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Abstract—The problem of effective use of Phasor Measurement
Units (PMUs) to enhance power systems awareness and security
is a topic of key interest. The central question to solve is how
to use this new measurements to reconstruct the state of the
system. In this paper we provide the first solution to the problem
of (globally convergent) state estimation of multimachine power
systems equipped with PMUs and described by the fourth order
flux-decay model. This work is a significant extension of our
previous result, where this problem was solved for the simpler
third order model, for which it is possible to recover algebraically
part of the unknown state. Unfortunately, this property is lost in
the more accurate fourth order model, and we are confronted
with the problem of estimating the full state vector. The design of
the observer relies on two recent developments proposed by the
authors, a parameter estimation based approach to the problem
of state estimation and the use of the Dynamic Regressor Exten-
sion and Mixing (DREM) technique to estimate these parameters.
The use of DREM allows us to overcome the problem of lack
of persistent excitation that stymies the application of standard
parameter estimation designs. Simulation results illustrate the
latter fact and show the improved performance of the proposed
observer with respect to a locally stable gradient-descent based
observer.

Index Terms—Dynamic state estimation, power system opera-
tion, phasor measurements, synchronous generator.

.

I. INTRODUCTION

POWER systems are experiencing major changes and
challenges, such as an increasing amount of power-

electronics-interfaced equipment, growing transit power flows
and fluctuating (renewable) generation, see [24]. Therefore
power systems are operated under more and more stressed
conditions and, thus, closer to their stability limits as ever
before. In addition, as detailed in [12], their dynamics become
faster, more uncertain and also more volatile. Hence, fast and
accurate monitoring of the system states is crucial in order to
ensure a stable and reliable system operation, see [27]. This,
however, implies that the conventional monitoring approaches

A. A. Bobtsov is with Hangzhou Dianzi University (HDU), 310018,
Hangzhou, China and with ITMO University, 197101, Saint-Petersburg,
Russian Federation (e-mail: bobtsov@mail.ru)

N. Nikolaev is with ITMO University, 197101, Saint-Petersburg, Russian
Federation (e-mail: nanikolaev@itmo.ru)

R. Ortega is with Departamento Académico de Sistemas Digitales, ITAM,
Ciudad de México, México (e-mail: romeo.ortega@itam.mx) and with ITMO
University

N. Lorenz-Meyer and J. Schiffer are with Brandenburg University of
Technology Cottbus-Senftenberg, 03046 Cottbus, Germany (e-mail: lorenz-
meyer@b-tu.de, schiffer@b-tu.de)

based on steady-state assumptions are no longer appropriate
and instead novel state observers1 tools have to be developed,
see [27], [22].

By recognizing this need, the design of state observers has
become a very active research area in the past years. The in-
terest has been further accelerated by the growing deployment
of PMUs, see [23]. The vast majority of the reported results
on this matter rely on the use of linear systems-based theories,
e.g., the use of Kalman filters, whose performance is assessed
only via simulations, see [7], [17], [25], [27]. As thoroughly
discussed in [10]. this approach suffers from several major
drawbacks.

Recently [10], the authors provided a globally convergent
solution to the state observation problem for the case when
the generators are modelled by the classical third order flux-
decay model. Instrumental for the solution of the problem was
the observation that, for this model, it is possible to recover
algebraically part of the unknown state. It is widely recognized
[11], [22], [25] that to improve the precision of the model, it
is necessary to include additional dynamic effects, leading to a
fourth order model. Unfortunately, for this case, the algebraic
reconstruction of part of the state is impossible, and we are
confronted with the problem of estimating the full state vector.

In this paper we provide the first solution to the state ob-
servation problem for multimachine power systems described
by the fourth order model. The design of the observer relies
on two recent developments proposed by the authors, first,
a generalization of the Parameter Estimation-based Observer
(GPEBO) [14], which translates the problem of state estima-
tion into one of parameter estimation. Second, the use of
the DREM technique [1], [16] to estimate these parameters.
These two theoretical developments are instrumental to solve
the current problem. GPEBO was used in [15] for the de-
sign of observers for bio-chemical reactors and the simplest
problem of state estimation of third-order power systems
with measurement of the rotor angle. The latter, practically
restrictive assumption, is removed here significantly widening
the applicability of the result. Thanks to the use of DREM
it is possible to overcome the problem of lack of persistent
excitation that stymies the application of standard observer
designs.

