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Abstract: Phase-locked loop (PLL) implementations are critical components for the control and
operation of grid-connected converters. Hence, they have to exhibit a highly reliable behavior under
a wide range of operating conditions. Available implementations and performance analyses mainly
focus on the impact of unbalances and harmonics. However, in converter-dominated low-inertia power
systems an additional important type of perturbation will arise from fast variations in the grid
frequency. Motivated by this, we show that the structure of several popular PLL implementations is
closely related to that of high-gain observers and, by using this framework, provide a tuning criterion
for the PLL gains that mitigates the impact of the rate of change of the frequency (RoCoF) on
the estimation performance. This criterion is then used to conduct a numerical comparison of four
popular PLL implementations under three distorted conditions: unbalances, harmonics and frequency
variations.
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1. INTRODUCTION

Future power systems (PS) are expected to be dominated
by renewable energy generation (Tielens and Hertem, 2016).
Since most renewable energy generators are interfaced to the
grid with power electronic converters instead of synchronous
machines, the overall system inertia will be significantly reduced
leading to low-inertia PS (Ørum et al., 2015; Milano et al.,
2018). Low-inertia systems are expected to possess highly
volatile system dynamics and, thus, exhibit more often events,
during which the grid frequency significantly deviates from its
nominal value (Tielens and Hertem, 2016). This implies that
the availability of an accurate and reliable estimation of the
frequency becomes increasingly important, not only for the
classical task of synchronizing converter-interfaced generation
units to the grid, but also to deliver primary and enhanced
frequency control with converter-interfaced generators (Ørum
et al., 2015; Milano et al., 2018).
The most prominent method for grid-synchronization in grid-
connected converter applications are phase-locked loop (PLL)
implementations (Rocabert et al., 2012; Teodorescu et al., 2011).
In addition to estimating the phase angle at the coupling point
to the grid, these implementations can also provide an estimate
of the grid frequency (Milano et al., 2018). The original PLL
implementations are designed assuming a constant frequency
and undistorted measurements. Over the past years, different
modification and methodologies have been proposed to address
the presence of unbalances and harmonics in the measured
electrical signals (Teodorescu et al., 2011).
Yet, in low-inertia systems another important source of per-
turbations are faster and more pronounced variations of the
frequency itself (Tielens and Hertem, 2016). This fact has only

very recently been recognized, but has already motivated a
series of investigations on the effect such frequency variations
have on the PLL and the overall system performance (Göksu
et al., 2014; Bizzarri et al., 2018; Rueda-Escobedo et al., 2019).
In particular, the recent studies (Ma et al., 2017; Khan et al.,
2018; Poolla et al., 2019) have shown that the performance of
the PLL is a key factor for the quality of frequency support,
which could be provided by converter-based generation units.
Given the increasingly prominent role of PLLs in power system
applications, we present the next three main contributions:

1. It is shown that the canonical structure of popular PLL
implementations is closely related to that of a high-gain
observer, in which variations in the frequency can be interpreted
as perturbations.
2. Based on the above observation, a tuning criterion for the
PLL gains, aimed at attenuating the effect of frequency varia-
tions is presented. This criterion is derived by relating the PLL
gains to those of a high-gain observer (Besançon, 2007; Khalil,
2017) and following an input-to-state (ISS) stability approach
(Besançon, 2007, Theo. 6). In contrast to available tuning
methods based on small gain analysis and frequency response
(Freijedo et al., 2009; Golestan et al., 2013), the non-linearities
present in the PLL are explicitly considered and conditions
that guarantee a bounded estimation error are provided.
3. Using a high gain may amplify the effect of other distur-
bances. To evaluate this phenomenon in the PLL case, the per-
formance of four popular PLL implementations, tuned with the
proposed criterion, is evaluated numerically for different gains
and under three distorted conditions: unbalances, harmonics



and frequency variations. Thereby, the L2 and L∞ norms of the
frequency estimation error are used as performance metrics.

The organization of the paper is as follows. In Section 2, usual
representations of AC signals are reviewed. In Section 3, the
connection between PLL implementations and observers is
established and the main result is derived. In Section 4, several
popular PLL implementations are reviewed. In Section 5, the
results of the numerical case study are provided. Finally, the
proof of the main result is given in Appendix A.

