ i = ω i . For example, see

5,12,36,43,48,52] . In practice, the above assumption is not satis-

ed in inverter-based MGs [44] . 

Furthermore, combining (2.1), (2.2) and (2.3) and recalling

2.5) yields the dynamics of a primary droop-controlled unit as 

(1 + μi ) ̇ δi = ω̄ i = ω 

d − k P i (P m 

i 
− P d 

i 
) , 

(1 + μi ) τP i 
˙ P m 

i 
= −P m 

i 
+ P i (δ) + G ii V 

2 
i 
. 

(2.6) 

For the presentation of our results, it is convenient to rewrite

he dynamics (2.6) as follows. Differentiating the first equation in

2.6) with respect to time yields 

˙ ¯  i = −k P i 
˙ P m 

i = −k P i 
1 

(1 + μi ) τP i 

(
−P m 

i + P i (δ) + G ii V 

2 
i 

)
, (2.7)

here to write the second equality, we have used the second equa-

ion in (2.6) . Next, from the first equation in (2.6) , the measured

ower P m 

i 
can be expressed as 

 

m 

i = 

1 

k P i 

(
−ω̄ i + ω 

d 
)

+ P d i . (2.8)

ubstituting (2.8) in (2.7) and multiplying the result with 1 /k P i 
ields 

(1 + μi ) M i 
˙ ω̄ i = −D i ( ω̄ i − ω 

d ) −
(
P i (δ) + G ii V 

2 
i − P d i 

)
, (2.9)

here M i = τP i 
/k P i ∈ R > 0 is the virtual inertia coefficient and D i =

 /k P i ∈ R > 0 is the damping coefficient. 
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Combining (2.9) with (2.5) yields 

(1 + μi ) ̇ δi = ω̄ i , 

(1 + μi ) M i 
˙ ω̄ i = −D i ( ω̄ i − ω 

d ) −
(
P i (δ) + G ii V 

2 
i 

− P d 
i 

)
, 

(2.10)

which is an equivalent representation of (2.6) . 

To derive a compact model representation of the MG, it is con-

venient to introduce the matrices 

M = diag (M i ) ∈ R 

n ×n , D = diag (D i ) ∈ R 

n ×n , 

μ = diag (μi ) ∈ R 

n ×n , 

and the vectors 

ω = col (ω i ) ∈ R 

n , ω̄ = col ( ̄ω i ) ∈ R 

n , 

P net = col (P d 
i 

− G ii V 

2 
i 
) ∈ R 

n . 

Also, we introduce the potential function U : R 

n → R , 

(δ) = −
∑ 

{ i,k }∈ [ N ] 2 

| B ik | V i V k cos (δik ) , (2.11)

where we use the short-hand δik = δi − δk . Let P (δ) = col (P i (δ)) ∈
R 

n be the vector of active power flows where P i ( δ) is defined in

(2.4) . With U ( δ) defined in (2.11) , we note that 

∇ δU(δ) = P (δ) . 

Then, the dynamics (2.10) for the whole MG can be expressed as 

(I n + μ) ̇ δ = ω̄ , 

(I n + μ) M 

˙ ω̄ = −D ( ̄ω − 1 n ω 

d ) −
(∇ δU(δ) − P net 

)
. 

(2.12)

Observe that due to the skew symmetry of the power flows, 

1 � n ∇ δU(δ) = 0 . (2.13)

In MGs, sharing the active power injections in a fair manner is

a practically important control objective [15,41] . For this purpose,

we recall the following definition [10,45] . 

Definition 2.1. The active power injections are shared proportion-

ally if 

X 

(∇ δU(δs ) − P net 
)

= α1 n , (2.14)

where α ∈ R , X = diag (X i ) ∈ R 

n ×n is a weighting matrix with X i ∈
R > 0 and ∇ δU(δs ) = ∇ δU(δ) | δ= δs = P (δs ) is the vector of steady-

state power flows. 

Note that the parameter X i is usually specified by the de-

signer. A typically choice would be to select X i = 1 /S N 
i 

where S N 
i 

is the power rating of the i -th unit. Hence, achieving (2.14) at

steady-state ensures that the loads connected in the MG are

shared among the GFIs in a fair manner, i.e., in proportion to

their power ratings. Furthermore, for the purpose of attaining

steady-state power sharing, it has been shown in [ 47 , Theorem 7],

[ 45 , Lemma 6.2] that the entries of the damping matrix D in

(2.12) can be chosen according to 

X D = κ I n , (2.15)

where κ ∈ R > 0 . Recall that D is the inverse droop coefficient ma-

trix. Therefore, the condition (2.15) can be understood as a propor-

tional choice of droop coefficients in correspondence to the power

ratings. 

3. Secondary control in the presence of clock drifts 

Like any power network, a MG is also designed to work very

close to the nominal frequency value of 50 or 60 Hz [2,24] . How-

ever, the proportional nature of primary droop control dynamics

leading to (2.12) results in steady-state frequency deviation. There-

fore, following standard practice [10,43,52] , a secondary control in-

put u = col (u i ) : R ≥0 → R 

n is introduced to the model (2.12) with
he aim of correcting the steady-state frequency deviation. Thus,

2.12) becomes 

(I n + μ) ̇ δ = ω̄ , 

(I n + μ) M 

˙ ω̄ = −D ( ̄ω − 1 n ω 

d ) −
(∇ δU(δ) − P net 

)
+ u. 

