
Enhanced DNS Message Compression - Optimizing
mDNS/DNS-SD for the Use in 6LoWPANs

Ronny Klauck
IHP

Im Technologiepark 25, D-15236 Frankfurt (Oder), Germany
eMail: klauck@ihp-microelectronics.com

Michael Kirsche
Computer Networks and Communication Systems Group
Brandenburg University of Technology Cottbus, Germany

eMail: michael.kirsche@tu-cottbus.de

Abstract—With the integration of smart objects into the
Internet with the help of tiny IP stacks, a direct connection
between these objects and ordinary computational devices can be
realized at the IP layer. As IP alone cannot ensure an automatic
integration at the higher layers, an homogeneous access via
services (e.g., discovery, self-configuration) for the Internet of
Things vision should be provided for all connected device types.
Multicast DNS and DNS Service Discovery are established
and widely used standards in current IP-based networks to
enable the discovery of devices and services at the application
layer with DNS messages. To comply with the current Internet
infrastructure, the lightweight implementation uBonjour makes
mDNS and DNS-SD available on smart objects. As DNS does not
meet the requirements of low data rate smart object networks,
we propose to extend DNS with enhanced message compression
mechanisms to effectively reduce the number of exchanged IP
packets in 6LoWPANs while ensuring backward compatibility.

Keywords-Internet of Things, mDNS/DNS-SD, Contiki

I. INTRODUCTION

The Internet of Things (IoT) vision uses so-called smart
objects to interconnect the physical world with the Internet [1].
With the invention of tiny IP stacks, smart objects can use IP to
communicate natively with each other, different IP networks as
well as any IP device while respecting the Internet protocol’s
end-to-end principle [2]. The routing between smart object net-
works and traditional IP networks is done in the border routers,
which convert IEEE 802.15.4 (max. 127 Bytes) / 6LoWPAN1

frames to Ethernet / IPv6 frames (max. 1280 Bytes) and vice
versa. To efficiently embed IPv6 packets in 802.15.4 frames
(e.g., fragment oversized packets, statelessly compress packet
headers, forward packets via multi-hop wireless routes) and
thus use IP in smart object networks, the Internet standard
RFC 4944 [3] was proposed to enable a seamless integration
of resource constrained devices [4, Sec. 6].

Currently developed application layer protocols for smart
object networks like the Constrained Application Protocol
(CoAP) [5] try to comply with these restrictions in terms of
low message overhead. Unfortunately, these protocols are not
100% compatible to established and widely used standards
in the Internet, because they rely on specialized protocol
translators which lead to a loss of flexibility and end-to-end
functionality [4]. A seamless integration of smart objects into

1IPv6 over Low power Wireless Personal Area Networks (IPv6 over IEEE
802.15.4) [Online] http://www.ietf.org/html.charters/6lowpan-charter.html

the current Internet infrastructure requires: (i) a standardized
scheme to discover joining objects and their advertised ser-
vices while complying with the Internet’s IP standard as well
as (ii) self-configuration (“arrive and operate”, scalability) to
handle the possible large number of objects emphasized by
the IoT vision [4]. Instead of introducing new protocols that
realize discovery mechanisms for smart objects, the adaption
of established protocols (e.g., mDNS and DNS-SD) should be
favored [6]. As mDNS and DNS-SD were initially designed
for desktop systems with nearly no limit of bandwidth, both
protocols lack optimizations for low data rate smart object net-
works. This work introduces enhanced compression methods
for DNS which should extend the current DNS standard [7,
Sec. 4.1.4] to enable an efficient message transport between
smart objects and ordinary computational devices.

The rest of this work is structured as follows. Section II
discusses the state of the art and related work. Section III intro-
duces the limiting factor of current DNS message compression
in 6LoWPAN while Sections IV and V present technical
requirements and architectural solutions for the enhanced DNS
message compression in 6LoWPANs. Initial performance eval-
uations are presented in Section VI while concluding remarks
in Section VII complete this work.