Notation: Z denotes the set of integer numbers, R the set of
real numbers, R≥0 the interval [0,∞), Rn the real n-dimensional
Euclidean space and Rn×m the set of n×m real matrices. Also,
In∈Rn×n denotes the identity matrix. For symmetric matrices
A∈Rn×n and B ∈Rn×n, A>B (A≥B) means that A−B
is positive (semi)definite, and λmin(A) and λmax(A) denote
the smallest and the largest eigenvalues of A. For v ∈ Rn,
‖v‖=(v>v)1/2 denotes the Euclidean norm and for B∈Rm×n,
‖B‖ denotes the induced Euclidean norm of B, defined as
sup‖x‖=1‖Bx‖. Finally, e denotes the Euler.

2. REPRESENTATION OF THREE-PHASE AC SIGNALS

In AC PS, physical variables such as currents and voltages are
modeled as sinusoidal signals. A particular model is the symmet-
ric three-phase AC signals model. A symmetric three-phase sig-
nal vabc(t)∈R3 is characterized by its phase φ(t)∈R≥0, its am-
plitude A(t)∈R≥0 and the relationship (Schiffer et al., 2016):

vabc(t)=

[
va(t)
vb(t)
vc(t)

]
=A(t)


cos(φ(t))

cos

(
φ(t)−

2π

3

)
cos

(
φ(t)+

2π

3

)
. (1)

The signal’s frequency is denoted by ω(t) and defined as

φ̇(t) = ω(t). The instantaneous frequency ω(t) is common
to all components of vabc(t) in (1). The signal vabc(t) can be
equivalently described in a coordinate system contained in a
plane. The signal’s components in this plane are called αβ0-
components (Teodorescu et al., 2011), and can be obtained by
using the Clarke transformation, denoted by Tαβ0, and whose
definition can be found in (Teodorescu et al., 2011, Appx. A).
When the Clarke transformation is applied to the signal vabc(t),
one obtains the following structure:

vαβ0(t)=Tαβ0vabc(t)=A(t)

[
cos(φ(t))
sin(φ(t))

0

]
.

Another convenient coordinate representation for symmetric
AC signals are the dq0−coordinates, which are obtained using

the Park transformation. Consider an auxiliary angle φ̂(t). The
Park transformation matrix is defined as (Teodorescu et al.,
2011):

Tdq0
(
φ̂(t)
)

:=

[
cos(φ̂(t)) sin(φ̂(t)) 0

−sin(φ̂(t)) cos(φ̂(t)) 0
0 0 1

]
. (2)

By using the Park transformation, the signal vαβ0(t) results in:

vdq0(t)=Tdq0
(
φ̂(t)
)
vαβ0(t)=A(t)

[
cos(φ̂(t)−φ(t))

−sin(φ̂(t)−φ(t))
0

]
.

The importance of this latter coordinates’ choice lies in
the fact that the second component of vdq0(t), i.e., vq(t) =

−A(t)sin(φ̂(t)−φ(t)), provides direct information about the

difference between φ(t) and φ̂(t). Note that for φ̂(t) = φ(t)

vabc(t) vαβ0(t) vq(t) ω̂(t) φ̂(t)
Tαβ0 Tdq0(φ̂(t)) PI 1

s

Fig. 1. Block diagram of the SRF-PLL.

(modulo 2π) the second and the third components of vdq0(t) are
zero, while the first one corresponds to the signal’s amplitude.
These two observations are exploited by PLL implementations
to estimate the signal’s phase and frequency.

Remark 1. The signal vdq0(t) can be made independent of the
amplitude A(t)>0 if the signal vαβ0(t) is normalized before
applying the Park transformation.

3. AN OBSERVER FRAMEWORK FOR THE STUDY
OF THE SYNCHRONOUS REFERENCE FRAME PLL

3.1 The Synchronous Reference Frame PLL

The synchronous reference frame PLL (SRF-PLL) is by far the
most common PLL implementation (Teodorescu et al., 2011).
Its design assumes that the measured signal vabc(t) is symmetric
and then takes advantage of the structure of symmetric signals
to estimate the phase and frequency of vabc(t). To do so, it gen-

erates an estimate of the signal’s phase φ̂(t) which is then used
as the auxiliary angle of the Park transformation (2), yielding

vq(t)=−A(t)sin(φ̂(t)−φ(t)). (3)

For φ̂(t)−φ(t) ∈ [−π/2,π/2], vq(t) can be approximated by

vq(t)≈−A(t)(φ̂(t)−φ(t)). Hence, to correct the phase, vq(t) is
used as input to a PI control that in turn generates an estimate
of the signal’s frequency ω̂(t):

˙̂
φ(t)=ω̂(t)=kpvq(t)+ki

∫ t

t0

vq
(
σ
)
dσ. (4)

The estimate ω̂(t) is then integrated to update the phase

estimate φ̂(t). The closed-loop is obtained by a non-linear

feedback of φ̂(t) via the Park transformation, see (3). The
block diagram of this estimation scheme is shown in Figure 1.