(3.1)

Along any synchronized motion (i.e., a motion with constant

lectrical frequencies ω 

s = ω 

∗1 n for ω 

∗ ∈ R > 0 , constant phase an-

le differences δs 
i 
− δs 

k 
and constant secondary control input u s ) of

he system (3.1) , we have that 

 

� 
n M(I n + μ) ˙ ω̄ = 0 = −1 � n D ( ̄ω 

s − 1 n ω 

d ) 

−1 � n 

(∇ δU(δs ) − P net 
)

+ 1 � n u 

s . 
(3.2)

ote that in the presence of clock drifts, the internal frequencies

re not uniform, i.e., from (2.5) , ω 

s = ω 

∗1 n implies that 

¯  s = (I n + μ) ω 

s = ω 

∗(I n + μ) 1 n . (3.3)

oreover, with (2.13) , the scalar ω 

∗ can be obtained from (3.2) as

 

∗ = ω 

d 1 � n D 1 n 

1 � n D (I n + μ) 1 n 
+ 

1 � n (P net + u 

s ) 

1 � n D (I n + μ) 1 n 
. (3.4)

rom (3.4) , it is obvious that ω 

∗ = ω 

d only if u s satisfies 

(3.5)

emark 3.1. In the case of ideal clocks, i.e., if μ = 0 n ×n , from (3.4) ,

t is clear that if u s satisfies 1 � n (P net + u s ) = 0 , we have ω 

∗ = ω 

d .

imilar results assuming ideal inverter clocks have been presented

n [43,52] . However, in the presence of clock drifts ( μi � = 0), satis-

ying 1 � n (P net + u s ) = 0 does not guarantee ω 

∗ = ω 

d . See (3.4) . 

.1. General distributed control representation 

We are interested in designing a control law for u in (3.1) such

hat ω 

∗ = ω 

d and power sharing, i.e., (2.14) are satisfied at steady-

tate. For this purpose, we propose the following general distributed

ontrol representation to study the effect of clock drifts on sec-

ndary frequency control, 

(3.6)

here B ∈ R 

n ×n and D ∈ R 

n ×n are diagonal controller matrices, β ∈
 is a controller parameter, L C ∈ R 

n ×n is the Laplacian matrix rep-

esenting the communication network and X is the design param-

ter defined in (2.14) . The matrix B is commonly called the pinning

ain matrix , see e.g. [5] . 

It is customary to use the internal frequency of the inverter to

mplement a distributed control law like (3.6) , since it obviates the

equirement for extra frequency measurement. This is mainly be-

ause extra measurement devices can potentially increase the com-

lexity and can bring in further measurement errors into the sys-

em. For example, see [5,42,43,48,52] . Therefore, it is important to

ote that in the control law (3.6) , we use the internal frequency ω̄ .

owever, in the works mentioned above, the authors do not con-

ider clock drifts and assume that the internal frequency and the

lectrical frequency are the same, i.e., ω̄ = ω, see (3.3) . Yet, when

xplicitly considering clock drifts, from (2.5) , it is relevant to note

hat ω̄ = (I n + μ) ω. 

The control law (3.6) represents a generalized version of

arious distributed secondary frequency controllers and can be

arametrized as follows. 
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AI control 

The DAI control presented/studied in [42,43,48,52] can be ob-

ained from (3.6) if the control parameters in (3.6) are chosen such

hat 

 > 0 , β = 0 , D > 0 . (3.7)

y using (3.7) in (3.6) yields the DAI control [ 48 , Eq. 6] 

(3.8) 

here B > 0 and D > 0. 

inning control 

The pinning control law proposed in [5] can be obtained from

3.6) if the control parameters in (3.6) are chosen such that 

 ≥ 0 , β = 0 , D > 0 . (3.9)

hus, (3.6), (3.9) yields the pinning control [ 5 , Eq. 52,53] 

(3.10) 

here B ≥ 0 and D > 0. The correspondence of the pinning control

aw presented in [ 5 , Eq. 52,53] with that of (3.10) is detailed in the

ppendix. 

For the subsequent analysis, to represent the natural power-

alance of the system (3.1), (3.6) , it is convenient to introduce the

otion below. 

efinition 3.2 (Synchronized motion) . The closed-loop system

3.1), (3.6) admits a synchronized motion if it has a solution for

ll t ≥ 0 of the form 

s (t) = δs 
0 + ω 

∗1 n t, ω 

s (t) = ω 

∗1 n , p s (t) ∈ R 

n , 

here ω 

∗ ∈ R > 0 is the synchronized electrical frequency and δs 
0 

∈
 

n such that 

 δs 
0 ,i − δs 

0 ,k | < 

π

2 

∀ i ∈ N , ∀ k ∈ N i . 

In Definition 3.2 , | δs 
0 ,i 

− δs 
0 ,k 

| < 

π
2 limits the power flow within

he desired power-angle stability region [ 28 , Chapter 5] over

he line connecting i th and k th units. Furthermore, the termi-

ology synchronized motion denotes the fact that with constant

hase angle differences δs 
i 
(t) − δs 

j 
(t) for all t ≥ 0, i, j ∈ N in the

ystem (3.1), (3.6) imply that the frequencies of all the units

ave converged to a common value, i.e., ˙ δs 
i 

= 

˙ δs 
i 

= ω 

∗, ω 

∗ ∈ R > 0 .

oreover, note that there is no unique synchronized motion of

he system (3.1), (3.6) with the power flow given by (2.4) , but

ny motion with ω 

s ( t ) and p s ( t ) given in Definition 3.2 and with
s (t) = δs 

0 
+ ω 

∗1 n t + α1 n for any α ∈ R is a desired synchronized

otion, see also [ 45 , Remark 5.7]. For further details about syn-

hronized motions in power system models similar to (3.1), (3.6) ,

he reader is referred to [ 42 , Lemma 4.2]. We make the following

ower-balance feasibility assumption. 

ssumption 3.3. The closed-loop system (3.1), (3.6) possesses a

ynchronized motion. 

In practice, clock drift values observed in commercial invert-

rs can vary from 1 μsec [3,44] to 1 ms [ 19 , Table I] depending

n the quality of the micro-controller used. Thus, as outlined in

44,46] for the purpose of secondary frequency control, it is rea-

onable to assume that the clock drifts are bounded. This is for-

alized in the assumption below. 

ssumption 3.4. ‖ μ‖ ≤ ε, 0 ≤ ε < 1. 
2 
We are interested in the following problem: 

roblem 3.5 (Secondary control objectives) . Consider the closed-

oop system (3.1), (3.6) with Assumption 3.4 and Assumption 3.3 .

esign the parameters B , β , D and edge-weights of L C in (3.1),

3.6) such that the following control objectives are satisfied: 

1. Accurate frequency restoration at steady-state, that is, 

ω 

∗ = ω 

d . (3.11) 

2. Steady-state power sharing according to Definition 2.1 . 

3. Asymptotic convergence of the solutions of the system (3.1),

(3.6) to the synchronized motion in Definition 3.2 . 

