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Abstract— The availability of excitation controllers to
enhance transient stability has regained significant rele-
vance in recent years, due to the unprecedented ongoing
changes in power systems. Yet, the practical deployment
of many reported control schemes is hampered by the
fact that their implementation requires the measurement
of the full state vector. Our main contribution is to address
this fundamental obstacle by proposing an observer-based
excitation controller using modern phasor measurement
technology. For this purpose, a linear time-varying observer
scheme for the generator frequency and the internal
voltage is derived. This observer is then combined with
a classical passivity-based excitation controller. Stability of
the resulting nonlinear observer-based closed-loop system is
shown by deriving an ISS-based separation principle. The
performance of the proposed approach is demonstrated via
simulation example.

I. INTRODUCTION

The recent changes in the energy generation mix have
boosted the interest and relevance of rigorous stability
analysis and control of electrical power systems [1].
These kind of analyses have always represented a chal-
lenge given the inherent non-linear structure of the power
systems, the presence of uncertainties (both parametric
and structural), perturbations and the impossibility of
measuring all state variables [2], [3]. With respect to the
last point, recently the development of dynamical state
estimators has become increasingly relevant, not only for
monitoring, but also for control purposes [4], [5].

One of the most prominent control tasks in power
systems is to improve transient stability, e.g. by enlarg-
ing the critical clearing time after a fault. The main
controllers of interest in this setting are excitation con-
trollers. Due to the increasing penetration of volatile re-
newable energy sources and power-converter-interfaced
devices threatening system stability, the problem of exci-
tation control design has become increasingly important
in recent years [2], [6], [7]. Traditionally, excitation
control design has used the rotor speed and position,
voltage on generator terminals, and electric power as
measurement variables, and P(I)-based automatic voltage
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regulators (AVRs) together with power system stabilizers
(PSSs) have been employed for this purpose [2], [8],
[9]. Yet, it has been shown that more advanced nonlin-
ear control schemes have the potential to significantly
enhance transient stability [6], [7]. As demonstrated in
[10], this applies in particular to passivity-based con-
trol schemes following the interconnection and damping
assignment passivity-based control (IDA-PBC) method-
ology introduced in [11].

A common property of such advanced excitation con-
trol schemes is that they are (nonlinear) state feedback
controllers. For a long time this fact has hampered their
practical implementation, since most often the full state
vector of the synchronous machine is not measurable [4],
[5]. Yet, the increasing deployment of phasor measure-
ment units (PMUs) opens new possibilities for observer-
based control designs [2], [12]–[14].

In that regard, the main contribution of the present
paper is an observer-based implementation of the IDA-
PBC originally developed in [10]. For our derivations,
we consider the well-known single-machine-infinite-bus
(SMIB) scenario with the standard flux-decay model [2],
[8]. The SMIB scenario has been extensively studied
both in the power and the control systems literature
since it captures many important phenomena in power
systems operation [2], [8], [10], [15]. Our approach is
characterized by the following two features:

1) We derive a linear time-varying observer capable
of estimating the frequency and the quadrature axis
internal voltage of the generator. Compared to the related
result [16], our proposed observer is uniformly globally
convergent and also serves to estimate the frequency,
in addition to the internal generator voltage. For its
implementation, we use the measured load angle, active
power and terminal current of the generation unit, which
all are measurements that can be provided using modern
PMU technologies [2], [12].

2) The closed-loop system resulting from combining
IDA-PBC control reported in [10] and our proposed
observer is nonlinear. Hence, establishing stability of
the observer-based closed-loop system is nontrivial. We
tackle this challenge in a two-step procedure. At first,
we show that the controlled SMIB system is input to
state stable (ISS) with respect to the estimation error.
Inspired by [17], this ISS property is then used to derive
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Fig. 1. Single machine infinity bus diagram.

a separation principle, i.e., the controller and the observer
can be designed independently. We remark that the latter
is a rather unusual property in the case of non-linear
systems.

The remainder of the paper is organized as follows:
In Section II the physical description and mathematical
model of the SMIB system is presented; in Section III
the observer design methodology is introduced; later,
in Section IV, some ISS properties are established; in
Section V, the stability properties of the observer–based
control for the SMIB are given; finally, in the last section,
a numeric evaluation is presented.