3.2 The Synchronous Reference Frame PLL as an Observer

A closer inspection of (4) reveals that the information provided
by the Park transformation, i.e., (3), is used to regulate the
phase error to zero. That is, the estimation problem is treated
as if it was a standard control problem. However, the direct use
of the PI controller has the disadvantage of introducing a direct
dependency of vq(t) on the estimate ω̂(t). This implies that any
disturbance corrupting vq(t) is amplified by the gain kp, thus de-
teriorating the estimation quality. Therefore, instead of using di-
rectly the PI controller to correct the phase, we propose to inter-
pret the PLL tuning problem as the design of an observer for the
phase and the frequency taking as measurement vq(t), which is
a non-linear function of the phase error. As is shown next, this
leads to an observer with the same internal dynamics as that
of the PI control (4), but with a redefined frequency estimate.
In the sequel, for the sake of simplicity, it is assumed that vαβ0(t)
is normalized before being used in the Park transformation.
This renders vq(t) independent of the signal amplitude, i.e.,

vq(t)=−sin(φ̂(t)−φ(t)). Now, the observation problem can be
formulated by first recognizing that the dynamics of the phase
φ(t) and the frequency ω(t) correspond to a double integrator
of the form

ẋ(t)=A0x(t)+bζ(t), (5)

A0=

[
0 1
0 0

]
,b=

[
0
1

]
,



with x>(t)=[φ(t),ω(t)] and where ζ(t)= ω̇(t)∈R represents
the RoCoF, which acts as a disturbance.
Next, the PI control in (4) can be interpreted as an observer
for (5) by only associating the integral term to the frequency
estimate ω̂(t), instead of the proportional and the integral
terms together. Then, the PI dynamics results in

˙̂x(t)=A0x̂(t)+Kvq(t), (6)

K>=
[
kp ki

]
,

with x̂>(t) = [φ̂(t), ω̂(t)] and A0 given in (5). Clearly, the
dynamics in (6) is a copy of the one in (5) with an additional
feedback term of the phase error vq(t). Now, define the
observation error as

x̃>(t)=[x̃1(t),x̃2(t)]=[φ̂(t)−φ(t),ω̂(t)−ω(t)].

By using this notation, vq(t) corresponds to −sin(x̃1(t)). With
C0 =[1,0], the error dynamics induced by the PI control then
results in

˙̃x(t)=
(
A0−KC0)χ(x̃(t))−bζ(t), (7)

χ>(x̃(t))=
[
sin(x̃1(t)) x̃2(t)

]
.

In (7), A0 represents the system matrix, K plays the role
of the observer gain and sin(x̃1(t)) is the error measurement
obtained from the Park transformation, see (3). Note also that
the pair (A0,C0) is observable. Thus, the eigenvalues of the
matrix A=A0−KC0 can be assigned with K. In particular,
for kp>0 and ki>0, the matrix A is Hurwitz.
Clearly, (7) resembles the error dynamics induced by a Luen-
berger observer. This similarity intuitively suggests to design
the gain K as if (6) was a linear observer. One may then expect
to obtain similar properties to the linear case, at least, locally.
This idea is exploited in Section 3.3.

3.3 High-Gain Design for the Synchronous Reference Frame
PLL

From (7), it can be observed that the error dynamics is
perturbed by the RoCoF ζ(t), which appears as an additive
disturbance. A class of observers capable of attenuating this
kind of disturbances are high-gain observers (Besançon, 2007;
Khalil, 2017). One particularity of these observers is that their
gains only depend on a single tuning parameter. Moreover,
increasing the magnitude of this parameter is is directly related
to a reduction of the ultimate bound of the observer error. In
this section it is demonstrated that by selecting the gains kp
and ki in a particular manner, the main properties of high-gain
observers can be locally mirrored into the SRF-PLL (7). Com-
pared to existing approaches (Freijedo et al., 2009; Golestan
et al., 2013) based on small gain analysis, this yields a rigorous
and intuitive tuning procedure for PLLs in a nonlinear setting.
Following (Besançon, 2007; Khalil, 2017), we propose to choose
the PI gains as

p(s)=s2+h0s+h1,

kp=Lh0>0, ki=L
2h1>0,

(8)

with p(s) being a Hurwitz polynomial and where L > 0
represents the abovementioned, single tuning parameter.
In order to analyze the effect of this choice, let us first briefly
discuss the unperturbed case. For ζ(t)=0, the error system
(7) has multiple equilibria due to the periodicity of the term
sin(x̃1(t)). The equilibrium set is described by S∪U with