.2. Steady-state performance 

In this section, we address the first two points in Problem 3.5 .

e begin by providing necessary and sufficient conditions with

hich the first objective in Problem 3.5 can be accomplished. 

emma 3.6 (Accurate frequency restoration) . Consider the closed-

oop system (3.1) , (3.6) with Assumption 3.3 . Let D > 0 . Suppose that

he diagonal matrix B has at least one positive entry. Then, the syn-

hronized electrical frequency of the system (3.1) , (3.6) is given by 

 

∗ = 

1 � n D 

−1 X 

−1 B 1 n 

1 � n D 

−1 X 

−1 B (I n + μ) 1 n 
ω 

d . (3.12) 

urthermore, (3.11) is satisfied if and only if 

 

� 
n D 

−1 X 

−1 B μ1 n = 0 . (3.13)

roof. Along any synchronized motion, the electrical frequencies

t all nodes of (3.1), (3.6) have to be identical, i.e., 

˙ s = ω 

s = 1 n ω 

∗, (3.14)

hich directly implies (3.3) . Furthermore, at steady-state, ˙ p s = 0 n .
ence, (3.6) becomes 

(I n + μ) ˙ p s = 0 n = (B + βX D L C )( ̄ω 

s − 1 n ω 

d ) + D X L C X p s . 

(3.15) 

ultiplying (3.15) from the left with 1 � n D 

−1 X 

−1 and recalling the

act that 1 � n L C = 0 � n , yields 

 = 1 � n D 

−1 X 

−1 B ( ̄ω 

s − 1 n ω 

d ) . 

sing (3.3) in the above equation leads to 

 = 1 � n D 

−1 X 

−1 B 

(
(I n + μ) 1 n ω 

∗ − 1 n ω 

d 
)
. (3.16)

nder the standing assumption that at least one entry of the di-

gonal matrix B is positive, ω 

∗ can be solved from (3.16) yielding

3.12) . 

Furthermore, from (3.12) , we note that ω 

∗ = ω 

d if and only if 

 

� 
n D 

−1 X 

−1 B (I n + μ) 1 n = 1 � n D 

−1 X 

−1 B 1 n , 

hich is equivalent to (3.13) , completing the proof. �

In the following lemma, we present necessary and sufficient

onditions under which the second objective in Problem 3.5 can

e fulfilled. 

emma 3.7 (Power sharing) . Consider the closed-loop system (3.1) ,

3.6) with Assumption 3.3 . Let D > 0 . Suppose that the diagonal matrix

 has at least one positive entry. Then, active power sharing according

o Definition 2.1 along the synchronized motion is achieved if and only

f B , β , D and L C are chosen such that 

D 

−1 X 

−1 B + (β + κ) L C 
]
F 1 n ω 

d = 0 n , (3.17)

here 

 = 

1 � n D 

−1 X 

−1 B 1 n 

1 � D 

−1 X 

−1 B (I n + μ) 1 n 
(I n + μ) − I n . (3.18)
n 
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Proof. Along a synchronized motion, the primary control dynamics

(3.1) with u = p becomes 

0 n = −D ( ̄ω 

s − 1 n ω 

d ) −
(∇ δU(δs ) − P net 

)
+ p s . (3.19)

We can rearrange (3.19) as 

p s = D ( ̄ω 

s − 1 n ω 

d ) + 

(∇ δU(δs ) − P net 
)
. (3.20)

Next, consider (3.6) at steady-state given by 

0 n = (B + βX D L C )( ̄ω 

s − 1 n ω 

d ) + D X L C X p s . (3.21)

Inserting p s obtained from (3.20) in (3.21) results in 

0 n = 

(
B + βX D L C 

)
( ̄ω 

s − 1 n ω 

d ) + D X L C X D ( ̄ω 

s − 1 n ω 

d ) 

+ D X L C X 

(∇ δU(δs ) − P net 
)
. 

Under the standing assumption that (2.15) is satisfied, the above

equation becomes 

0 n = 

(
B + βX D L C + κD X L C 

)
( ̄ω 

s − 1 n ω 

d ) 

+ D X L C X 

(∇ δU(δs ) − P net 
)
, 

which, when left-multiplied with D 

−1 X 

−1 > 0 , yields 

0 n = 

(
D 

−1 X 

−1 B + βL C + κL C 
)
( ̄ω 

s − 1 n ω 

d ) 

+ L C X 

(∇ δU(δs ) − P net 
)
. (3.22)

Recall that L C is the Laplacian matrix of a connected undirected

graph. Hence, 

L C X 

(∇ δU(δs ) − P net 
)

= 0 n 

if and only if (2.14) is satisfied. From (3.22) ,

L C X 

(∇ δU(δs ) − P net 
)

= 0 n if and only if (
D 

−1 X 

−1 B + (β + κ) L C 
)
( ̄ω 

s − 1 n ω 

d ) = 0 n . (3.23)

Finally, with (3.3) and ω 

∗ given by (3.12) , the condition (3.23) holds

if and only if (3.17) is satisfied. This completes the proof. �

In the presence of clock drifts, it is straightforward to verify

that the DAI parametrization (3.7) neither satisfies Lemma 3.6 nor

Lemma 3.7 . Turning to the pinning parametrization (3.9) , we see

that (3.9) satisfies the conditions of Lemma 3.6 if the structure of

the pinning gain matrix B is chosen such that B μ = 0 n ×n . However,

the parametrization (3.9) does not satisfy Lemma 3.7 . 

We are interested in finding parameters of the controller

(3.6) which satisfy both Lemma 3.6 and Lemma 3.7 . But, since

the coefficients μi are unknown and different for different units,

Lemma 3.7 reveals that unlike in the case of ideal clocks

[5,12,36,43,48] , when taking clock drifts explicitly into account,

it is hard to determine B , β and D directly from the conditions

presented in Lemmata 3.6 and 3.7 . Therefore, instead, below we

present a sufficient condition for the control parameters B , β and

D such that Lemmata 3.6 and 3.7 are satisfied. 