II. SMIB DESCRIPTION

The SMIB system consists of a single generator
connected to an infinite bus through an inductive line,
as shown in the diagram in Figure 1. In this paper, the
well-known third order (flux decay) model is considered
[9], [10], [8, Chap. 4], which is described by

ẋ1 = x2,

ẋ2 =
ωo
2H

(P − Pe −Dx2),

ẋ3 =
1

T ′d0
(u+ E − x3 + (Xd −X ′d)Id),

(1)

where x1 ∈ R stands for the load angle, x2 ∈ R is
the rotor speed deviation from the synchronous speed
and x3 ∈ R is the quadrature axis internal voltage.
The control input u ∈ R is the field excitation signal
with E ∈ R being a constant offset. The (constant)
mechanical power delivered to the generation unit is
represented by P ∈ R, while Pe denotes the electric
power delivered by the generator. Finally, Id corresponds
to the d-axis current. The positive constants are the
generator inertia time constant H , the damping factor D,
the direct-axis transient open circuit time constant T ′d0,
the direct-axis reactance Xd and the direct-axis transient
reactance X ′d. Furthermore, the electric power Pe in (1)
and the d-axis current Id are given by

Pe =
EB

X ′d +X`
x3 sin(x1), (2)

Id =
1

X ′d +X`
(x3 − EB cos(x1)) , (3)

where EB ∈ R is the voltage magnitude at the infinite
bus and X` ∈ R the line impedance.

TABLE I
DEFINITION OF THE GENERATOR PARAMETERS IN (4)

Parameter Definition
b1

ω0EB
2H(X′

d
+X`)

b2
ω0D
2H

b3
(Xd−X′

q)EB

T ′
d0

(X′
d
+X`)

b4
Xd−X′

d
T ′
d0

(X′
d
+X`)

After the substitution of (2) and (3) in (1), the SMIB
system is rewritten in compact form as

ẋ1 = x2,

ẋ2 = −b1x3 sin(x1)− b2x2 + P,

ẋ3 = b3 cos(x1)− b4x3 + E + u,

(4)

where the short-hands bi with i = {1, 2, 3, 4} are defined
in Table I.

For the observer-based excitation control design, we
make the following assumption:

Assumption 1. The quantities x1, Pe and Id in (1), (2)
and (3), respectively, are measurable.

Following [12], the previous assumption is reasonable
considering the introduction of fast PMUs aimed to
control, which are installed at the generator rotor and
allow the angle measurement together with the voltage
and power.

At this point it is important to recognize the following
property, reported in [10], which is fundamental to
formulate the transient stabilization problem for power
systems.

Property 1. Consider x = [x1, x2, x3]
T ∈ R3. When

the operation of the system (4) is restricted to the closed
set

Dδ =
{
x ∈ R3 | 0 ≤ x1 ≤

π

2
− δ1; δ1 ≤ x3

}
,

there exists in Dδ a locally stable equilibrium point x? =
[x1?, 0, x3?]

T , which is the solution of

−b1x3? sin(x1?) + P = 0,

b3 cos(x1?)− b4x3? + E = 0,

whenever

E >
b4P

b1
− b3.

Remark 1. The transient stabilization problem for the
SMIB system is formulated with respect to the equilib-
rium point x? in the sense that its region of attraction
must be as large as possible.



III. LINEAR TIME-VARYING OBSERVER
DESIGN

In this section the proposed observer for the SMIB
system is presented. Its design takes advantage of mea-
surements provided by the PMU as described in Assump-
tion 1. Hence, the representation presented in (1) is used
to carry the design out.

The main advantage of considering the existence of
measuring instruments comes from the fact that the
representation (1) can be viewed as a linear system
subject to some external measurable variables. Hence, it
is possible to consider a classical Luenberger observer.
However, some conditions must be taken into consid-
eration in order to propose its structure. From the me-
chanical variables, only x1 is available for measurement
according to Assumption 1. Thus, a natural choice for
the corrective terms of the mechanical sub–system is to
make them to depend on x1. Under this condition, the
first two equations of the estimation scheme are given
by

˙̂x1 = x̂2 − L1(x̂1 − x1),

˙̂x2 =
ωo
2H

(Pm − Pe −Dx̂2)− L2(x̂1 − x1),
(5)

with L1 ∈ R, L2 ∈ R the mechanical gains.
Due to the impossibility of measuring the electrical

state x3, but considering that Pe, Id and Iq are measur-
able through the PMU, the third corrective term depends
on the estimated active power

P̂e =
EB

X ′d +X`
sin(x1)x̂3.