II. STATE OF THE ART AND RELATED WORK

Multicast DNS (mDNS) [8] and DNS Service Discovery
(DNS-SD) [9] are parts of the IETFs Zeroconf initiative to
facilitate standards in the field of service-oriented networking,
also known as Bonjour. mDNS allows to map domain names
to network addresses without the help of any server in the local
(ad hoc) network. DNS-SD enables to locate and to publish
services in a network while using so-called DNS resource
records (e.g., SRV, TXT, AAAA, and PTR). This operational
scheme is directly connected to the concept of Service-oriented
Architectures (SOA) [10]. SOA enables a seamless integration
and interaction of different device types while specific devices
are abstracted as services according to their offered functions.
The abstraction of functionality into services is what uBonjour
ultimately aims for with the discovery service for smart
objects. Both protocols together enable an application- and
network-independent announcement of services and both are
nowadays supported on nearly every operating system.

Author manuscript, published in “9th PerSeNS Workshop, co-located with PerCom (2013)”

1



A. uBonjour: DNS-Based Service Discovery for the IoT Vision

uBonjour [11] is a lightweight and memory-efficient imple-
mentation of mDNS/DNS-SD for resource constrained smart
objects running the Contiki OS [12]. It enables discovery
and addressing of devices and available services in IP-based
network environments. Intermediate systems (i.e., protocol
gateways) are not necessary anymore to interconnect smart ob-
jects with ordinary computational devices. Thus, smart objects
can be treated as a natural part of any IP network while gaining
new and direct interaction possibilities for users with their
IoT-driven environment. Application protocols can register
and announce their availability as services in the network as
well as discover other devices that use the same application
protocol. This enables a vendor independent discovery and
collaboration of different device types (refer to [13]), while
the coexistence of a set of application protocols is possible.
The general features of uBonjour for application protocols and
developers are: the resolving of hostnames and the discovering,
registering, removing, and updating of services.

B. DNS Message Compression

A DNS message is composed of a DNS header and, at least,
one resource record. The DNS header takes 12 Bytes of a DNS
message. The number of embedded resource records in a DNS
message is stored in several fields of the DNS header, like the
answer record count or the additional record count [7, Sec.
4.1.1]. A DNS record contains fields for the (domain) name,
the resource type, the class code, the TTL, the length of the
resource data, and the resource data [7, Sec. 3.2]. Embedding
a set of resource records in a single DNS message will save 12
Bytes per each additional added record compared to sending
each DNS resource record in a separated DNS message.

In DNS, a name has to be split into a sequence of label
lengths and then labels. A label length counts 1 Byte while
each label is taking 1 Byte per character. DNS name com-
pression is a possibility to reduce the size of a DNS resource
record while shortening names by using pointers to a prior
occurrence of the same name [7, Sec. 4.1.4]. Therefore, names
in a message can be represented as a sequence of labels, as
a pointer or as sequence of labels ending with a pointer. The
length of a pointer is only 2 Bytes, because it is represented
by a two octet sequence containing the pointer flag (the first
two bits) and the offset from the start of the prior occurrence
of the same name. Pointers can be distinguished from a label
by setting the first two bits to ones (pointer flag) while labels
must start with two zero bits.

Overall, only names of a DNS resource record are currently
considered to decrease the DNS message size while requiring
just a minimal larger code size and no additional buffers for the
generation of name pointers and the calculation of their offsets.
A strategy to combine both compression possibilities of DNS
for the efficient use in uBonjour in respect to the characteristics
of Contiki is introduced in Section IV. Furthermore, Section V
presents our ideas for the enhanced compression of further
fields and additional information of DNS resource records.

III. LIMITING FACTOR

Examples of all required record types and their corre-
sponding lengths to announce the availability of XEP-0174
(uBonjour is part of the uXMPP software stack for smart
objects, refer to [14, Sec. 4.5.2]) are shown in Table I.

Furthermore, the repetition of DNS names is depicted: the
name field of the SRV record is included in the name field
of TXT, in the resource data field and as a substring in the
name field of PTR; the name field of AAAA occurs in the
resource data field of SRV; the last substring of all names
is repeated in every mentioned field and a prior occurrence
can be replaced with a pointer within a single DNS record.
The minimal length of a DNS record is the sum of fields
with fixed lengths, the length of additional information (e.g.,
port, IP address, user-defined text) and the length of all used
names. In Table I the column for the length holds two values:
the first value assumes that each name could be replaced with
a pointer; the second value in brackets shows the minimal
length of a DNS record if no pointer within a record could
be used (this represents the case when each record has to
be sent by a separated DNS message), including the service
name of XEP-0174 (e.g., _presence._tcp.local). It is
important to note that both cases do not include the length of
the owner name and the hostname, because these are individual
values of a device and their length cannot be predetermined.
Therefore, the recommended length for each name is set to
three2. Enabling all pointer possibilities is only possible if all
records are included in a single DNS message, because only
then the beginning SRV record will hold a sequence of labels
for the owner name, the service name, and the hostname while
the other DNS records can use pointers to a prior occurrence
of a substring. In this case, the minimal required DNS payload
size is 108 Bytes without owner name and hostname.