1In the power systems community, to distinguish it from the steady-sate
case, the qualifier“dynamic” is added to the state observation problem, and it
is sometimes called “dynamic state estimation”.
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In the theoretical part of the paper we restrict ourselves to
the study of a single generator. As shown in [10], thanks to
the incorporation of the PMUs, for the purposes of observer
design it is possible to treat multimachine systems as a
set of decentralized single machines, hence our result can
be extended in a straightforward way to the multimachine
case. In the interest of brevity we omit the details of this
generalization, and refer the interest reader to [10, Section
II] for the details. However, the simulation results, presented
in Section VI, include the multimachine case, and show the
improved performance of the proposed observer with respect
to a locally stable gradient-descent based observer.

II. MATHEMATICAL MODEL AND PROBLEM
FORMULATION

We consider the well-known fourth-order model of the
single machine system given by [7, eq. (1)], see also [19,
Chapter 5.4] and [11, Chapter 11.1.7.1] ,

ẋ1 = x2 (1a)
ẋ2 = −a0x2 + b0(u1 − y5) (1b)
ẋ3 = −a2x3 + b2y2 sin(x1 − y1) (1c)
ẋ4 = −a1x4 + b1y2 cos(x1 − y1) + c1u2, (1d)

where the unknown state and input variables are defined as

x :=
[
x1 x2 x3 x4

]>
=
[
δ ω E′d E′q

]>
u :=

[
u1 u2

]>
=
[
Pm Ef

]>
,

with δ the rotor angle, ω the shaft speed, E′d and E′q the
direct and quadrature axis internal voltages, respectively, Pm
the mechanical power and Ef the field voltage, and we defined
the positive constants

a0 :=
ω0D

2H
, a1 :=

1

Td0′

xd
x′d
, a2 :=

1

Tq0′

xq
x′q
, b0 :=

ω0

2H

b1 :=
1

Td0′

(xd − x′d)
x′d

, b2 :=
1

Tq0′

(xq − x′q)
x′q

, c1 :=
1

Td0′
.

with ω0 the nominal synchronous speed, D the damping factor,
H the inertia constant, T ′d0 and T ′q0 the direct and quadrature
axis transient open-circuit time constant, xd and xq the direct
and quadrature axis reactances and x′d and x′q the direct and
quadrature axis transient reactances, respectively.

The PMU measurements are

y :=
[
y1 y2 y3 y4 y5 y6

]>
= (2)[

θt Vt φt It Pt Qt
]>
,

where

y2
4 =

1

x′2q
(x2

3 + x2
4 + y2

2 (3a)

− 2y2[x4 cos(x1 − y1) + x3 sin(x1 − y1))]

y5 =
y2

x′q
[x4 sin(x1 − y1)− x3 cos(x1 − y1)] (3b)

y6 =
y2

x′q
[x4 cos(x1 − y1) + x3 sin(x1 − y1)− y2] (3c)

with θt the terminal voltage phase angle, Vt the terminal
voltage magnitude, φt the terminal current phase angle, It the
terminal current magnitude, Pt the terminal active power and
Qt the terminal reactive power.

We underscore the presence of the terminal bus voltage y2 =
Vt that, in a multimachine scenario, captures the effect of the
interconnection among the machines, see [10, Section II] for
details.

To formulate the observer problem we make the following
assumptions on systems prior knowledge and the available
measurements.

Assumption 1. The signals u are measurable and the electri-
cal subsystem parameters (a1, a2, b1, b2.c1) are known.2

Problem Formulation: Consider the SMIB power system
(1) with measurable outputs (2), (3), verifying Assumption
1. Design an observer

χ̇ = F (χ, u, y), x̂ := H(χ, u, y)

such that limt→∞ x̃(t) = 0, where we, generically, define the
estimation errors (̃·) := (̂·)− (·).

Remark 1. The model (1a)-(1d) is obtained making the
standard assumption that the stator resistance is zero. More-
over, the expressions in (3b) and (3c) are obtained by ne-
glecting transient saliency, thus assuming that the direct- and
quadrature-axis transient reactances, x′d and x′q , respectively,
are equal. The latter assumption, commonly referred to as
neglecting transient saliency, is introduced for example in the
standard power systems book [19, Chap. 7.5.1].

Remark 2. The expression for y4 given in (3a) can be
derived using the direct- and quadrature-axis currents Id and
Iq , respectively, defined as

Id : =
1

x′d
[x4 − y2 cos(x1 − y1)],

Iq : =
1

x′q
[−x3 + y2 sin(x1 − y1)],

with x′d = x′q.