Therefore, the third equation of the observer takes the
form

˙̂x3 =
1

T ′d0
(u+ E − x̂3 + (Xd −X ′d)Id)−L3(P̂e−Pe),

(6)
with L3 ∈ R the electrical gain.

The convergence properties of the proposed observer
are proved in the next proposition.

Proposition 1. Consider the SMIB system represented
in the form (1) with Assumption 1. Furthermore, assume
that all the system parameters are positive and known.
Under these conditions, the observer (5) – (6) with L1,
L2 and L3 such that for all t ≥ t0

L1 > 0, L2 > 0,
1

T ′d0
+ L3

EB sin(x1)

X ′d +X`
> 0, (7)

guarantees that

lim
t→∞

{[
x̂2
x̂3

]
−
[
x2
x3

]}
= 0,

uniformly in the initial time.

Proof. Define the observation error ε = x̂ − x. Con-
sidering the system (1) and the observer (5) – (6), the
dynamic behavior of ε is described by

ε̇ = Ao(t)ε, (8)

with

Ao(t) =

 −L1 1 0
−L2 −ω0D

2H 0

0 0 −
(

1
T ′
d0

+ L3EB sin(x1)
X′

d+X`

)
 .

Ao(t) results continuous and bounded considering that
sin(x1) also possess these properties.

Consider now a symmetric positive definitive matrix
P = diag {p1, p1/L2, p3}. Choosing the gains Li, i =
{1, 2, 3}, according to (7), we obtain

Q(t) = PAo(t) +ATo (t)P, (9)

given by

Q(t) = −2p1L1 0 0
0 −p1 ω0D

L2H
0

0 0 −2p3

(
1
T ′
d0

+ L3EB sin(x1)
X′

d+X`

)
 ,

which is a continuous, bounded and symmetric negative
definite matrix.

The proof is completed by invoking well–known re-
sults from the stability theory of linear time–varying
systems to show that the equilibrium point ε = 0 is
uniformly exponentially stable [18].

Remark 2. It is worth noting that the structure and
stability properties of the proposed observer constitute
a paramount example of the advantage of exploiting
modern (PMU) measuring devices, to design observation
schemes with simple structure and provable stability
properties.

Remark 3. Assuming the knowledge of the parameters,
as is done in Proposition 1, imposes a constraint for the
proposed design. However, it is the authors belief that
this condition can be removed using well–known theory
of adaptive linear observers. Current research is carried
out in this sense.

Remark 4. Both, the simple structure of the observer
and the simple arguments used to prove its convergence
properties, will be fundamental to state the stability prop-
erties of the whole observer–based closed–loop system
considered in this paper.

IV. PASSIVITY–BASED CONTROL OF THE
SMIB SYSTEM

This section is devoted to the presentation of some
identified ISS properties of the IDA-PBC for the SMIB



system presented in [10]. To this end, it is first necessary
to formulate the following property of the full–state
feedback version of the aforementioned control scheme.

Property 2. The SMIB system (4) in closed–loop with
the control law

u = −kvb1(cos(x1?)− cos(x1))− α1α2

(
b3
b1

+ kv

)
x̃1

− α1x2 −
(
b3
b1
α2 − b4 + kvα2

)
x̃3, (10)

where x̃i = xi − xi? for i = {1, 2, 3}, and tuning
parameters kv ≥ 0 and

α2 ≥
b1b4
b3

, α1 < −
b1
α2
,

leads to a Port-Controlled Hamiltonian (PCH) structure
given by

ẋ = [Jd −Rd]
∂Hd(x)

∂x
, (11)

with

Jd =

 0 1 0
−1 0 α1

0 −α1 0

 , Rd =

0 0 0
0 b2 0

0 0 b3
b1

+ kv

 ,
while Hd(x) = H(x) +Ha(x), where

H(x) =
1

2
x22 + b1x3

(
cos(x1?)− cos(x1)

)
− Px̃1 +

b1b4
2b3

x̃23,

and

Ha(x) =
1

2

(
α2 −

b1b4
b3

)
(α1x̃1 + x̃3)

2

+ b1α1

[
x̃1 cos(x1?)− sin(x1)

+
b4α1

2b3

(
x̃21 +

2

α1
x̃1x̃3 + x21?