IV. ADJUSTABLE DNS MESSAGE COMPRESSION (ADMC)

The main goal of the Adjustable DNS Message Compres-
sion (ADMC) is the efficient implementation of the already
defined DNS message compression (refer to Section II-B)
for uBonjour in respect of the lower level fragmentation of
different smart object hardware platforms on Contiki. DNS
message compression can reduce the response time and the
number of packets for retransmissions in case of connection
issues, if a small number of IP packets must be sent. DNS
compression hence minimizes the DNS message overhead for
service announcement via DNS-SD in terms of DNS record
length and number of used DNS messages.

The highest compression ratio for a DNS message can be
achieved when all four required DNS record types of DNS-SD
fit in a single DNS message and when every occurrence of a
name can be replaced by a pointer. A DNS record has fields
with fixed lengths (e.g., type, class, TTL, resource length) and
with variable lengths (e.g., name, resource data). DNS message

2A string of the length of three offers more than 2 million possibilities
(e.g., 1283) in the case of using American Standard Code for Information
Interchange (ASCII) to create enough unique names for a number of smart
objects in a local domain.

Author manuscript, published in “9th PerSeNS Workshop, co-located with PerCom (2013)”

2



TABLE I
EXAMPLES OF USED DNS RECORD TYPES FOR XEP-0174 AND THEIR FULL AND MINIMAL LENGTH.

Type Example (name, type, class, TTL, resource length, resource data) Length (Min.)
SRV con. presence. tcp.local, SRV, IN, 3600, 17, 12345 ctk.local 20 (41)

PTR presence. tcp.local, PTR, IN, 3600, 25, con. presence. tcp.local 14 (35)

TXT con. presence. tcp.local, TXT, IN, 3600, 13, status=avail 25 (46)

AAAA ctk.local, AAAA, IN, 3600, 16, aaaa::212:7402:2:202 28 (34)

compression heavily concentrates on the fields with variable
lengths. These fields hold the individual service information
(e.g., owner name, hostname, service name) of a device.

Unfortunately, some hardware platforms only support small
IP packet sizes (refer to [11, Sec. 3.7]) when running Contiki
OS. This hinders the combination of all required DNS records
into a single DNS message. The supported IP packet size relies
on the lower layer fragmentation skills of the uIP stack [15],
which again depend on the hardware platform and its built-in
radio transceiver. The Zolertia Z1 hardware platform has one
of the lowest Contiki IP payload sizes: 80 Bytes vs. 180 Bytes
of the Tmote Sky for usable application data. It is therefore a
good reference platform to calculate the necessary boundaries
for the optimal number of DNS resource records fitting in a
single IP packet of the uIP stack. The available DNS payload
size for the Z1 hardware platform is only 68 Bytes. A decision
matrix (shown in Table II) was hence created to show the
boundaries of the IP packet size with the number of DNS
records, which can be integrated into a single DNS message
depending on the available DNS payload size.

TABLE II
DECISION MATRIX TO INTEGRATE THE CORRECT NUMBER OF DNS

RESOURCE RECORDS INTO A SINGLE DNS MESSAGE (IN BYTE).

IPv6 Payload Size (x) Min. DNS Payload IPv6 Packet(s)
80 ≤ x ≤ 140 68 3

x > 140 108 1

Possible combinations of integrating two DNS records into
a single DNS message in case of 68 Bytes payload size are:
the PTR record with the TXT (60 Bytes; leaving 8 Bytes
for owner name) or with the SRV record (55 Bytes; leaving
13 Bytes for owner name and hostname) into a single DNS
message. So, only three DNS messages need to be sent
(further optimizations are necessary, refer to the upcoming
Subsection V-C). The implementation of ADMC in uBonjour
is based on the calculated boundaries shown in Table II.
This ensures the efficient use of DNS name compression
for each supported hardware platform of Contiki through the
integration of the correct number of DNS records into a single
DNS message, depending on the available IP payload size.
ADMC is backward compatible to existing DNS standards
and uses the default configuration parameters (e.g., 6LoWPAN
fragmentation, uIP buffer sizes, no header compression) of
Contiki for each supported hardware platform.