III. 3RD AND 4TH ORDER MODELS: A FUNDAMENTAL
DIFFERENCE

As indicated in Section I, in [10] we present a globally
convergent solution to the state observation problem for the
case when the generators are modeled by the classical third
order flux-decay model given by3

ẋ1 = x2

ẋ2 = −a1x2 + a2[Pm − YV x3 sin(x1)]

ẋ3 = −a3x3 + a4V cos(x1) + Ef ,

where the unknown state is defined as

x :=
[
x1 x2 x3

]>
=
[
δ − θt ω E′q

]>
,

2As usual in observer problems [3] we assume that u is bounded and such
that all state trajectories are bounded.

3To avoid cluttering, and with some abuse of notation, we keep the same
symbols for the 3rd and the 4th order models.
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with Y > 0 is the susceptance of the network admittance,
and V is the terminal voltage. All other parameters of the
model ai, i = 1, 4, are constant. The measurements, which
are provided via PMUs, are defined as

y1 = V

y2 = YV x3 sin(x1)

y3 = YV x3 cos(x1)− YV 2

y2
4 = Y2[x2

3 + V 2 − 2V x3 cos(x1)], (4)
y5 = ft, (5)

where y1 > 0 is the terminal voltage, y2 is the active power,
y3 is the reactive power, y4 is the terminal current and y5 the
terminal voltage frequency.

In [10] it was shown that it is possible to algebraically
reconstruct the states x1 and x3 from the measurements y
as follows.

Proposition 1. [10] The states x1 and x3 can be determined
uniquely from the PMU measurements (4) via

x3 =

√
y2

4 + 2Yy3

Y2
+ y2

1 , x1 = arcsin

(
y2

Yy1x3

)
.

This result is essential for the solution of the state obser-
vation problem, which now reduces to the observation of x2

only. We will show now that, unfortunately, this fundamental
property of the state-to-output map is lost for the 4th order
model (2). The proposition below establishes this fact by
proving that the mapping from states to measurements is
non-injective. We recall that injectivity of a mapping N(v)
is equivalent to the existence of a mapping N I(·) such that
N I(N(v)) = v. This, in its turn, is equivalent to the following
implication:

∀va, vb, va 6= vb ⇒ N(va) 6= N(vb).

Proposition 2. Consider the SMIB model (1) with PMU
measurements (2) and (3).
F1 There exists a measurable signal Y = col(Y1, Y2, Y3) ∈

R3 and a mapping N : R3 → R3 such that

Y = N(x1, x3, x4). (6)

F2 The mapping (x1, x3, x4) 7→ Y , which is given by

N(x1, x3, x4) :=

[
x2

3 + x2
4 eJx1

[
x3

x4

]]>
, (7)

with J :=

[
0 −1
1 0

]
, is non-injective.

Proof. To avoid cluttering, let us define the measurable signal

z0 := y6 +
y2

2

x′q
. (8)

From (3b) and (3c) we get after some simple calculations

y5x4 + z0x3 =
y2

x′q
(x2

3 + x2
4) sin(x1 − y1)

z0x4 − y5x3 =
y2

x′q
(x2

3 + x2
4) cos(x1 − y1). (9)

Note also that from (3) we have

x2
3 + x2

4 = (x′q)
2y2

4 + 2x′qy6 + y2
2 =: Y1, (10)

which is the first identity in (6), (7). We underscore that Y1 is
bounded away from zero.

We now to complete the proof of the fact F1. From (3b)
and (3c) we get −x′

q

y2
y5

x′
q

y2
y6 + y2

 =

[
cos(x1 − y1) − sin(x1 − y1)
sin(x1 − y1) cos(x1 − y1)

] [
x3

x4

]

= eJ(x1−y1)

[
x3

x4

]
.

The proof is completed defining[
Y2

Y3

]
:= eJy1

 −x′
q

y2
y5

x′
q

y2
y6 + y2

 . (11)

We proceed now to prove that the mapping N(x1, x3, x4)
is non-injective. To simplify the notation we define the vector
v := col(x1, x3, x4). To prove non-injectivity of the mapping
N(v), we will show that there exists two vectors va ∈ R3 and
vb ∈ R3, which are different, but such that N(va) = N(vb).
Consider the two vectors

va =
[
0 1 1

]>
, vb =

[
π
2 1 − 1

]>
.