)]
.

The control (10) ensures that the equilibrium point x? ∈
Dδ defined in Property 1 is asymptotically stable [10].

From the observer design perspective, the main feature
of the control law (10) lies in the fact that it is linear
with respect to the unmeasurable states x2 and x3, the
observer-based version of the control law can be written
in the very amenable way given by

uo = u+ ΦT ε, (12)

where ε = x̂− x, u is given by (10) and

Φ =

 0
−α1

−
(
b3
b1
α2 − b4 + kvα2

)
 .

This structure together with the control law (12) gives
as a result that the closed–loop system presented in (11)
takes the form

ẋ = [Jd −Rd]
∂Hd(x)

∂x
+ Γε, (13)

with Γ ∈ R3×3 defined as

Γ =

[
02×3
ΦT

]
.

With (12) at hand, it is possible to formulate the
following proposition.

Proposition 2. Consider the SMIB system represented
by (4) in closed–loop with the observer–based control
law (12). Assume the conditions imposed in Property 2
are satisfied. Under these conditions system (13) defines
an ISS mapping from the input ε to the output x.

Proof. Consider the positive definite function Hd(x)
introduced in Property 2 whose time derivative along
the trajectories of (13) is given by

Ḣd = −∂Hd(x)

∂x

T

Rd
∂Hd(x)

∂x
+
∂Hd(x)

∂x

T

Γε (14)

if ε 6= 0 then (14) can be written as

Ḣd = −∂Hd(x)

∂x23

T

Rd1
∂Hd(x)

∂x23
+
∂Hd(x)

∂x3

(
ΦT1 ε23

)
,

with ε23 = [ε2, ε3]
T and

∂Hd(x)

∂x23
=

[
∂Hd(x)
∂x2

∂Hd(x)
∂x3

]
,

Φ1 =

[
−α1

−
(
b3
b1

+ kv

)
α2 + b4

]
,

where the matrix

Rd1 =

[
b2 0

0 b3
b1

+ kv

]
is symmetric positive definite.

Taking into consideration the positiveness of Rd1, it
holds that

Ḣd ≤ −(1− θ)∂Hd(x)

∂x23

T

Rd1
∂Hd(x)

∂x23
,

with 0 < θ < 1 and for all

‖ε23‖ ≥
‖Φ1‖

θλmin

(
Rd1

) ∥∥∥∥∂Hd(x)

∂x23

∥∥∥∥ .
Then by applying well–known arguments (see for

example [18]) it is proved that the map

Σ : ε→ x

is input to state stable.

Remark 5. The ISS property of the IDA-PBC has been
previously identified in a different scenario (see [17]) and
states a very attractive feature since it does not depend
on the structure of the observer.



V. OBSERVER–BASED CLOSED–LOOP
STABILITY ANALYSIS

The final part of the contribution is presented in this
section. It refers to the establishment of the stability
properties of the whole observer–based closed–loop sys-
tem composed by the SMIB system, the control (12) and
the proposed observer (5) – (6). As it will be noticed in
the next proposition, due to the simple structure of the
latter and the attractive ISS property of the IDA-PBC,
this goal is achieved in a quite straightforward way.

Proposition 3. Consider the SMIB system represented
by (4) in closed–loop with the control law (12) and
the linear observer (5) – (6) under the assumptions of
Proposition 1 and Proposition 2. Under these conditions
the equilibrium point (x, ε) = (x?, 0) is asymptotically
stable.

Proof. Consider the positive definite function

VT = Hd(x) + γεTPε; γ > 0,

with P = diag {p1, p2, p3}, pi > 0 for i = 1, 2, 3.
The time derivative of VT along the trajectories of (13)

and (8) is given by

V̇T = −∂Hd(x)

∂x

T

Rd
∂Hd(x)

∂x
+
∂Hd(x)

∂x

T

Γε

− γεTQ(t)ε, (15)

where Q(t) is presented in (9).
Defining the vector

z =

[
∂Hd(x)
∂x
ε

]
,

then (15) can be written as V̇T = −zTA1z with

A1 =

[
Rd − 1

2Γ
− 1

2ΓT γQ(t)

]
.