S={(x̃1,x̃2)∈R2,n∈Z|x̃1=2nπ,x̃2=0}, (9)

U={(x̃1,x̃2)∈R2,n∈Z|x̃1=(2n+1)π,x̃2=0}.

The stability of the points in S and U can be investigated by
linearizing the error system (7) around these points. This shows

that the points in S are locally exponentially stable for positive
gains, and, under the same circumstances, the points in U result
unstable. Additionally, by using techniques based on invariance
like principles (Abramovitch, 1990; Rantzer, 2001), almost
global stability of the points in S can be concluded. However, in
the perturbed case these methods are not applicable. Therefore,
we instead pursue an ISS-analysis for the case ζ(t) 6=0, which
also is of higher practical relevance.
In order to assess robustness of the PLL implementation (7)
with respect to the RoCoF, it is of interest to assert if all trajec-
tories starting close to points in S will remain bounded and how
this bound is affected by the choice of the gains kp and ki. To
this end, we assume a uniformly bounded RoCoF, i.e., |ζ(t)|≤ ζ̄,
for some constant ζ̄ >0 and for all t≥0. If the gains are chosen
as in (8), it is then possible to show that for any bound ζ̄, there
is a large enough L that ensures bounded error trajectories.
More importantly, increasing L reduces the ultimate bound
of the error. These properties are inherited from the high-gain
structure and are summarized in the next theorem, for the
presentation of which we introduce the following matrix

P=

 h1

2h0
(1+γ) −

1

2

−
1

2

h20+h1(1+γ)

2h0h1

, (10)

γ=
1
√

2h1
+
h20(
√

2−1)2
√

2h1
. (11)

Theorem 2. Consider the error system (7) and assume that
|ζ(t)|≤ ζ̄ for some given constant ζ̄ >0 and for all t≥ t0≥0.
Consider the positive definite matrix P given in (10). Design
L>0, such that

λ
1/2
min(P)

2λ
3/2
max(P)

≥
ζ̄

L2
. (12)

Choose the gains kp and ki according to (8). Then, any error
trajectory starting at t0≥0 in x̃0 satisfying

‖x̃0−s‖≤
λmin(P)min{

√
2π,4L}

8Lλmax(P)
,s∈S, (13)

with S given in (9), remains bounded and satisfies

‖x̃(t)−s‖≤d1‖x̃0−s‖e−d2L(t−t0)+
d3

L2
ζ̄, (14)

for some positive constants di, i={1,2,3}.
Proof. See Appendix A.

The anticipated properties of ensuring a region of attraction by
a proper selection of L and the attenuation of the disturbance
effect, are shown in (12) and (14). These two expressions
provide meaningful criteria to choose L given in (8).
An important aspect is the effect of noise or other disturbances
in the feedback term vq(t). It is well known that the use of
a high gain amplifies the effect of this class of disturbances
(Khalil, 2017, Ch. 8). However, in the PLL setting, the main
source of disturbances is not noise, but deviations symmetry
model, see Section 2. These deviations are commonly repre-
sented as unbalances and harmonics and several methods have
been developed to attenuate their effects. Three of the most
prominent of these approaches are discussed in the next section.