V. ENHANCED DNS MESSAGE COMPRESSION METHODS

Hardware platforms with a small IP payload size (e.g., the
popular Zolertia Z1 hardware) could not be fully optimized
with ADMC for low data rate networks, because the sending of
a service announcement by uBonjour still requires 3 separated
DNS messages. This subsection discusses not yet consid-
ered optimization approaches to reduce the DNS message
overhead and the response time of uBonjour in 6LoWPANs.
Our ultimate goal is to find standard-compliant compression
approaches to integrate all four DNS resource records into a
single IP packet, while supporting most hardware platforms.
Each optimization is compared in terms of implementation
effort, the number of used IP packets, and the backward
compatibility to the RFC 1035 [7, 4.1.4]. Finally, the reason-
able compromise of all enhanced optimizations was taken and
summarized as ADMC Enhanced.

A. Thoughts on using 6LoWPAN Compression

The reason for the small IP payload sizes for application
data is that the IP and UDP headers take a large part of
each sent IP packet (e.g., max. 48 Bytes) when using IEEE
802.15.4 links (cp. [16, Sec. 4]). To overcome this restriction,
a compression format for IPv6 datagrams over IEEE 802.15.4-
based networks was defined in RFC 6282 [17] as IPv6 Header
Compression (IPHC) and Next Header Compression (NHC).
For the communication with global addresses, the IP and
UDP headers are compressed down to 10 Bytes [18]. This
will release 38 Bytes for both headers and could theoretically
enlarge the DNS payload size of the Zolertia Z1 to 106 Bytes.
As the minimal length for all four DNS resource records is
108 Bytes, a single DNS message cannot be used here without
further optimizations. In contrast to ADMC, the number of sent
IP packets can be reduced from three to two for the Zolertia
Z1 hardware platform. Overall, the 6LoWPAN compression
is very helpful for hardware platforms with small available IP
payload sizes. Since the compression works at the lower layers,
no changes to DNS standards are necessary. The drawback is
that not all needed DNS resource records can be integrated
into a single DNS message (IP packet).

B. Class Code and TTL Field Compression

The standardized DNS message compression does not con-
sider repetitions in the fields with fixed lengths. For this reason
a size of 10 Bytes is unusable in each DNS record, although
a repetition of the class code or the TTL value can occur
when multiple DNS resource records are sent in a single DNS
message as shown in Table I. In this case all DNS records

Author manuscript, published in “9th PerSeNS Workshop, co-located with PerCom (2013)”

3



have to set the same values for the class code and the TTL
field. Both fields take a length of 6 Bytes (e.g., 2 Bytes for
class code, 4 Bytes for TTL field), while the use of a pointer
to a prior occurrence uses only 2 Bytes. The unusable amount
is reduced to 6 Bytes (leaving the type, the resource length
fields and a pointer) with our approach of using pointers for
both fields. In the best case, 12 Bytes can be saved when all
four DNS resource records are sent in a single DNS message
or 4 Bytes in the worst case, when only two DNS resource
records will fit in a single DNS message. The second case
would lead to a length of 12 Bytes for the owner name for
the combination of PTR and TXT record or to a length of 17
Bytes for owner name and hostname for the combination of
PTR and SRV record in the case of 68 Bytes.

As our compression schema of the class code and the TTL
field differs from the compression of names, another pointer
flag is required to indicate this optimization. Hence, the first
two bits cannot start with two zero bits (indicates a label)
or to ones (indicates a pointer to a name) as described in
Subsection II-B). All other combinations (e.g., 10 and 01)
are reserved by RFC 1035 [7, 4.1.4] and could be used to
indicate a pointer for our class code and the TTL compression
in the future. This optimization saves only a few Bytes, but its
implementation is done in a few lines of code while providing
backward compatibility with the current DNS standard.