Some simple calculations yield

N(va) = N(vb) =
[
2 1 1

]>
,

completing the proof. ���

IV. REPARAMETERIZATION OF THE ELECTRICAL
DYNAMICS

In this section we propose a reparameterization of the
electrical dynamics which is linear in x3 and x4.

Lemma 1. Consider the SMIB model (1) with PMU measure-
ments (2) and (3). There exists a matrix of measurable signals
M∈ R2×2 such that[

ẋ3

ẋ4

]
=M

[
x3

x4

]
+

[
0

c1u2

]
. (12)

Proof. Replacing (10) in (9) and rearranging terms we get

y2 sin(x1 − y1) =
x′q
Y1

(y5x4 + z0x3)

y2 cos(x1 − y1) =
x′q
Y1

(z0x3 − y5x3).

Replacing the latter equations in (1c) and (1d) and defining
the matrix

M :=

[
−a2 +

b2x
′
q

Y1
z0

b2x
′
q

Y1
y5

− b1x
′
q

Y1
y5 −a1 +

b1x
′
q

Y1
z0

]
. (13)

completes the proof of claim C1. ���

Remark 3. From (12) and the first component in (7), that is
Y1 = x2

3 + x2
4, we see that we are dealing with a subsystem

with linear dynamics but nonlinear state-output map. To the
best of our knowledge [2, Chapter 5], [3, Chapter 3] there is
no systematic way to design state observers for this class of
systems.
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V. PROPOSED STATE OBSERVER

A corollary of Proposition 2 is that there are two possibili-
ties to reconstruct the states (x1, x3, x4). The first option is to
find an observer for x1 and get (x3, x4) from the components
Y2 and Y3 of (7). Alternatively, we can estimate (x3, x4)
and—as shown in the proposition below—obtain x1 from
simple trigonometric relations. The state x2, having the same
dynamics of the third order model studied in [10], can be
reconstructed with the I&I observer of [10, Lemma 1].

Although the first approach looks simpler, the design of
an observer for x1 is still an open problem. Therefore, in
this section we take the second route and design a GPEBO
observer [15] for the states (x3, x4). To enhance readability
we divide the presentation of the observer in two parts, first—
in the spirit of PEBO [14] that translates the problem of state
observation into one of parameter estimation—the derivation
of a nonlinear regression equation required for the parameter
estimation is given. Then, we invoke DREM [1] to carry out
the latter task with weak excitation requirements.

A. Derivation of the regression equation for parameter esti-
mation

Lemma 2. Consider the reparameterized electrical dynamics
(12) and the output map (7). Define the dynamic extension

ξ̇ = A(t)ξ +

[
0

c1u2

]
(14a)

Φ̇ = A(t)Φ, Φ(0) = I2, (14b)

where we defined the time-varying matrix4

A(t) :=

−a2 +
b2x

′
q

Y1(t)z0(t)
b2x

′
q

Y1(t)y5(t)

− b1x
′
q

Y1(t)y5(t) −a1 +
b1x

′
q

Y1(t)z0(t)

 . (15)

P1 There exists a constant vector θ = col(θ1, θ2) ∈ R2 such
that [

x3

x4

]
= ξ + Φθ. (16)

P2 There exists measurable signals yE ∈ R and ψ ∈ R5 that
verify the regression equation

yE = ψ>Θ, (17)

where we defined the constant vector

Θ := col(θ1, θ2, θ1θ2, θ
2
1, θ

2
2). (18)

P3 Define the observerx̂1

x̂3

x̂4

 =

[
arcsin

(
1
Y1

[
Y3 −Y2

]
(ξ + Φθ̂)

)
ξ + Φθ̂

]
, (19)

where θ̂ is an estimate of the parameter θ. The following
implication is true

lim
t→∞

θ̃(t) = 0 ⇒ lim
t→∞

x̃1(t)
x̃3(t)
x̃4(t)

 = 0. (20)

4That is, the evaluation of the matrix M, given in (13), along the trajectories
of the system outputs.

Proof. Define the error signal

ε :=

[
x3

x4

]
− ξ (21)

and taking into account (12), (13), (14a) and (15) we obtain a
linear time-varying (LTV) system ε̇ = A(t)ε. Now, from (14b)
we see that Φ is the state transition matrix of the ε system.
Consequently, there exists a constant vector θ ∈ R2 such that

ε = Φθ,

namely θ = ε(0). We now have the following chain of
implications

ε = Φθ ⇔
[
x3

x4

]
= ξ + Φθ (⇐ (21))

⇒ x2
3 + x2

4 = |ξ + Φθ|2 (⇐ | · |2)

⇔ Y1 = |ξ + Φθ|2 (⇐ (7)).