4. PLL IMPLEMENTATIONS FOR DISTORTED SIGNALS

In practical scenarios, the measured AC signals present devi-
ations from the model (1). In PS, the latter is described using
unbalances and harmonics. In an unbalanced signal either the
phase shifts between the signal’s components differ from±2/3π
or each component has a different magnitude or both (Akagi
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Fig. 4. Block diagram of the ESRF-PLL.

et al., 2007). In the case of harmonics, the measured signal
contains a number of additional trigonometric terms, whose
frequencies are equal to an integer multiple of the fundamental
frequency ω(t) (Arrillaga and Watson, 2003).
The presence of such distortions breaks the the symmetric
model (1) and thus the one of vq(t) in (3). As a consequence,
the estimation quality provided by the SRF-PLL implemen-
tation (4) deteriorates. Therefore, different strategies have
been proposed to robustify the SRF-PLL implementation (4)
(Teodorescu et al., 2011). The general approach is to add a
“pre-filtering” stage in order to recover the symmetric structure
and thus also the structure of vq(t) in (3). The resulting “pre-
filtered” signal is then fed to the PI control (4). Hence, the
dynamics (4) can be regarded as a canonical structure of many
popular PLL implementations, which implies that the proposed
design criterion in Theorem 2 is applicable to a wide variety
of available PLLs.
It is well-known that unbalanced signals can be decomposed
into three sequences, namely positive, negative and zero se-
quence, from which the positive and the negative sequences are
symmetric three-phase AC signals, and where the positive se-
quence has the same fundamental frequency (Teodorescu et al.,
2011). The main idea in PLL applications is thus to extract
the positive sequence for its use in the PLL implementation.
In the case of harmonics, the standard way of addressing their
presence is the use of low-pass filters. More recent methods
propose the use of so-called adaptive notch filters (ANF), which
are capable of extracting the fundamental component of the
signal (Mojiri et al., 2007).
These insights have lead to several PLL variants of which three
popular implementations are briefly reviewed below. Then the
performance of these different PLLs under heavy distorted
conditions and when tuned following Theorem 2 is investigated
in Section 5 via simulation.
(1) The dual second order generalized integrator PLL (DSOGI-
PLL), introduced in (Rodŕıguez et al., 2006), addresses the
presence of unbalances. The method uses a filter termed quadra-
ture signal generator (QSG) with the objective of extracting
the positive sequence of the input signal from its representation
in the αβ−coordinates. The positive sequence is then used in
the Park transformation and subsequently in the PI control
(4). The authors in Rodŕıguez et al. (2006) already recognized
the problem of changes in the frequency and have proposed
to “adapt” the cut-off frequency of the QSG with the estimate
obtained from the PI control. The structure of the DSOGI-PLL
is described in the block diagram shown in Figure 2.

Table 1. Disturbances considered in the test
scenarios.

Freq. Variation Unbalances Harmonics

Scenario 1 •
Scenario 2 • •
Scenario 3 • •
Scenario 4 • • •

Table 2. Amplitude in percentage of the different
harmonics.

Number 3 5 7 9 11 13 15 17

Amplitude (%) 6 5 5 1.5 3.5 3 0.5 2

(2) An alternative to the DSOGI-PLL is the decoupled double
synchronous reference frame PLL (DDSRF-PLL), proposed
in (Rodriguez et al., 2007), which also addresses the presence
of unbalances. This implementation applies the Park trans-
formation and its transpose to the measured signal in the
αβ−coordinates, and their outputs are used in a decoupling
cell (DC) with the idea of extracting the positive and negative
sequences expressed in the dq−coordinates. Then, a low pass
filter (LPF) is used to attenuated any residual oscillation
introduced by the DC. The outcome of the process is a filtered
version of the q−component of the positive sequence of the
original signal, which is then used as input for the PI control.
A block diagram of the DDSRF-PLL is given in Figure 3.
(3) The enhanced synchronous reference frame PLL (ESRF-
PLL) (Yazdani and Bakhshai, 2009) addresses the presence
of harmonics by filtering the input signal with an ANF. The
ANF (Mojiri et al., 2007) estimates a specified number of
harmonics by representing each of them with a second order
equation and assuming a constant frequency. The estimate of
the fundamental harmonic component is then selected as the
output of the ANF for its later use in the SRF-PLL (4). The
block diagram of the ESRF-PLL is given in Figure 4.

5. PERFORMANCE COMPARISON
OF THE DIFFERENT PLL IMPLEMENTATIONS

The tuning criterion proposed in Theorem 2 is applied to the
SRF-PLL (4) and the PLL implementations reviewed in Section

Fig. 5. Frequency estimation error norms in Scenario 1: Only
frequency variation is considered.

Fig. 6. Frequency estimation error norms in Scenario 2:
Frequency variation and unbalances are considered.