C. Redundant Information Filtering

Sending four DNS resource records to announce a service
in the network contains a lot of redundant information (e.g.,
names, IP addresses). From our perspective this means that
information can be reconstructed while redundant information
are kept back to reduce the network traffic. The SRV record
holds information to build a whole PTR record and the begin-
nings of TXT and AAAA records. The rest of the information
(e.g., IP address, user-defined text) can be easily appended
to the resource data of the corresponding SRV record. Thus,
the minimal length of a single DNS message containing all
information for the four DNS resource records will be reduced
from 108 Bytes to 74 Bytes with our optimization. Regrettably,
this is not small enough for the available DNS payload sizes of
the Zolertia Z1 hardware platform, but we can cut the required
number of DNS messages into half, while sending only a SRV
record with appended IP address and an additional TXT record
(uses 2 instead of 4 separated DNS messages, compare with
Table II). Another redundant information are the IP addresses
of the AAAA records, which we can reconstruct from the lower
layers while using the source address of the IP header. This
principle is inspired by RFC 2464 [19], which defines the
reconstruction of 128 Bit IPv6 addresses from 64 Bit MAC
addresses. An implementation can be either realized via a
pointer flag3 in the DNS resource record or by extracting4

the source address directly from the IP packet. With that in
mind, we only need to append the user-defined text to the

3This will work without heavy modifications when no IP header compres-
sion method (e.g., HC1, HC2, IPHC/NHC) is enabled in the 6LoWPAN.

4The lower layer (IP stack) has to provide such functionality via API calls.

SRV record, which will reduce the minimal length of a single
DNS message simulating all four DNS resource records to 56
Bytes. This will allow us to use a single DNS message for
the Zolertia Z1 platform (e.g., 68 Bytes), which will leave 12
Bytes for an individual owner name and hostname.

The main drawback of our optimization is that it will not be
understood from mDNS- and DNS-SD-compliant implementa-
tions, because they will expect all four DNS resource records.
To overcome this issue and enable backward compatibility, a
filter mechanism (comparable to a filter rule used in firewalls)
is needed. Such a filter mechanism can be integrated in the
Avahi daemon, which already acts as a DNS message repeater
between different network interfaces (e.g., IEEE 802.15.4,
IEEE 802.11 radio links) as explained in Section VI-A. Our
filter mechanism works in bidirectional order: the TXT, PTR
and AAAA records sent to the IEEE 802.15.4 network interface
will be blocked and their information will be appended to
the corresponding SRV records; the SRV records sent from
the IEEE 802.15.4 network interface are used to generate the
necessary TXT, PTR and AAAA records while these informa-
tion are removed from the corresponding SRV records before
forwarding them to the other network interface. Overall, our
optimization needs a high implementation effort to provide
backward compatibility to existing implementations. On the
other side, it provides the minimal needed length to integrate
all four DNS resource records into a single DNS message
(in combination with IP address reconstruction) for hardware
platforms supporting very small IP payload sizes.

D. Reasonable Compromise: ADMC Enhanced

Coming back to our presented ideas for enhanced opti-
mizations (e.g., V-B and V-C), the biggest step can be made
with our redundant information filtering, but its implementa-
tion effort is very high and it introduces new dependencies
at the application layer at the same time. The rest of the
optimizations are very lightweight and ensure the best form
of backward compatibility to existing mDNS and DNS-SD
implementations, as their modifications are easily adopted.
Table III summarizes these advantages and disadvantages.
Furthermore, the required number of DNS messages (e.g., sent
IP packets) for the Zolertia Z1 hardware platform are listed to
compare each enhanced optimization with ADMC.

TABLE III
COMPARISON OF THE ENHANCED DNS MESSAGE COMPRESSION

METHODS WITH ADMC.

Optimization Implementing
Effort

Backward
Compatibility

IPv6
Packet(s)

ADMC Low Yes 3

6LoWPAN
Compression

Lowest Yes 2

Class Code and TTL
Field Compression

Low Yes 2

Redundant
Information Filtering

Highest No 1

ADMC Enhanced Low Yes 1

Author manuscript, published in “9th PerSeNS Workshop, co-located with PerCom (2013)”