Notice that the right hand side of the first equivalence above
proves property P1. The proof of the property P2 follows
developing the right hand side square above, rearranging terms
and defining

yE := Y1 − |ξ|2, ψ :=


2(Φ11ξ1 + Φ21ξ2)
2(Φ12ξ1 + Φ22ξ2)

2(Φ11Φ12 + Φ21Φ22)
Φ2

11 + Φ2
21

Φ2
12 + Φ2

22

 .
The proof of the implication for the errors col(x̃3, x̃4) is

obvious from (16) and the definition of col(x̂3, x̂4) in (19). To
prove the claim for x̃1 notice that using (7) and the definition
of eJx1 , we get

x3Y3 − x4Y2 = (x2
3 + x2

4) sin(x1) = Y1 sin(x1),

from which we obtain

x1 = arcsin
(x3Y3 − x4Y2

Y1

)
.

���

B. DREM parameter estimator

In view of the implication (20) the remaining task to com-
plete the observer design is to generate a consistent estimate
for θ. Towards this end, we dispose of the regressor equation
(17) that, unfortunately, is nonlinear in the unknown param-
eters θ. Treating Θ as the unknown vector, it is possible to
view (17) as an overparameterized linear regression equation
(LRE) to which we can directly apply a classical gradient
descent estimator, that is

˙̂
Θ = −Γψ(ψ>Θ̂− yE), Γ > 0. (22)

However, this approach has the following fundamental short-
coming. It is well-known [18, Theorem 2.5.1] that a necessary
and sufficient conditions for global (exponential) convergence
of the gradient estimator equation (17), (22) is that the re-
gressor ψ satisfies a stringent persistent excitation requirement
[18, Equation 2.5.3], which is not possible to satisfy in normal
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operation of the power system because of the overparameteri-
zation. To avoid this difficulty we propose here to use a DREM
estimator that has the unique feature of generating 5 new,
one-dimensional linear regression equations to independently
estimate each of the parameters. This feature allows, on one
hand, to estimate only the parameters θ and, on the other
hand, to relax the excitation assumptions that guarantee its
convergence. This fact is illustrated in the simulations of
Section V. For further details on DREM the interested reader
is refered to [1], [16].

The first step to apply DREM to (17) is to introduce a linear,
single-input 5-output, bounded-input bounded-output (BIBO)–
stable operator H and define the vector YE ∈ R5 and the
matrix Ψ ∈ Rq×q as

YE := H[yE ]

Ψ := H[ψ>]. (23)

Clearly, because of linearity and BIBO stability, these signals
satisfy

YE = ΨΘ. (24)

At this point the key step of regressor “mixing” of the DREM
procedure is used to obtain a set of 5 scalar equations as
follows. First, recall that, for any (possibly singular) q × q
matrix M we have adj{M}M = det{M}Iq , where adj{·} is
the adjunct (also called “adjugate”) matrix. Now, multiplying
from the left the vector equation (24) by the adjunct matrix
of Ψ, we get

Yi = ∆Θi, i ∈ {1, 2, . . . , 5} (25)

where we have defined the signals

∆ := det{Ψ} ∈ R
Y := adj{Ψ}YE ∈ R5. (26)

The availability of the scalar LREs (25) is the main feature
of DREM that distinguishes it with respect to all other esti-
mators and allows us to obtain significantly stronger results.
Indeed, in DREM we propose the gradient-descent estimators5

˙̂
Θi = γi∆(Yi −∆Θ̂i),

with γi > 0, which gives rise to the scalar error equations

˙̃Θi = −γi∆2Θ̃i,

whose explicit solution is

Θ̃i(t) = e−γi
∫ t
0

∆2(s)dsΘ̃i(0). (27)

From direct inspection of (27) we conclude the following
equivalence

lim
t→∞

Θ̃i(t) = 0 ⇔ lim
t→∞

∫ t

0

∆2(s)ds =∞,

and convergence can be made arbitrarily fast simply increas-
ing the gains γi.

5In the sequel, the quantifier i ∈ {1, 2, . . . , 5} is omitted for brevity.

Remark 4. It is clear from the definition of Θ in (18) that we
are only interested in the first and second components of this
vector.