Lemma 3.8 (Accurate frequency restoration and power shar-

ing) . Consider the closed-loop system (3.1) , (3.6) with Assumption 3.3 .

Let D > 0 . Suppose that the diagonal matrix B has at least one posi-

tive entry. Then, the first two objectives in Problem 3.5 along a syn-

chronized motion are achieved if the control parameters B and β are

chosen such that 

B μ = 0 n ×n , and β = −κ. (3.24)

Proof. Consider Lemma 3.6 . For B μ = 0 n ×n , (3.13) holds. Thus, we

have (3.11) . 

Next, consider Lemma 3.7 . With B μ = 0 n ×n , (3.17) becomes [
(β + κ) L C 

]
μ1 n ω 

d = 0 n , 

which holds when β = −κ . Hence, Lemma 3.7 is satisfied, yielding

steady-state power sharing (2.14) . This completes the proof. �
The condition B μ = 0 n ×n presented in Lemma 3.8 can be in-

erpreted as follows. Define the clock of one of the units in the

etwork as master clock, say the k th unit, k ≥ 1. Then, μk = 0 and

he drifts μi , i � = k , of all other clocks in the MG are expressed with

espect to the master clock of the k th unit. Furthermore, the diag-

nal pinning gain matrix B ≥ 0 will have a non-zero positive entry

nly at the ( k , k )th position resulting in B μ = 0 n ×n . 

Applying the parametrization (3.24) to the general control

epresentation (3.6) yields 

(3.25)

ith B μ = 0 n ×n , B ≥ 0 . The control law (3.25) is termed general-

zed distributed averaging integral (GDAI) control in the remainder

f this paper. 

. Robust GDAI control design 

We have identified that the GDAI controller given by

3.25) achieves the first two objectives mentioned in Problem 3.5 .

n this section, the third point in Problem 3.5 is addressed. More

recisely, a sufficient tuning criterion with which the solutions of

he system (3.1), (3.25) asymptotically converge to the synchro-

ized motion in Definition 3.2 is presented. 

.1. Coordinate reduction and error states 

Combining (3.1) and (3.25) yields the closed-loop system 

(I n + μ) ̇ δ = ω̄ , 

(I n + μ) M 

˙ ω̄ = −D ( ̄ω − 1 n ω 

d ) −
(∇ δU(δ) − P net 

)
+ p, 

(I n + μ) ˙ p = (−B + κX D L C )( ̄ω − 1 n ω 

d ) − D X L C X p. 

(4.1)

As the power flow ∇ δU ( δ) only depends on angle differences

see (2.4) ), following [45] we choose an arbitrary node, say node n ,

nd express all angles relative to that node, i.e., 

= R 

� δ, θ ∈ R 

n −1 , R = 

[
I n −1 

−1 � n −1 

]
∈ R 

n ×(n −1) . 

ote that the matrix R has the property that 1 � n R = 0 � n −1 . 

Next, with Assumption 3.3 for the system (4.1) , we introduce

he error states 

˜  = ω̄ − ω̄ 

s = ω̄ − (I n + μ) 1 n ω 

d , 

˜ θ = θ − θ s , ˜ p = p − p s , x = col 
(

˜ θ, ˜ ω , ˜ p 
)
, 

here we have used (3.3) and (3.11) to express ω̄ 

s . 

Thus, the resulting error dynamics of the system (4.1) is given

y 

˙ ˜ θ = R 

� (I n + μ) −1 ˜ ω , 

(I n + μ) M 

˙ ˜ ω = −D ̃  ω − R 

[∇ ˜ θU(δ( ̃  θ + θ s )) − ∇ ˜ θU(δ(θ s )) 
]

+ 

˜ p , 

(I n + μ) ˙ ˜ p = (−B + κX D L C ) ̃  ω − D X L C X 

˜ p , 

(4.2)

here 

 ˜ θU(δ( ̃  θ + θ s )) = 

∂U(δ( ̃  θ + θ s )) 

∂ ̃  θ
, 

∇ ˜ θU(δ(θ s )) = 

∂U(δ(θ + θ s )) 

∂ ̃  θ

∣∣
˜ θ= 0 n −1 

. 

ote that x ∗ = 0 3 n −1 is an equilibrium point of (4.2) . Furthermore,

symptotic stability of x ∗ = 0 3 n −1 implies asymptotic convergence

f solutions of the system (4.1) to the synchronized motion in

efinition 3.2 up to a uniform shift of all angles [45] . 
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2 
.2. Stability criterion 

For the presentation of our main result, it is convenient

o define the following. Since μ is a diagonal matrix, with

ssumption 3.4 we have that 

 μ(I n + μ) −1 ‖ 2 ≤ g 1 (ε) , g 1 (ε) = 

ε
1 −ε > 0 , 

 (μ2 + 2 μ)(I n + μ) −2 ‖ 2 ≤ g 2 (ε) , g 2 (ε) = 

ε2 +2 ε
(1 −ε) 2 

> 0 . 
(4.3) 

oreover, we define the matrices 

T := 

[
T 11 

1 
2 

(
−ς I n − σD 1 n 1 

� 
n D 

−1 X 

−1 + 

˜ B − κL C X 

)
∗ T 22 

]
, 

ˆ T 2 := 

[
σM 1 n 1 

� 
n ̃

 B X 

−1 σD 

−1 X 

−1 1 n 1 
� 
n D 

0 n ×n −σD 

−1 X 

−1 1 n 1 
� 
n 

]
, 

 μ := 

[
ς g 2 (ε) M 0 n ×n 

0 n ×n g 1 (ε) D 

−1 

]
, 

(4.4) 

here g 1 ( ε) and g 2 ( ε) are defined in (4.3) . Furthermore, σ ∈ R > 0 ,
˜ 
 = D 

−1 B ≥ 0 and 

T 11 = ς D − σ

2 

(
M 1 n 1 

� 
n ̃

 B X 

−1 + X 

−1 ˜ B 1 n 1 
� 
n M 

)
, 

 22 = X L C X + 

σ

2 

(
D 

−1 X 

−1 1 n 1 
� 
n + 1 n 1 

� 
n X 

−1 D 

−1 
)
. 