4



As backward compatibility is very important to comply
with current DNS standards, we favor seamlessly integrable
optimizations. The reserved pointer flags (e.g., 10 and 01) by
RFC 1035 [7, 4.1.4] can indicate our enhanced compression
methods for the class code / TTL field and IP address
reconstruction for their future use. In contrast, our developed
redundant information filtering requires a lot more adoptions
to DNS and the application layer to achieve backward compat-
ibility. Combining the class code and TTL field compression
with the IP address reconstruction, which are both summarized
as ADMC Enhanced, will allow for a more optimized message
flow of DNS in 6LoWPANs, while preserving the defined
format of the four required DNS resource records. Figure 1
depicts this structural difference between ADMC Enhanced
and the redundant information filtering as well as the backward
compatibility of ADMC Enhanced to DNS message compres-
sion (e.g., ADMC). Compared to ADMC, the TXT and AAAA
records can yet be integrated into a single DNS message while
leaving 12 Bytes for the owner name / hostname and thus
reducing the required number of IP packets to only two. The
class code and TTL field compression will save 4 Bytes and
the IP address reconstruction will save additional 14 Bytes.

Fig. 1. Comparison of the enhanced DNS compression methods for IPv6.

Activating the 6LoWPAN compression (IPHC/NHC) allows
us to send all four DNS resource records in a single DNS mes-
sage, because the best compression ratio of 12 Bytes for the
class code and TTL field compression can be used then. The
minimal length of all four DNS resource records will hence be
reduced to only 82 Bytes while the maximum available DNS
payload size is extended to 106 Bytes when communicating
with global addresses. For this configuration, the owner name
and the hostname can have a maximum length of 24 Bytes.
Overall, ADMC Enhanced will combine the class code and
TTL field compression with the IP address reconstruction to
enable an efficient and standardized DNS message transport
in small object networks according to their restrictions (e.g.,
limited bandwidth). The backward compatibility is ensured by
using the reserved pointer flags to indicate both enhanced
compression methods of ADMC Enhanced. RFC 1035 [7,
4.1.4] has to be updated with these changes to enable the
compression for existing DNS implementations.

VI. EVALUATION

Our testbed for the evaluation reflects a typical IoT scenario
while connecting various computational devices (e.g., smart-
phones, netbooks), as well as embedded devices, sensors, and
actuators over IP links to support users in their daily routines.
The discovery of computational devices and their respective
services is provided through today’s standards like Bonjour.
For the bridging of different communication technologies, we
currently work with USB adapters to link IEEE 802.15.4 and
Ethernet over intermediate devices like notebooks.

A. Test Setup

All experiments were performed with Contiki on Zolertia Z1
and Tmote Sky hardware platforms, which feature an IEEE
802.15.4-compliant Chipcon 2420 RF transceiver. The test
setup requires to run the 6LoWPAN border router (shipped
with Contiki) on a dedicated smart object for the interaction
of a computational devices with the smart object network.
The border router converts 802.15.4 / 6LoWPAN frames to
Ethernet / IPv6 frames. The forwarding of mDNS/DNS-SD
messages to the Ethernet interface is done by Avahi [20].

B. Response Time

We measured response times by sending a PTR record to the
multicast group and stopping the time between the request and
all received DNS responses sent by the proper smart object. No
optimizations and no active DNS response forwarding were
implemented in uBonjour. Multi-hop routing is handled by
Contiki’s IP stack, depending on the performance of its used
lower layers [21]. As the service discovery of uBonjour in IPv6
scenarios relies on a 6LoWPAN border router, packets will
always be delayed via one-hop. The average response times for
a set of multi-hop scenarios with enabled ADMC (Enhanced)
and disabled ADMC (Enhanced) are listed in Table IV.

As the results proof, ADMC and especially ADMC En-
hanced reduce the response time in all scenarios significantly.
The highest reduction of the response time (e.g., around 59%
for ADMC Enhanced and around 45% for ADMC) is reached
when all required DNS records can be integrated into a single
DNS message. Less IP packets and thus less IEEE 802.15.4
radio frames need to be sent while replacing all repetitions
efficiently within a DNS message. Furthermore, using only
DNS name compression within a DNS record reduces the
response time and lowers the network traffic for low data rate
smart object networks as well, because less data is transmitted
per IP packet. Comparing the response times of IPv6 with IPv4
over SLIP (e.g., 71 ms without enabled ADMC, refer to [11,
Sec. 4.4]) shows that the border router introduces a certain
amount of latency for IPv6, which cannot be avoided.