Remark 5. In [8] it was observed that, using Cramer′s
rule, the computation of the adjunct matrix adj{Ψ>} can be
avoided. Indeed, the elements of the vector Y can be computed
as

Yi = det{ΨY,i} (28)

where the matrix ΨY,i is obtained replacing the i-th column
of Ψ by the vector Y .

C. Main result

We are now in position to present the main result of this
paper, a globally convergent observer for the state of the
SMIB power system (1) with measurable outputs (2), with the
required excitation conditions been rather weak. As indicated
before, the state x2 can be reconstructed with the I&I observer
of [10, Lemma 1] and is omitted for brevity.

Proposition 3. Consider the SMIB power system (1), (2)
verifying Assumption 1. Fix a stable transfer matrix6

H(s) =


1
d2
s+d2

...
d5
s+d5

 , di > 0, di 6= dj , ∀i 6= j. (29)

Let the state observer be defined by (7), (8), (14), (15), (19),
(21), (23) and (26) together with the parameter estimators

˙̂
θk = −γk∆(∆θ̂k − Yk), γk > 0, k = 1, 2. (30)

If ∆ /∈ L2 then

lim
t→∞

x̃1(t)
x̃3(t)
x̃4(t)

 = 0,

with all signals bounded.

Proof. Given the derivations of Subsection V-B we get the
parameter estimator error equations

˙̃
θk = −γk∆2θ̃k, k = 1, 2.

Clearly, with the standing assumption on ∆, we have that
θ̃(t)→ 0. The proof is completed invoking (20).

���

Remark 6. Although the construction of DREM allows for
the use of general, LTV, BIBO-stable operators H, for the sake
of simplicity we consider here the use of simple LTI filters.
Moreover, we take the first element of the matrix to be the
identity. See [16] for more general versions of DREM.

6The latter condition on the constants di is necessary to avoid the possibility
of Ψ been singular.
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Symbol Description Value Unit
D Damping factor 2 pu
H Inertia constant 23.64 sec
k Tuning parameter 80 -
T ′
d0 Direct-axis transient 8.96 sec

open-circuit time constant
xd Direct-axis reactance 0.146 pu
x′d Direct-axis transient reactance 0.0608 pu
Y Stator admittance 16.45 pu
ωs Nominal synchronous speed 314.16 rad/sec

TABLE I: Parameters for the SMIB system (1).

VI. SIMULATION RESULTS

In this section we present some simulations that illustrate
the performance of the observer of the states (x3, x4) of
Proposition 3, which combines GPEBO with DREM. For the
sake of comparison we also show the simulation results of
GPEBO with the overparameterized parameter estimator (22)
and a simple state observer directly derived from optimization
considerations. We consider the cases of the classical single-
machine infinite bus and a benchmark multimachine example.

A. Single Machine Infinite Bus

We simulated the system (1) with the parameters a0 =
13.2893, a1 = 0.268, a2 = 7.7462, b0 = 6.6447, b1 = 0.1564,
b2 = 4.5204, c1 = 0.1116, obtained from Table I with
u1 = u2 = 0.1. The systems initial conditions were set to
x(0) = col(0.1, 0.2, 0.4, 0.3). The initial conditions of all the
states of the three observers were set to zero.

1) GPEBO+DREM of Proposition 3: The parameters of the
transfer matrix (29) were chosen as d2 = 2, d3 = 4, d4 =
6, d5 = 8.

Figure 1 shows the transients of x3 and x4 and their
observed values x̂3 and x̂4 with the adaptation gains γ1 =
γ2 =: γ and different values for γ. As expected, increasing γ
speeds-up the convergence—interestingly, without generating
overshoots.
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-0.5
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0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

Fig. 1: Transients of x3, x4 and x̂3, x̂4 of GPEBO+DREM of
Proposition 3 for different values of γ

2) GPEBO with overparameterized estimator (22): In this
subsection we show that the standard gradient estimator (22)
for the overparameterized regression is inadequate. To assess
the quality of the estimation we define the vector

e :=
[
Θ1Θ2 −Θ3 Θ1 −Θ2

4 Θ2 −Θ2
5

]>
.