4, which we recall all contain the “canonical” implementation
(4) in conjunction with some prefiltering stage. The resulting
performance is evaluated in a numerical case study. The main
objective is to identify which of the estimation methods benefits
most from the proposed tuning approach. Thereby, we consider
all three sources of perturbation discussed in the paper, i.e.,
frequency variations, unbalances and harmonics. In total, four
scenarios are investigated, which are detailed in Table 1.
For the simulation, the nominal input to the different PLL im-
plementations corresponds to a symmetric three-phase voltage
with an amplitude of 220 [V-RMS] and a frequency of 50 [Hz].
The introduced unbalances are an angle deviation of −15◦ and
10◦ in the components b and c of vabc(t) and a modification of
each component’s amplitude corresponding to 90%, 105% and
95% of the nominal value. In the case of harmonics, only odd
multiples of the base frequency are considered. The considered
harmonic components range from one to seventeen. The am-
plitude of each harmonic is given in Table 2 as a percentage of
the nominal signal amplitude. To establish the percentage, the
Table 2 in (Markiewicz and Klajn, 2004) was used as guideline.
When unbalances and harmonics are present simultaneously,
the previous described unbalanced conditions are introduced
to each harmonic component. Finally, the frequency variation
ω(t)=2πf(t) is generated using the formula

f(t)=

{
50 t<10,

50−4e−0.1(t−10)sin(0.2(t−10)) t≥10,
[Hz]. (15)

That is, the frequency is constant during the first 10 [s] and then
it changes according to the under-frequency profile proposed in
(RG-CE System Protection and Dynamics Sub Group, 2018).
During the event, the maximum value of the RoCoF is 0.85

Fig. 7. Frequency estimation error norms in Scenario 3:
Frequency variation and harmonics are considered.

Fig. 8. Frequency estimation error norms in Scenario 4: The
three disturbances are present.

10 15 20 25 30 35 40
0.97
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ESRF

Fig. 9. Estimate of the frequency in Scenario 1 with L=1.

[Hz/s] or 5 [rad/s], i.e., ζ̄=5. Finally, it is important to mention
that in all cases, the signal was normalized after applying the
Clarke transformation.
In the case of the different PLL implementations, all the PI
controllers have the same gains. In all the cases, the gains
are chosen following (8) with h0 = h1 = 1 and L taking the
values 0.5, 1, 3, 5, 7, 10, 20, 50 and 100. In the case of the
PLL implementations reviewed in Section 4, the following
parameters were chosen for the simulation:
(1) For the DSOGI-PLL, the QSG gain in (Rodŕıguez et al.,
2006, Eq. 6) is chosen as k=1.
(2) The cut-off frequency of the LPF in the DDSRF-PLL is
set to 25 [Hz], following the guideline provided in (Rodriguez
et al., 2007, Eq. 11).
(3) The different gains of the ANF in (Yazdani and Bakhshai,
2009, Eq. 4-5) are set to five.
To compare the performance of the implementations, the L2

and L∞ norms of the truncated frequency errors are used. For
the norm calculation, only the time interval [10,100] [s] is consid-
ered. This is done to avoid including the initial transitory of the
estimation. The value of the norms corresponding to the differ-
ent implementations and scenarios are shown in Figures 5 to 8.
The time interval [0,10) [s] in (15) is not only given to allow the
estimate to settle down, but to ensure that the estimation error
is close to some element of S before the frequency starts to
change. Qualitatively, what can be seen in Figures 5 to 8, is that
for L≥3, both indicators drop drastically. This is associated
with the boundedness of the estimation error. In fact, for L≤1,
the implementations are not able of providing an accurate
estimate, as is illustrated in Figure 9 for Scenario 1. According
to the criterion (12), and for the given parameters, a bounded
error is ensured forL≥5.4, which holds true in all cases. In simu-
lation, error boundedness is also observed for smaller values ofL,
which given the sufficiency of the criterion (12) is to be expected.
The second qualitative behavior observed is the decrease of both
norms as L increases. This is associated to the bound (14) and
represents the main benefit of the high-gain design, i.e., the at-
tenuation of the RoCoF. However, increasing L in excess results
in a deterioration of the metrics because the amplification of
unbalances and harmonics overcome the benefit obtained from
attenuating the RoCoF. In most of the investigated cases, this
happens for L>20. It is also worth to mention that in Scenario
4, with all disturbances present, the implementation that
accepts the highest gain before showing a decay in the metrics
is the DSOGI-PLL, which, at the same time, is the implemen-
tation that exhibits the smallest values in both indicators.
Besides the general observations provided above, we would like
to remark the following particularities. In Scenario 1 (Figure 5),
by increasingL, a deterioration of theL∞ norm can be observed
in the case of the SRF-PLL. This behavior can be linked to
the peaking phenomenon associated to high-gain observers
(Esfandiari and Khalil, 1992). In Scenario 1 (Figure 5), the
L2 norm deteriorates in the case of the DDSRF-PLL for
L≥50. This happens because the high gain amplifies internal
oscillations generated by the DDSRF-PLL. In Scenario 3
(Figure 7), the L2 norm always decreases by increasing L in the
case of the ESRF-PLL. This is linked to the fact that the ESRF-
PLL was specifically designed to counteract harmonics. Finally,
it is worth to mention that the behavior of the SRF-PLL is quite
comparable to the one exhibited by the ESRF-PLL and the
DDSRF-PLL, although the SRF-PLL does not include specific
mechanisms to counter neither unbalances nor harmonics.