The proof is concluded by noticing that the matrix
A1 results positive semidefinite when γ is chosen sufi-
ciently large and by invoking the zero state detectability
properties established in [10].

VI. NUMERICAL EVALUATION

The numerical evaluation is divided into two steps:
Assuming an open–loop operation, the convergence
properties of the observer are evaluated; later on, the
closed–loop performance is evaluated.

In particular, for the closed–loop evaluation, the main
interest is focused on the transient stability properties of
the system.
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Fig. 2. State trajectories convergence under open–loop operation.
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Fig. 3. Errors convergence under open–loop operation.

A. Open–loop convergence

The evaluation considers the following conditions: It
is assumed that the initial operation of the SMIB system
corresponds to the equilibrium point x? while a different
value for the observer initial conditions are considered.
Once it is verified that the estimated trajectories converge
to the actual behavior of the system, a short circuit
disturbance is introduced whose magnitude is such that
the open–loop system is not able to reject. After this
event, as expected, the state trajectories of the system
tend to infinity and it is verified that, even under this
stringent situation, the behavior of the observer follows
the behavior of the system.

The parameters and initial conditions for the SMIB
system, taken from [9], are included in Table II while
the observer gains were set to

L1 = 10, L2 = 20, L3 = 10 sin(x1).

This set of gains satisfies the conditions given in (7),
Proposition 1.

In Figure 2 the behavior of the state trajectories are
shown. It can be verified that the convergence is achieved
in both situations, under stable and unstable operation. In
order to evaluate in a better way the convergence speed,
in Figure 3 the error between these trajectories is shown.

B. Closed–loop performance

Once the convergence properties in open-loop opera-
tion have been verified, in this section the attention is
given to the closed–loop performance of the system.

In order to carry this evaluation out, the implemented
experiment assumed that the SMIB-control system ini-
tially operates in x? while the information provided by



TABLE II
PARAMETERS OF THE GENERATOR

Parameters Value
Inertia time constant (H) 6 [s]
Nominal frequency (ωo) 120π [rad/s]

Synchronous reactance (Xd) 1.2 [p.u.]
Transitory reactance (X′d) 0.3 [p.u.]

Transitory time (T ′d0) 5 [s]
Mechanical power (Pm) 32.31 [p.u.]

Damping factor (D) 0 [p.u]
Infinite bus voltage (EB) 1 [p.u.]

Line reactance (X`) 0.5 [p.u.]
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Fig. 5. Errors convergence in closed–loop operation.

the observer corresponds to different initial conditions.
This situation is maintained until the observer states
converge to the actual trajectories. At this time, a short
circuit disturbance is introduced. As predicted by the
theory, Figure 4 shows that the control law makes possi-
ble to recover a stable operation after the disturbance
vanishes while in Figure 5 the error trajectories are
included.

VII. CONCLUDING REMARKS

In this paper a solution to the transient stabilization
problem of the SMIB system has been provided by
proposing an observed–based control strategy. The main
feature of the contribution lies in the simple structure
of the observer scheme obtained by considering at a
fundamental level of the design the possibility of using
modern measuring devices, i.e., the PMUs. The final
result was an observer–based closed–loop system for
which a formal stability analysis was established. This
analysis also provides a separation principle between the
controller and the proposed observer, i.e., the controller
and the observer can be designed independently, a prop-
erty that is unusual to have in the case of non–linear

systems. From a prospective point of view, the value
of the contribution lies in the fact that the approach
followed in this paper seems to be viable to consider
more elaborated systems like multi–machine networks.
This topic is under current research.
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citation control of synchronous generators,” INT J ROBUST
NONLIN, vol. 14, no. 9-10, pp. 879–890, 2004.

[17] J. A. Moreno and G. Espinosa-Perez, “Sensorless PBC of induc-
tion motors: A separation principle from iss properties,” in 46th
IEEE Conference on Decision and Control. IEEE, 2007, pp.
6094–6099.

[18] H. Khalil, Nonlinear Systems, 3rd ed. New Jersey: Prentice–
Hall, 2002.