From the definition of the vector Θ in (18) we have that e ≡ 0.
In Figure 2 we show the transients of the estimated vector

ê :=
[
Θ̂1Θ̂2 − Θ̂3 Θ̂1 − Θ̂2

4 Θ̂2 − Θ̂2
5

]>
(31)

with the adaptation gains Γ = 106I5 and Γ = 108I5, which
does not converge to zero—proving that the parameters do
not converge to their true values. Several different values of
Γ were tried, observing always an erroneous behavior.
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-0.05

0

0.05

0 2 4 6 8 10
-0.15

-0.1

-0.05

0

0.05

0.1

Fig. 2: Transients of the components of ê for Γ = 106I5 and
Γ = 108I5 of the overparameterized estimator (22)

3) Gradient-descent state estimation algorithm: In this
subsection we propose to design gradient-descent algorithms,
directly for observation of the states (x3, x4), proceeding
from the state-to-output map (10). The gradient descent-based
approach to state observation was, apparently, first proposed
in [20], and has been pursued recently by several researchers
[4], [6], [9], [13], [21].

The construction proceeds as follows. Given the criterion

T (x3, x4) :=
1

4
[Y1 − (x2

3 + x2
4)]2,

with Y1 given in (10), propose an observer[
˙̂x3

˙̂x4

]
= −Γ∇{T (x̂3, x̂4)}+

(
A(t)

[
x̂3

x̂4

]
+

[
0

c1u2

])
where ∇{·} denotes the gradient operator, and Γ ∈ R2×2

positive definite. That is,[
˙̂x3

˙̂x4

]
= Γ[Y1 − (x̂2

3 + x̂2
4)]

[
x̂3

x̂4

]
+

(
A(t)

[
x̂3

x̂4

]
+

[
0

c1u2

])
(32)

The local stability properties of this observer can be studied
using the Taylor-expansion based analysis proposed in [21]. To
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the best of the authors’ knowledge no result of global stability
of this kind of observers has been reported in the literature.

Figure 3 shows the transients of x3 and x4 and their
observed values x̂3 and x̂4 with Γ = γI2 and different
values7 of γ. Interestingly, the state estimation errors converge
to zero, even for large initial conditions errors. However,
the transient behavior is significantly slower that the one of
GPEBO+DREM—notice the difference in time scales.
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0.8

Fig. 3: Transients of x3, x4 and x̂3, x̂4 of the gradient descent
observer (32) for different values of Γ = γI2

B. Multi-Machine Power System

We simulated the well-known New England IEEE 39 bus
system, with the parameters provided in [5]. All synchronous
generators are represented by the fourth-order flux-decay
model (1) and are equipped with automatic voltage regulators
and power system stabilizers according to [5]. To monitor the
system, we assume that a PMU is installed at the terminal bus
of generator 6.

As a test case we used minor load variations in the system.
The resulting frequency variations are within 60± 0.020 [Hz]
and hence consistent with those during regular operation of
transmission grids [26].

1) GPEBO+DREM and algebraic observer of Proposition
3: The parameters of the transfer matrix (29) were chosen
as d2 = 2, d3 = 4, d4 = 6, d5 = 8. Different values
were chosen for the adaptation gains γi = γ. In Figure 4
the simulation results for x1, x2, x3 and the state estimation
of the observer of Proposition 3 are shown. As seen from the
figure consistent estimation of the state variables is achieved.

2) GPEBO with overparameterized estimator (22): The
overparameterized estimator was simulated using different
values for the adaptation gain Γ = γI5. The elements of the
error vector defined in (31) are given in Figure 5, showing
that convergence is not achieved.

3) Gradient-descent state estimation algorithm (32): In
Figure 6 the simulation results for the gradient-descent state
estimation algorithm introduced in (32) are shown using
different values for the gain Γ = γI2. As seen from the
figure the transient behavior is very good, mainly due to the

7The plots of γ = 103 and γ = 105 are overlapped
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Fig. 4: Transients of the GPEBO+DREM of Proposition 3,
with different values of γ, for generator 6 in the presence of
load variations.
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ê2, γ = 106
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Fig. 5: Transients of the error vector (31) of the overparame-
terized estimator (22) for generator 6 in the presence of load
variations.

rapid change of the state variables x3 and x4 due to the load
variation that provide the required excitation to estimate the
gradient.

We have also done simulations for both observers in the case
when x′d 6= x′q that, as indicated in Remark 1, is an assumption
instrumental to obtain the equations (3b) and (3c). In both
cases, a significant steady-state error appeared exhibiting the
high sensitivity of both observers to this critical assumption.