6. CONCLUSIONS

In this work, the SRF-PLL is interpreted as a non-linear high-
gain observer that estimates the phase and the frequency of a
symmetric three-phase signal. It is shown that, by selecting its
gains following a high-gain approach, the effect of the RoCoF
can be attenuated. This allows to ensure a robust operation of
the SRF-PLL during events of fast frequency changes. It is also
recognized that the core structure of the SRF-PLL is present
in different PLL implementations, comprising in particular the
DSOGI-PLL, DDSRF-PLL and the ESRF-PLL. These imple-
mentations include a ”pre-filtering” stage aimed at counteract-
ing disturbances like unbalances and harmonics. Therefore, the
proposed tuning method also applies to these implementations,
and in combination with them, it is possible to use high gain
in the presence of distortion. From the reviewed methods, it
is observed in simulation that the DSOGI-PLL allows the use
of the highest gains without compromising the quality of the
estimation. Finally, since the robust stability analysis of the
PLL is conducted by means of a strong ISS-Lyapunov function,
it is expected that a separation principle between the PLL gain
design and standard voltage or current controller designs can be
derived. This is of particular interest in the context of frequency
support, and will be further investigated in future work.

Appendix A. PROOF OF THEOREM 2

The proof of Theorem 2 consists of three stages. First, a
diffeomorphism is introduced in order to obtain a set of new
coordinates in which the system dynamics exhibit a linear-
like structure. Second, a quadratic ISS-Lyapunov function is
derived to obtain bounds on the system trajectories. This step
uses some of the ideas in (Besançon, 2007, Theo. 6). Finally,
the bounds found in the previous stage are converted back to
the original system coordinates.
For the first step, consider the translation x̄(t) = x̃(t)− s,
with s ∈ S and S defined in (9). Given the periodicity
of (7), the derivative of x̄(t) also satisfies this differential
equation. Now, define z(t) = [z1(t),z2(t)]> and consider the
local diffeomorphism

z1=
1

2L
sin

(
x̄1

2

)
, x̄1∈

[
−
π

2
,
π

2

]
,

z2=
1

4L2
x̄2,x̄2∈R,

x̄1=2arcsin
(
2Lz1

)
,z1∈

[
−

1

2
√

2L
,

1

2
√

2L

]
,

x̄2=4L2z2,z2∈R.

(A.1)

Applying the diffeomorphism (A.1) to the dynamics of x̄(t),
one obtains for the dynamics of z(t):

ż(t)=Lα(z1(t))

[
−h0α(z1(t)) 1
−h1 0

]
z(t)+

[
0
1

4L2

]
ζ(t),

=Lα(z1(t))A(z1(t))z(t)+
1

4L2
bζ(t), (A.2)

with the function α satisfying

α
(
z1(t)

)
=
√

1−(2Lz1(t))2, 1≥α(z1(t))≥
1
√

2
.

For the second stage, and to establish boundedness of solutions
of (A.2), let us introduce the quadratic ISS-Lyapunov function
candidate

V (z)=z>Pz,

λmax(P)‖z‖2≥V (z)≥λmin(P)‖z‖2, (A.3)

where the matrix P >0 is given in (10).