With the evaluation of ADMC (Enhanced), we showed that
the enhanced DNS message compression methods are efficient
for reducing the overhead of DNS messages in 6LoWPANs.
Furthermore, the implementation of ADMC (Enhanced) can
be used for a variety of smart object hardware platforms as
ADMC (Enhanced) will always combine compression methods
in dependency of the available IP payload size.

Author manuscript, published in “9th PerSeNS Workshop, co-located with PerCom (2013)”

5



TABLE IV
RESPONSE TIME OF UBONJOUR IN DEPENDENCY OF THE NUMBER OF SENT IP PACKETS

– COMPARISON BETWEEN ENABLED AND DISABLED ADMC (ENHANCED) WITH ITS REDUCTION SIZE –

IPv6 Packets (Compression) 1-Hop 2-Hops 3-Hops Avg. Hop Savings
1 (ADMC Enhanced) 346 ms (72%) 781 ms (60%) 1226 ms (47%) 59%

1 (ADMC on Tmote Sky) 600 ms (51%) 1008 ms (48%) 1488 ms (36%) 45%

3 (ADMC) 776 ms (37%) 1292 ms (34%) 1706 ms (27%) 32%

4 (DNS Name Compression) 1028 ms (17%) 1420 ms (27%) 2196 ms (6%) 16%

4 (No ADMC) 1233 ms 1954 ms 2324 ms -

VII. FINAL REMARKS

This work promotes enhanced DNS message compression
for the efficient use of mDNS/DNS-SD-based service discov-
ery in 6LoWPANs. In the first stage, we have implemented the
standardized name compression for uBonjour as ADMC, which
can reduce the response time significantly while integrating
all four DNS resource records into a single IP packet for
most smart object hardware platforms (with support of an
IP payload size larger than 140 Bytes). In the second stage,
further optimizations were investigated to reduce the length of
a single DNS message including all required DNS resource
records for smart object hardware platforms with a very
small IP payload size, but without breaking standards. We
hence introduced two enhanced message compression methods
for DNS (e.g., the class code and TTL field compression
and the IP address reconstruction) and implemented both as
ADMC Enhanced for uBonjour. Both enhanced approaches are
backward compatible to existing DNS implementations and
can simply be adopted by RFC 1035, because these methods
are indicated by pointer flags reserved for future use. Overall,
our enhanced DNS message compression demonstrates that
existing standards can be used economically in 6LoWPANs
without introducing smart object specific approaches.

REFERENCES

[1] J.-P. Vasseur and A. Dunkels, Interconnecting Smart Objects with IP:
The Next Internet. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2010.

[2] J. W. Hui and D. E. Culler, “IP is Dead, Long Live IP for
Wireless Sensor Networks,” in Proceedings of the 6th ACM Conference
on Embedded Network Sensor Systems, ser. SenSys ’08. New
York, NY, USA: ACM, 2008, pp. 15–28. [Online]. Available:
http://doi.acm.org/10.1145/1460412.1460415

[3] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission
of IPv6 Packets over IEEE 802.15.4 Networks,” IETF, Request for
Comment 4944, Sep. 2007. [Online]. Available: http://www.ietf.org/rfc/
rfc4944

[4] F. Mattern and C. Floerkemeier, “From the Internet of Computers to the
Internet of Things,” in From Active Data Management to Event-Based
Systems and More, ser. Lecture Notes in Computer Science, K. Sachs,
I. Petrov, and P. Guerrero, Eds. Springer Berlin / Heidelberg, 2010,
vol. 6462, pp. 242–259.

[5] Z. Shelby, K. Hartke, C. Bormann, and B. Frank, “Constrained
Application Protocol (CoAP),” IETF, Internet-Draft, Mar. 2012.
[Online]. Available: https://tools.ietf.org/html/draft-ietf-core-coap-09

[6] H. Tschofenig and J. Arkko, “Report from the Smart Object Workshop,”
IETF, Request for Comment 6574, April 2012. [Online]. Available:
http://www.ietf.org/rfc/rfc6574

[7] P. Mockapetris, “Domain Names - Implementation and Specification,”
IETF, Request for Comment 1035, Nov. 1987. [Online]. Available:
http://www.ietf.org/rfc/rfc1035

[8] S. Cheshire and M. Krochmal, “Multicast DNS,” IETF, Internet-
Draft, Dec. 2011. [Online]. Available: http://tools.ietf.org/html/
draft-cheshire-dnsext-multicastdns-15

[9] ——, “DNS-Based Service Discovery,” IETF, Internet-
Draft, Dec. 2011. [Online]. Available: http://tools.ietf.org/html/
draft-cheshire-dnsext-dns-sd-11

[10] R. Zender, U. Lucke, and D. Tavangarian, “SOA Interoperability for
Large-Scale Pervasive Environments,” in Proceedings of the Interna-
tional Conference on Advanced Information Networking and Applica-
tions Workshops. IEEE Computer Society, 2010, pp. 545–550.