VII. CONCLUSION AND FUTURE RESEACH

We have proposed a globally convergent observer for the
state estimation, from PMU measurements, of multimachine
power systems described by the widely popular fourth or-
der model (1). It is shown that we can concentrate on the
observation of the states (x3, x4) and compute x1 from an
explicit algebraic equation. The observer has only a few tuning
gains: the time constants of the LTI filters H in (29) and the
adaptation gains γi. The former must be selected related to
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Fig. 6: Transients of the gradient descent observer (32) of
generator 6 in the presence of load variations.

the bandwidth of the process, while the latter determine the
rate of convergence of the parameter estimator.

For the observation of (x3, x4) we have also proposed a
gradient-descent based observer that, in spite of the lack of
a global convergence proof, performs quite well in a realistic
multimachine scenario. A topic of current research is to assess
the convergence properties of this observer—beyond the local
analysis based on linearization of [21].

To extend the range of application of the proposed ob-
server to salient pole synchronous generators, we are currently
working on an alternative solution that allows us to relax
the assumption on the direct- and quadrature-axis transient
reactances being equal and zero stator resistance indicated in
Remark 1.

Another interesting possibility motivated by (7) is to design
a gradient-descent observer for (x1, x3, x4) fixing a cost
function

TN (x1, x3, x4) :=

∣∣∣∣∣Y −
 x2

3 + x2
4

eJx1

[
x3

x4

] ∣∣∣∣∣
2

,

and going in the direction of descent of the gradient—with
respect to (x1, x3, x4)—of this cost function. We hope to be
able to report this result in the near future.
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and challenges of low-inertia systems, 2018 Power Systems Computation
Conference (PSCC), pp. 1-25, 2018.

[13] R. Ortega, L. Praly, A. Astolfi, J. Lee and K. Nam, Estimation of
rotor position and speed of permanent magnet synchronous motors with
guaranteed stability, IEEE Trans. Control Systems Technology, Vol. 19,
pp. 601-614, 2011.

[14] R. Ortega, A. Bobtsov, A. Pyrkin and A. Aranovskyi, A parameter
estimation approach to state observation of nonlinear systems, Systems
and Control Letters, Vol. 85, pp 84-94, 2015.

[15] R. Ortega, A. Bobtsov, N. Nikolayev, J. Schiffer and D. Dochain,
Generalized parameter estimation-based observers: application to power
systems and chemical-biological reactors, Automatica, (submitted).
arXiv:2003.10952

[16] R. Ortega, S. Aranovskiy, A. Pyrkin, A Astolfi and A. Bobtsov: New
results on parameter estimation via dynamic regressor extension and
mixing: Continuous and discrete-time cases, IEEE Trans. Automatic
Control, (to appear). (10.1109/TAC.2020.3003651).

[17] A. Paul, G. Joos and I. Kamwa, Dynamic state estimation of full
power plant model from terminal phasor measurements, 2018 IEEE/PES
Transmission and Distribution Conference and Exposition (T&D), pp. 1-
5, 2018.

[18] S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence and
Robustness, Prentice-Hall, New Jersey, 1989.

[19] P. Sauer, M. A. Pai and J. Chow, Power Systems Dynamics and Stability,
Wiley, 2nd Edition, 2018.

[20] K. Shimizu, S. Suzuki and H. Nukumi, A state estimator of nonlinear
systems by steepest-descent method, Proc. of SICE 17th, DST Symp.,
1994.

[21] K. Shimizu, Nonlinear state observers by gradient-descent method, Proc.
of the 2000 IEEE International Conference on Control Applications,
Anchorage, Alaska, USA, September 25-27, 2000.

[22] A. Singh and B. Pal, Dynamic Estimation and Control of Power Systems,
Academic Press, 2018.

[23] V. Terzija, et al., Wide-area monitoring, protection, and control of future
electric power networks, Proceedings of the IEEE, Vol. 99, No. 1, pp.
80-93,2010,

[24] W. Winter, K. Elkington, G. Bareux and J. Kostevc, Pushing the
Limits: Europe’s New Grid: Innovative Tools to Combat Transmission
Bottlenecks and Reduced Inertia, IEEE Power and Energy Magazine,
Vol. 13, No. 1, pp. 60-74, 2015.

[25] T. Weckesser, H. Johannsson and J. Ostergaard, Impact of model detail
of synchronous machines on real-time transient stability assessment, 2013
IREP Symposium-Bulk Power System Dynamics and Control IX (IREP),
Rethymnon, Greece, August 25-30, 2013

[26] T. Weissbach, Verbesserung des Kraftwerks-und Netzregelverhaltens
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