The stability result is as follows. 

roposition 4.1. Consider the system (4.2) with Assumption 3.3 . Re-

all g 1 ( ε) and g 2 ( ε) defined in (4.3) . Suppose that there exist ς ∈ R > 0 

nd σ ∈ R > 0 , such that 

 nom 

:= 

[
ς M −σM 1 n 1 

� 
n D 

−1 X 

−1 

∗ D 

−1 

]
> H μ, (4.5)

nd 

 > 

(
εζ + ς g 1 (ε) 

√ 

λmax (D 

2 ) + 1 

)
I 2 n , 

0 ≥
[
−ζ I 2 n ˆ T 2 

∗ −ζ I 2 n 

]
, 

(4.6) 

here ζ ∈ R > 0 and the matrices H μ, T and ˆ T 2 are defined in (4.4) .

hen, local asymptotic stability of x ∗ = 0 3 n −1 is guaranteed for all un-

nown clock drifts satisfying Assumption 3.4 . 

roof. Consider the Lyapunov function candidate 

 = 

ς 

2 

˜ ω 

� M ̃  ω + ς U(δ( ̃  θ + θ s )) − ς ∇ ˜ θU(δ(θ s )) � ˜ θ

+ 

1 

2 

˜ p � D 

−1 (I n + μ) ̃  p − σ ˜ p � (I n + μ) D 

−1 X 

−1 1 n 1 
� 
n M(I n + μ) ̃  ω ,

(4.7) 

here ς > 0 and σ > 0 are design parameters. The Lyapunov func-

ion V contains kinetic and potential energy terms ˜ ω 

� M ̃  ω , respec-

ively U( ̃  θ ) [34] , a quadratic term in secondary control input ˜ p and

 cross term between ˜ ω and ˜ p which allows us to ensure that V is

ecreasing along the trajectories of (4.2) . 

First, we will show that V is indeed positive definite under the

remises of Proposition 4.1 . Note that ∇ x V 
∣∣

x ∗ = 0 3 n −1 . This shows

hat x ∗ is a critical point of V . Moreover, the Hessian of V at x ∗ is

iven by 

 

2 
x V| x ∗ = 

⎡ 

⎣ 

ς ∇ 

2 
˜ θ
U(δ( ̃  θ + θ s )) | ˜ θ= 0 n −1 

0 (n −1) ×n 0 (n −1) ×n 

∗ ς M H 23 

∗ ∗ D 

−1 (I n + μ) 

⎤ 

⎦ , 

(4.8) 
here H 23 = −σ (I n + μ) M 1 n 1 
� 
n D 

−1 X 

−1 (I n + μ) . Note that

 

2 
˜ θ
U(δ( ̃  θ + θ s )) | ˜ θ= 0 n −1 

> 0 [ 45 , Lemma 5.8]. Therefore, the Hessian

 

2 
x V| x ∗ is positive definite if and only if 

ς M −σ (I n + μ) M 1 n 1 
� 
n D 

−1 X 

−1 (I n + μ) 
∗ D 

−1 (I n + μ) 

]
> 0 . (4.9) 

y performing a congruence transformation using the positive def-

nite matrix S = blkdiag 
(
(I n + μ) −1 , (I n + μ) −1 

)
and by invoking

ylvester’s law of inertia [18] , we see that the matrix on the left

and side of (4.9) is positive definite if and only if the following

atrix inequality is satisfied: 

ς (I n + μ) −2 M −σM 1 n 1 
� 
n D 

−1 X 

−1 

∗ (I n + μ) −1 D 

−1 

]
> 0 . (4.10) 

nequality (4.10) can be written as 

 nom 

−
[
ς (μ2 + 2 μ)(I n + μ) −2 M 0 n ×n 

0 n ×n μ(I n + μ) −1 D 

−1 

]
> 0 , 

here H nom 

is defined in (4.5) . Furthermore, since μ, M and D are

ll diagonal matrices, we have that 

ς (μ2 + 2 μ)(I n + μ) −2 M 0 n ×n 

0 n ×n μ(I n + μ) −1 D 

−1 

]
≤ H μ, 

here H μ is defined in (4.4) . Consequently, under the premises of

roposition 4.1 , ∇ 

2 
x V| x ∗ > 0 , confirming the positive definiteness of

. Note that ∇ x V 
∣∣

x ∗ = 0 3 n −1 and ∇ 

2 
x V| x ∗ > 0 implies that x ∗ is a

trict local minimum of V [50] . 

Next, we calculate the time derivative of V along the solutions

f (4.2) , which yields 

˙ 
 = −ς ˜ ω 

� (I n + μ) −1 D ̃  ω + ς ˜ ω 

� (I n + μ) −1 ˜ p 

+ 

˜ p � 
(
−D 

−1 B + κX L C 
)

˜ ω − ˜ p � X L C X 

˜ p 

+ σ ˜ p � (I n + μ) D 

−1 X 

−1 1 n 1 
� 
n D ̃  ω 

−σ ˜ p � (I n + μ) D 

−1 X 

−1 1 n 1 
� 
n ˜ p 

+ σ ˜ ω 

� (I n + μ) M 1 n 1 
� 
n X 

−1 D 

−1 B ̃  ω 

= −η� 
[

˜ T 11 
˜ T 12 

˜ T 21 
˜ T 22 

]
η, 

(4.11) 

here 

:= col ( ̃  ω , ˜ p ) , (4.12)

nd 

˜ T 11 = ς (I n + μ) −1 D − σ (I n + μ) M 1 n 1 
� 
n X 

−1 D 

−1 B , 

˜ 
 22 = X L C X + σ (I n + μ) D 

−1 X 

−1 1 n 1 
� 
n , 

˜ T 12 = −ς (I n + μ) −1 , 

˜ T 21 = −σ (I n + μ) D 

−1 X 

−1 1 n 1 
� 
n D + D 

−1 B − κX L C . 