The derivative of V along the trajectories of (A.2) yields

V̇ (t)=−Lα(z1(t))z>(t)Q(z1(t))z(t)−z>(t)Pb
ζ(t)

4L2
,

where

Q(z1(t))=−
(
PA(z1(t))+A>(z1(t))P

)
=

 h1((1+γ)α(z1(t))−1
) h0

2

(
α(z1(t))−1

)
h0

2

(
α(z1(t))−1

)
1

.
Now, for γ as in (11), it can be ensured that Q(z1) ≥ 1

2I2

for all z1 in its domain of definition, see (A.1). This can be
verified by checking that the Schur complement of the difference
Q(z1)− 1

2I2, i.e.,

χQ=h1

(
(1+γ)α

(
z1
)
−1

)
−

1

2
−h20
(
α
(
z1
)
−1

)2

≥h1
(

1+γ
√

2
−1

)
−

1

2
−h20
(

1−
1
√

2

)2

,

is positive for γ given in (11). Thus, the time derivative of V
can be bounded as

V̇ (t)≤−
L

2
√

2
‖z(t)‖2+z>(t)Pb

ζ(t)

4L2

≤−
L

2
√

2
‖z(t)‖2+

1

4L2
‖z(t)‖‖Pbζ(t)‖. (A.4)

Now, by applying Young’s inequality to the positive term in
(A.4) and since ‖b‖=1, one obtains

1

4L2
‖z(t)‖‖Pbζ(t)‖≤

L

4
√

2
‖z(t)‖2+

λ2max(P)

8
√

2L5
ζ̄2.

Using the previous inequality in (A.4), yields

V̇ (t)≤−
L

4
√

2
‖z(t)‖2+

λ2max(P)

8
√

2L5
ζ̄2. (A.5)

By accounting for (A.3), (A.5) is transformed into the
differential inequality:

V̇ (t)≤−
L

4
√

2λmax(P)
V (t)+

λ2max(P)

8
√

2L5
ζ̄2. (A.6)

In general, it cannot be ensured that the right hand side of
(A.6) is non-positive in some region around the origin since
the state is bounded and ζ̄ can be arbitrarily large. However,
because ζ̄ is divided by L5, in principle, it is possible to find
a suitable large enough value for L that ensures the existence
of a positive invariant region for any given ζ̄. This value for
L can be determined following a standard high-gain observer
approach. To this end, consider the ball centered at the origin

B1(0)=

{
z∈R2,‖z‖≤r=

1

2
√

2L

}
,

and the region inside the maximum level set of V contained
in B1(0), i.e.,

R=

{
z∈R2,V (z)≤λmin(P)r2=

λmin(P)

8L2

}
. (A.7)

A negative semi-definite V̇ (t) can be ensured inside R,
particularly close to its border, if L is chosen as in (12), meaning
thatR in (A.7) is a positive invariant set. Furthermore, the ball

B2(0)=

{
z∈R2,‖z‖≤

λmin(P)

8λmax(P)L2

}
(A.8)

is included in R, i.e, B2(0)⊂R.
Then, accounting for (A.6) and by the application of the
Comparison Lemma (Khalil, 2002, Lemma 3.4), for every
trajectory starting in R, V (t) satisfies

V (t)≤V (t0)e
− L

4
√

2λmax(P)
(t−t0)

+
λ3max(P)

2L6
ζ̄2.



By using (A.3), it follows that

‖z(t)‖≤

√
λmax(P)

λmin(P)
‖z(t0)‖e

− L(t−t0)
8
√

2λmax(P) +
λ
3/2
max(P)

√
2λ

1/2
min(P)

ζ̄

L3
. (A.9)

For the final part, consider again the diffeomorphism (A.1).
From the definition of z1 it follows that

1

16L2
x̄2

1≥|z1|2 =
sin2
(
x̄1
2

)
4L2

≥ 1

2π2L2
x̄2

1. (A.10)

By using (A.10), it is possible to bound the norm of z as
γ1

L
‖x̄‖≥‖z‖≥

γ2

L
‖x̄‖,

γ1=max

{
1

4
,

1

4L

}
, γ2=max

{
1
√

2π
,

1

4L

}
.

With the previous bounds, it is possible to ensure that the
region described by (13) is mapped inside B2(0) in (A.8).
Furthermore, (A.9) can be expressed as

‖x̄(t)‖≤
γ1

γ2

√
λmax(P)

λmin(P)
‖x̄(t0)‖e

− L(t−t0)
8
√
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.

Then, Theorem 2 holds with constants

d1=
γ1

γ2

√
λmax(P)

λmin(P)
, d2=

1

8
√

2λmax(P)
, d3=

λ
3/2
max(P)

√
2γ2λ
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.
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