[11] R. Klauck and M. Kirsche, “Bonjour Contiki: A Case Study of a DNS-
based Discovery Service for the Internet of Things,” in Proceedings
of the 11th International IEEE Conference on Ad-Hoc Networks and
Wireless (ADHOC-NOW 2012), ser. Lecture Notes in Computer Science
(LNCS), X. Li, S. Papavassiliou, and S. Ruehrup, Eds. Springer Berlin,
July 2012, vol. 7363, pp. 317–330.

[12] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - A Lightweight and
Flexible Operating System for Tiny Networked Sensors,” in Proceedings
of the 29th Annual IEEE International Conference on Local Computer
Networks (LCN 2004). IEEE Computer Society, 2004, pp. 455–462.

[13] D. Barisic and A. Pfefferseder, “Unified Device Networking Protocols
for Smart Objects,” in 25th Workshop of Interconnecting Smart Objects
with Internet. Prague, Czech Republic: The Internet Architecture
Board, March 2011. [Online]. Available: http://www.iab.org/wp-content/
IAB-uploads/2011/03/Barisic.pdf

[14] R. Klauck and M. Kirsche, “Combining Mobile XMPP Entities
and Cloud Services for Collaborative Post-Disaster Management in
Hybrid Network Environments,” Mobile Networks and Applications
- The Journal of SPECIAL ISSUES on Mobility of Systems,
Users, Data and Computing, 2012. [Online]. Available: http:
//dx.doi.org/10.1007/s11036-012-0391-1

[15] M. Durvy, J. Abeille, P. Wetterwald, C. O’Flynn, B. Leverett, E. Gnoske,
M. Vidales, G. Mulligan, N. Tsiftes, N. Finne, and A. Dunkels, “Making
Sensor Networks IPv6 Ready,” in Proceedings of the 6th ACM Confer-
ence on Networked Embedded Sensor Systems (SenSys), Nov. 2008.

[16] S. Duquennoy, F. Österlind, and A. Dunkels, “Lossy Links, Low
Power, High Throughput,” in Proceedings of the 9th ACM Conference
on Embedded Networked Sensor Systems, ser. SenSys ’11. New
York, NY, USA: ACM, 2011, pp. 12–25. [Online]. Available:
http://doi.acm.org/10.1145/2070942.2070945

[17] J. Hui and P. Thubert, “Compression Format for IPv6 Datagrams over
IEEE 802.15.4-Based Networks,” IETF, Request for Comment 6282,
Sep. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6282

[18] J. Hui and D. Culler, “6LoWPAN: Incorporating IEEE 802.15.4 into
the IP Architecture,” Internet Protocol for Smart Objects (IPSO)
Alliance, White paper #3, Tech. Rep., Jan. 2009. [Online]. Available:
http://www.cs.berkeley.edu/∼jwhui/6lowpan/IPSO-WP-3.pdf

[19] M. Crawford, “Transmission of IPv6 Packets over Ethernet Networks,”
IETF, Request for Comment 2464, Dec. 1998. [Online]. Available:
http://www.ietf.org/rfc/rfc2464

[20] The Avahi Team, “More About Avahi - Details about mDNS, DS-DNS
and Zeroconf,” [Online] http://avahi.org/wiki/AboutAvahi, 2012.

[21] J. Silva, T. Camilo, P. Pinto, R. Ruivo, A. Rodrigues, F. Gaudêncio,
and F. Boavida, “Multicast and IP Multicast Support in Wireless Sensor
Networks,” Journal of Networks, vol. 3, no. 3, pp. 19–26, Mar. 2008.

Author manuscript, published in “9th PerSeNS Workshop, co-located with PerCom (2013)”

6