ote that the scalar ˙ V can be equivalently expressed as 

˙ 
 = −η� 

[
˜ T 11 

˜ T 12 

˜ T 21 
˜ T 22 

]
η = − 1 

2 
η� 

[
˜ T 11 + ̃

 T 

� 
11 

˜ T 12 + ̃

 T 

� 
21 

∗ ˜ T 22 + ̃

 T 

� 
22 

]
η

:= −η� 
[

T 11 T 12 

∗ T 22 

]
η = −η� T η, 

(4.13) 

here 

T 11 = 

1 

2 

(
˜ T 11 + ̃

 T 

� 
11 

)
= ς (I n + μ) −1 D 

− σ (
(I n + μ) M 1 n 1 

� 
n D 

−1 B X 

−1 + D 

−1 B X 

−1 1 n 1 
� 
n M(I n + μ) 

)
, 
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Fig. 1. MG used in the simulation. There are eight GFIs, all of them having a con- 

stant impedance load connected to them. At the PCC, an SRF-PLL is connected to 

measure the synchronized electrical frequency ω 

∗ (given by (3.12) ) accurately. GFI1 

is assumed to have the master clock, thus the clock drift matrix μ takes the form 

(5.3) . 

S  
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m  

η

0

w  

i

R  

N  
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c

R  

d

t  

[  
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l  

c  

i  

t  

a  

i  

a  

t  
T 22 = 

1 

2 

(
˜ T 22 + ̃

 T 

� 
22 

)
= X L C X + 

σ

2 

(
(I n + μ) D 

−1 X 

−1 1 n 1 
� 
n + 1 n 1 

� 
n D 

−1 X 

−1 (I n + μ) 
)
,

T 12 = 

1 

2 

(
˜ T 12 + ̃

 T 

� 
21 

)
= 

1 

2 

(
−ς (I n + μ) −1 − σD 1 n 1 

� 
n (I n + μ) D 

−1 X 

−1 + D 

−1 B 

−κL C X ) . 

Note that the entries of the matrix T in (4.13) are uncertain, be-

cause the clock drift matrix μ is uncertain. Hence, to obtain veri-

fiable conditions that ensure T > 0 and, thus, ˙ V (η) being negative

definite, we note that T can be decomposed as 

T = T − 1 

2 

(
�1 ̂

 T 1 + 

ˆ T � 1 �1 

)
− 1 

2 

(
�2 ̂

 T 2 + 

ˆ T � 2 �2 

)
, (4.14)

where T and 

ˆ T 2 are defined in (4.4) and 

�1 = blkdiag 
(
μ(I n + μ) −1 , μ(I n + μ) −1 

)
, 

�2 = blkdiag ( μ, μ) , ˆ T 1 = 

[
ς D −ς I n 
0 n ×n 0 n ×n 

]
. 

(4.15)

For any matrices A ∈ R 

n ×n and B ∈ R 

n ×n , it holds that [18] 

AB + B 

� A 

� ≤ 2 ‖ A ‖ 2 ‖ B ‖ 2 I n . 

Therefore from (4.14) , we have that 

T ≥ T −
(‖ ̂

 T 1 ‖ 2 ‖ �1 ‖ 2 + ‖ ̂

 T 2 ‖ 2 ‖ �2 ‖ 2 

)
I 2 n . (4.16)

Assumption 3.4 together with (4.3) , implies that 

‖ �1 ‖ 2 ≤ g 1 (ε) , ‖ �2 ‖ 2 ≤ ε, 

where �1 and �2 are defined in (4.15) . Therefore, (4.16) becomes 

T ≥ T −
(
g 1 (ε) ‖ ̂

 T 1 ‖ 2 + ε‖ ̂

 T 2 ‖ 2 

)
I 2 n . (4.17)

Furthermore, from (4.15) , we have that 

‖ ̂

 T 1 ‖ 2 = 

√ 

λmax ( ̂  T 1 ̂  T � 
1 

) = ς 

√ 

λmax (D 

2 ) + 1 . 

Turning to ˆ T 2 defined in (4.4) , we see that ˆ T 2 depends on the con-

trol parameters B and D . Therefore, to obtain ‖ ̂  T 2 ‖ 2 required in

(4.17) , we observe that 

‖ ̂

 T 2 ‖ 2 = 

√ 

λmax ( ̂  T 2 ̂  T � 
2 

) ≤ ζ

⇔ λmax ( ̂  T 2 ̂  T � 2 ) ≤ ζ 2 , 

⇔ 

ˆ T 2 ̂  T � 2 ≤ ζ 2 I 2 n , 

⇔ 

1 

ζ
ˆ T 2 ̂  T � 2 − ζ I 2 n ≤ 0 , 

where ζ ∈ R > 0 is an upper bound for ‖ ̂  T 2 ‖ 2 . By using the Schur

complement [18] , the last inequality above is equivalent to the sec-

ond inequality in (4.6) . Thus, from (4.17) we see that T > 0 if 

T −
(
ς g 1 (ε) 

√ 

λmax (D 

2 ) + 1 + εζ
)

I 2 n > 0 , 

where ζ satisfies the second inequality in (4.6) . Thus, with the

made assumptions, T > 0 implies that 

˙ V (η) < 0 for η(t) � = 0 2 n . (4.18)

This shows that x ∗ is stable. Recall η( t ) defined in (4.12) and

therefore, ˙ V (η) does not depend on 

˜ θ . 

Hence, to conclude local asymptotic stability of x ∗, we need to

show that the following implication holds along solutions of the

system (4.2) 

T η(t) ≡ 0 2 n ⇒ lim 

t→∞ 

x (t) = x ∗. (4.19)

f  
ince T > 0 by assumption, the implication (4.19) is satisfied if and

nly if η(t) = 0 2 n , which yields that ˜ ω = 0 n and ˜ p = 0 n . Further-

ore, from (4.2) , ˜ ω = 0 n implies that ˜ θ is constant. Moreover at

(t) = 0 2 n , from the second equation in (4.2) , we obtain that 

 n = −R 

[∇ ˜ θU(δ( ̃  θ + θ s )) − ∇ ˜ θU(δ(θ s )) 
]
, 

hich by multiplying from the left with R 

� and rearranging terms

s equivalent to 

 

� R∇ ˜ θU(δ( ̃  θ + θ s )) = R 

� R∇ ˜ θU(δ(θ s )) . (4.20)

ote that R 

� R is invertible and recall that ∇ 

2 
˜ θ
U(δ( ̃  θ +

s )) | ˜ θ= 0 n −1 
> 0 [ 45 , Lemma 5.8]. Therefore, in a neighborhood

f the origin, (4.20) only holds for ˜ θ = 0 n −1 . This shows that the

mplication (4.19) holds. Hence, x ∗ is locally asymptotically stable,

ompleting the proof. �

emark 4.2. By fixing the tuning parameter σ , the design con-

itions (4.5) and (4.6) are a set of LMIs in ς , ζ , ˜ B , D 

−1 and L C 
hat can be solved efficiently using standard software like Yalmip

26] within MATLAB 

R ©. Furthermore, the control parameters B and

 can be easily recovered from 

˜ B = D 

−1 B and D 

−1 . 

. Case study 

In this section, the performance and robustness of the closed-

oop MG model (3.1), (3.6) with DAI, pinning and GDAI control are

ompared via simulation. The MG ( Fig. 1 ) used in the case study

s simulated using MATLAB 

R ©/Simulink R © and PLECS [37] . In order

o evaluate robustness towards further model uncertainties, lines

re modeled with a small positive line resistance value. A constant

mpedance load of 500 kVA, unity power factor is connected at

ll GFIs. The time constant of the low pass filter used to measure

he power output is 0.2 s. To measure the synchronized electrical

requency ω 

∗ (given in (3.12) ) of the MG accurately, a conventional



A. Krishna, J. Schiffer and J. Raisch / European Journal of Control 51 (2020) 135–145 143 

Fig. 2. Topology of the communication network used in the simulation. This topol- 

ogy is used to calculate the incidence matrix B ∈ R 8 ×7 required to build the Lapla- 

cian matrix L C = B W B � ∈ R 8 ×8 , where W ∈ R 7 ×7 is the edge weight matrix. 
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Fig. 3. Simulation result with droop control (3.1) (active from 0 sec) and GDAI con- 

trol (3.25) (activated at 10 sec). Note that ω 

∗ converges exactly to 50 Hz and the 

power sharing ratios reach consensus, see the zoom plots at 90 s. 
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t  

s  

i  

a  
hree-phase synchronous reference frame phase locked loop (SRF-

LL) [14] is connected at the point of common coupling (PCC) 2 . 

The weighting matrix X for the MG was fixed to (in pu) 

 = diag (0 . 02 , 0 . 03 , 0 . 03 , 0 . 04 , 0 . 05 , 0 . 06 , 0 . 06 , 0 . 07) , (5.1)

nd the vector of desired active power set point as (in pu) 

 

d = col (0 . 25 , 0 . 35 , 0 . 45 , 0 . 55 , 0 . 65 , 0 . 75 , 0 . 80 , 0 . 85) . (5.2)

he damping matrix D is chosen according to (2.15) with κ = 0 . 2 .

he incidence matrix B of the connected undirected graph men-

ioned in Section 2.1 is fixed in correspondence to the sparse

ommunication topology shown in Fig. 2 . The reader is referred

o [1,12] for a comprehensive study on topology identification to

mplement similar distributed frequency control laws in power

ystems. In this section, we are interested in finding D , B and the

dge weight matrix W yielding L C = B W B 

� such that the LMIs

4.5) and (4.6) are feasible. 

The clock of GFI1 in Fig. 1 is chosen as the master clock ( μ1 =
 ). The relative clock drift values of the other GFIs considered in

he simulation (in s) are 

= 10 

−4 diag (0 , 3 , 7 , −3 , 8 , 5 , −5 , 2) ∈ R 

8 ×8 . (5.3)

ence, with the considered clock drift factors, ε = 0 . 001 in

ssumption 3.4 . 

The tuning criterion (4.5), (4.6) presented in Proposition 4.1 is

erified with σ = 10 −6 using the optimization toolbox Yalmip

26] in MATLAB 

R ©/Simulink R ©. The feasibility of the conditions pre-

ented in (4.5), (4.6) ensures that the equilibrium point of the

DAI-controlled MG (4.1) is locally asymptotically stable in the

resence of clock drifts. The control parameters satisfying (4.5),

4.6) were obtained as 

D = diag (132 . 5 , 88 . 7 , 90 . 8 , 81 . 6 , 84 . 6 , 63 . 5 , 69 . 0 , 65 . 9) , 

B = diag (0 . 003 , 0 , 0 , 0 , 0 , 0 , 0 , 0) , 

 = (0 . 01) · diag (0 . 12 , 0 . 06 , 0 . 03 , 0 . 03 , 0 . 03 , 0 . 03 , 0 . 08) . 

(5.4) 

Next, we simulate the MG shown in Fig. 1 using the parameters

5.4) . Note that in the simulation outputs, the term power sharing

atios denote (P i − P net 
i 

) / X i , i ∈ { 1 , . . . , 8 } , see also (2.14) . 

.1. GDAI control 

The GDAI-controlled system (4.1) is simulated using the control

arameters (5.4) . The simulation output is given in Fig. 3 where

ntil 10 s, only the primary droop controller is in operation. The

DAI controller (3.25) is activated at 10 s. Note that (3.25) satis-

es the conditions in Lemma 3.6 . Hence, we have ω 

∗ = ω 

d . See

he enlarged frequency plot at 90 s in Fig. 3 where we can see

hat ω 

∗ = 50 Hz. 

Furthermore, since (3.25) also satisfies the conditions of

emma 3.8 , steady-state power sharing is guaranteed in the pres-

nce of clock drifts. This can be confirmed by observing the en-

arged power sharing ratio plot at 90 s in Fig. 3 , where, it is clear

hat the power sharing ratios of all the GFIs converge to the same
2 PCC is the point at which an islanded MG can be connected to the main grid 

27] . 

r  

p  

d  

a

alue. For better clarity, compare the enlarged power sharing ra-

io plots at 5 s (droop control only: maximum relative deviation of

pproximately 42%) and 90 s (droop with GDAI control: 0% relative

eviation) in Fig. 3 . Hence correcting the steady-state deviations in

ower sharing ratios. 

In order to compare the steady-state behavior of GDAI control

ith other distributed approaches, we implement the DAI control

3.8) and the pinning control (3.8) for the same MG given in Fig. 1 .

.2. DAI control 

We simulate the DAI-controlled system (3.1), (3.8) using the

ame parameters given in (5.4) with the only exception that B has

ll the diagonal entries equal to 0.003 yielding B > 0. The simula-

ion output is given in Fig. 4 , where until 10 s, only the primary

roop controller (3.1) (with u = 0 8 ) is in operation. The DAI con-

roller (3.8) is activated at 10 s. In Fig. 4 , we can see that the in-

ernal frequencies of the inverters converge close to the nominal

alue ( ω 

d = 50 Hz), but not exactly to 50 Hz in the presence of

lock drifts. Furthermore, the enlarged frequency plot in Fig. 4 at

0 s shows that ω 

∗ ≈ 49.97 � = 50 Hz. Hence resulting in a non-

egligible steady-state network frequency error of approximately

0 mHz. 

Considering the aspect of power sharing, when the DAI con-

roller is activated on top of the droop controller at 10 s, power

haring ratios diverge further. See the enlarged power sharing plots

n Fig, 4 at 5 s (droop control only: maximum relative deviation of

pproximately 42%) and 90 s (droop with DAI control: maximum

elative deviation of approximately 60%) , respectively. Hence, the

erformance in terms of power sharing in the presence of clock

rifts is observed to be better with just the droop controller than

 combination of droop and DAI controllers. 



144 A. Krishna, J. Schiffer and J. Raisch / European Journal of Control 51 (2020) 135–145 

Fig. 4. Simulation result with droop control (3.1) (active from 0 s) and DAI control 

(3.6), (3.7) (activated at 10 s). Note that ω 

∗ does not converge to 50 Hz and the 

power sharing ratios do not reach consensus. See the zoom plots at 90 s. 

Fig. 5. Simulation result with droop control (3.1) (active from 0 s) and pinning con- 

trol (3.6), (3.9) (activated at 10 s). Note that ω 

∗ converges exactly to 50 Hz. How- 

ever, the power sharing ratios do not converge to a common value, i.e., no consen- 

sus. See the zoom plots at 90 s. 

Table 1 

Steady-state performance comparison of DAI, pinning and GDAI control in the 

presence of clock drifts. 

Objective/Control law DAI Pinning GDAI 

Accurate network 

Frequency restoration No Yes Yes 

Accurate power sharing No No Yes 
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.3. Pinning control 

We simulate the pinning-controlled system (3.1), (3.10) using

he MG shown in Fig, 1 with the parameters given by (5.4) . The

imulation output is given in Fig, 5 , where until 10 s, only the pri-

ary droop controller (3.1) (with u = 0 8 ) is under operation. The

inning controller (3.10) is activated at 10 s. Note that the pinning

ain matrix B is chosen such that B μ = 0 8 ×8 . Hence, with ω 

∗ de-

ned in (3.12) , we have ω 

∗ = ω 

d . See the enlarged frequency plot

t 90 s in Fig. 5 where we can see that ω 

∗ = 50 Hz. 

However, with regard to power sharing, the pinning controller

s not able to correct deviations in power sharing ratios. Although

n contrast to the DAI controller, power sharing ratios do not di-

erge as the pinning controller is activated. See the power sharing

lot in Fig. 5 at 5 s (droop controller only) and 90 s (droop and

inning controller), where in both the cases, an approximate max-

mum relative deviation of 42% can be observed. 

Our observations are summarized in Table 1 . 

. Conclusions 

In inverter-based MGs, clock drifts are a non-negligible phe-

omenon which can adversely affect the performance of secondary

requency control. In this paper, various distributed secondary fre-

uency controllers are compared in the presence of clock drifts.

urthermore, necessary and sufficient conditions for steady-state

ccurate network frequency restoration and power sharing in the

resence of clock drifts are derived. Based on these conditions,

n alternative control law, called GDAI control, is proposed which

chieves the aforementioned secondary control objectives. A tun-

ng criterion which renders local asymptotic stability of the closed-

oop equilibrium point with the GDAI controller in the presence of

nknown bounded clock drifts is also presented. Finally, via simu-

ation, the GDAI controller is compared with two other distributed

requency controllers in the literature. 

Future research will incorporate time delays in communication

etwork used in GDAI control. Also, we plan to test the GDAI con-

roller on a real MG. Another interesting aspect is to consider time

arying voltage amplitudes in the analysis. 
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ppendix A. Remark on (3.10) 

In the following we illustrate how (3.10) is the same as the con-

rol law presented in [5] . The primary frequency droop control [ 5 ,

q. 47] for the whole MG can be expressed in our notation as 

 = −D 

−1 
(∇U(δ) − P net 

)
+ u 

sec , (A.1)

here u sec : R ≥0 → R 

n is the secondary control input. Note that

A.1) represents the frequency dynamics in (3.1) with 

• μ = 0 n ×n (yielding ω̄ = ω, see (2.5) ), 

• τP = diag (τP i 
) = 0 n ×n ⇒ M = 0 n ×n , 
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• ω 

d = 0 and 

• u sec = D 

−1 u . 

Furthermore, the secondary frequency control law proposed in

 5 , Eq. 52,53] for the whole network can be expressed in our nota-

ion as 

u = p, 

˙ p = −C F 
[
(B + L C )(ω − 1 n ω 

d ) + L C D 

−1 
(∇U(δ) − P net 

)]
, 

here C F > 0 and B ≥ 0 are diagonal controller matrices and L C ∈
 

n ×n is the Laplacian matrix of the communication graph. Inserting

 

−1 
(∇U(δ) − P net 

)
from (A.1) in the above control law yields 

˙ p = −C F B(ω − 1 n ω 

d ) − C F L C u 

sec , 

= −C F B(ω − 1 n ω 

d ) − C F L C D 

−1 p, 

= −C F B(ω − 1 n ω 

d ) − 1 

κ
C F L C X p, 

here we have used u sec = D 

−1 u = D 

−1 p and (2.15) . For C F = κD X 

nd C F B = B , the control law described above is the same as (3.10) .
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